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INTRODUCTION 
 
 
The main and the only way to improve the performance of 

processors by increasing the CPU internal frequency, was augmented 
and replaced at some point by increase in the number of cores in 
CPU. Roughly speaking, processor manufacturers have learned how 
to put several processors on a single chip. Now almost any computer 
is equipped with a multi-core processor. Even the entry-level desktop 
systems have two cores. Normally the regular desktop systems have 
four-and eight-core CPUs. If Moore's Law to keeps its rule over the 
industry, then within next five years the average computer will have 
16, or even 32 cores on the chip. 

The problem is that the software industry does not yet have time 
to make up for the available hardware, and only small part of the 
applications can effectively use the resources of the multi-core pro-
cessors. Each program has one main execution thread – a set of 
instructions that are executed sequentially one after another. Natu-
rally, in this case, one core of the processor is involved. The pro-
grammer must take care of loading the rest of the cores with some 
other work, in other words, he must make sure that some instructions 
are executed not sequentially, but simultaneously – in parallel mode. 

It should be noted that performance does not increase linearly 
with the number of cores. That is, the use of four cores does not 
guarantee a fourfold increase in productivity. Nevertheless, there is 
an increase, and every year it will be biggeras there will be more 
programs optimized for the multi-core processors. 

How can programmers manage threads to use the full power of 
the processor? How to make the application work as fast as possible, 
scaled with the increase in the number of cores, and to write such an 
application was not a nightmare programmer? One option is to 
manually create threads in the code, give them tasks to perform, then 
delete them. But in this case you need to take care of one very 
important thing – synchronization. If one task requires data that is 
being counted by another task, the situation becomes more 
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complicated. It is difficult to understand what happens when 
different threads at the same time try to change the values of 
common variables. And if one does not want to manually create 
threads and delegate tasks to them then the various libraries and 
standards for parallel programming come to the rescue. Let's 
consider more in detail the most widespread standard for 
parallelization of programs in languages C, C ++, Fortran and 
OpenMP. 

In the first four chapters we will be talking about the OpenMPI 
implementation of the parallel computing on Linux. The last two 
chapters are about OpenMP and Windows applications.  
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1  
 
DEPLOYMENT AND TESTING 
OF THE PARALLEL ENVIRONMENT  
FOR THE QUANTUM VARIATIONAL  
MONTE CARLO METHOD 
 
 
Below, a brief course of action is given to guide a beginner pro-

grammer towards the basics of parallel and multithread program-
ming. First it is explained how to quickly deploy parallel program-
ming environment, compile and run your own parallel program and 
analyze the data and performance. The OpenMPI implementation of 
the Message Passing Interface (MPI) protocol has been used as an 
example of multithreading and a tool to increase performance of the 
code on the multicore systems. Variational Monte Carlo Method to 
solve Schrodinger equation for the quantum harmonic oscillator is 
implemented numerically. The transition between the single thread 
standalone C++ program to the more efficient and faster parallel 
program is given with explanation. 

 
 
Introduction 
 
High performance personal desktops or workstations, as well as 

clusters and high performance computing systems which could be 
accessed remotely, became widely available nowadays. Many of 
these are state-of-the-art, expensive machines maintained by the 
numerous staff and capable to address the fundamental pure and 
applied science problems of our days [1-2]. In case of the later ones, 
the researcher could directly proceed to the coding of the parallel 
program, delegating the tedious task of network and parallel environ-
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ment configuration to a network administrator. This type of IT pro-
fessionals, though possessing the vast knowledge and experience in 
networking protocols, most likely will make you to work with the 
closed box solution, even though the creation and configuration of 
your own computational cluster is relatively easy task for today’s 
scientist. 

To fill this gap in the professional IT training the multiple 
studies and help resources have been printed and circulated among 
the interested scientists and researches [3, 4]. Research universities 
around the world including Kazakhstan are in possession or include 
in their strategic development plans supercomputers and HPC (high-
performance computing) systems [5]. 

