UDK 621.039.542.3 LBC 31.35 N 92

Recommended for publication by the Academic Council (Protocol № 3 dated by 30.10.2017) and the decision of the Editorial-Publishing Council al-Faraby KazNU (Protocol №2 dated by 03.11.2017)

Reviewers:

Doctor of technical sciences, professor B.N. Absadykov Doctor of technical sciences, professor V.E. Messerle

N 92 Numerical Simulation of Aerodynamic and Thermal Characteristics of Pulverized Fuel: monograph / A. Askarova, S. Bolegenova, Sh. Gumarova, L. Strautman. – Almaty: Qazaq universiteti, 2017. – 166 p. ISBN 978-601-04-3064-8

The physical and mathematical model used in the monograph, which gives a rigorous description of the main processes of heat and mass transfer in combustion chambers, and the method of constructing a geometric model of a real combustion chamber in combination with modern computing technologies, using capabilities of modern supercomputers, enable us to carry out a comprehensive study of all characteristics of the solid fuel combustion process in a rather short period of time.

UDK 621.039.542.3 LBC 31.35

ISBN 978-601-04-3064-8

© Al-Farabi KazNU, 2017 © Askarova A.S., et al 2017

 $V - volume, m^3$ ρ – density, kg/m³ $S_{,-}$ source member Ø p - pressure, Pa τ_{ii} – viscous stress tensor x, y, z - coordinates ϕ – generalized transport variable Γ – generalized exchange coefficient Ø δ_{ii} – Kronecker symbol m – mass, kg $T - temperature, {}^{0}C(K)$ h - specific enthalpy, kJ / kg k – kinetic energy of turbulence, m^2/s^2 K_{abs} – optical absorption coefficient, 1/m $D - diffusion coefficient, m^2/s$ ε – the rate of dissipation of turbulent kinetic energy, m²/s³ µ- dynamic viscosity, kg/ms $C_{\epsilon 1}, C_{\epsilon 2}, c_{\mu -}$ empirical constants of the turbulence model σ – stoichiometry coefficient d – particle diameter (m) E_c – activation energy (J / mol) k_d – diffusion coefficient k_c - chemical velocity coefficient S_{ext} – total external surface per unit mass of the coke particle, m² Q_{chem} – energy released in a chemical reaction I_{v-} intensity of radiation, kW/m² rad Ω – solid angle, rad Θ – flat angle, degree Pr – Prandtl number Ma- Mach number