There is another important moment to address. Many beginner 
programmers though have in their possession the state-of-the-art 
multicore computing system are able to utilize only a small portion 
of its computational power. All modern computers have the multi-
core central processing units (CPUs). Unless you have a sophisti-
cated compiler which could parse your, let us say C++, code to run 
simultaneously on all the cores, regularly you will have only one of 
eight cores, for octet CPU, to handle your task. You need to multi-
thread your application by yourself because each thread of execution 
can only saturate one core [6].  

These two moments are addressed at once by using the 
OpenMPI library [7] which can handle multithread coding and feed it 
to a multicore CPU or distribute the tasks across the network of 
computers connected into a computational cluster. Unlike the similar, 
OpenMP, development of the message parsing protocols [8] it is 
mainly and extensively documented in electronic resources and much 
easier to deploy for the beginner.  

Additionally, one could make himself comfortable with parallel 
programing before attempting to learn and configure the complex 
networks and investing in buying equipment or machine time on 
high-performance computing systems. 

We have selected variational Monte Carlo method for the Schro-
dinger equation [9] of the quantum harmonic oscillator to implement 
numerically as an excellent example of multithreading and perfor-
mance optimization in scientific computing [10].  
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Methods 
 

In our work the Debian distribution of the Linux class opera-
tional systems was made an operational system of choice mainly 
because of its flexibility, freeware nature, and more than modest re-
quirements for an existing hardware. You will have multiple versions 
available for download free of charge at [11]. To successfully run a 
fully functional version with graphical desktop, parallel computation 
library, ssh client/server etc we need the modest 256 megabytes of 
RAM and several gigabytes of hard disk space. The Windows OS 
users may install an Oracle virtualbox software [12] and populate it 
with any Linux installation of their choice or install a second OS with 
ability to select it at the boot time. 

One should take caution to install software and OS of the same 
register size, that is 32-bit or 64-bit (amd64 or i386 packages), across 
your complex computational system and virtual environment.  

Please be aware, that if your computer is old enough you may 
came across the problem of it not supporting 64-bit software and 
virtualization technology. From now on, we assume that your com-
puter’s CPU has more than one core.  

Using OpenMPI is the easiest and quickest way to learn parallel 
programming and maximize the performance of your desktop sys-
tem. This package is always included in full installation DVDs, CDs 
or online depositories and may be installed by the following com-
mand: 
 

$ apt-get install openmpi-bin openmpi-common libopenmpi  
1.6 libopenmpi-dev 

(1) 

 

Depending on the state of your system, some of these compo-
nents may already be installed or unavailable and you will be offered 
with an alternative. 

For a numerical problem to calculate we chose the variational 
Monte Carlo method to solve the Schrodinger equation for the har-
monic oscillator. We start with the following, one dimensional, time 
independent Schrodinger equation  

 

 
(2) 
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where k is the force constant. If we know the complete set of N 
eigenfunctions in the following form 
 

 
(3) 

 
the average value of energy <E> will be given by the these expres-
sions 
 

 
(4) 

 
here H is the Hamiltonian given by the left part of equation (2) and 
E0 is the ground state energy. Variational Monte Carlo method uses 
equation (4) as a starting point. Replacing the unknown set Φ(x) of 
eigenfunctionsby the trial wavefunction ΦT,a(x) we are then varying 
he parameter a, see equation (5). If we are lucky, the calculated 
average energy at the local minimum will give as a ground state va-
lue and corresponding characteristic wave function. 
 

 
One of the main features of this method is that we do not sample 

the whole configuration space from minus to plus infinity indiscrimi-
nately rather than traversing it in the manner described as Metro-
polis-Hastings algorithm. Target wave function’s tails go to zero 
pretty fast even not far away from the origin and its overall shape is 
similar to the normal distribution. The Metropolis-Hastings algo-
rithm [13], which samples the space according to the weight function 
ω(x) in equation (5), is a Markov chain Monte Carlo (MCMC) 
algorithm. 

We place n of the so called walkers randomly and uniformly ac-
ross the selected region at coordinates (xn)t (index t stands for the 
current state of walkers’ coordinates). The next set of coordinates 
(xn)t+1 of walkers, who are sampling the integral in equation (4) inde-
pendently, is determined by the following set of rules:  

 
(5) 
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(6) 

 
where δ is the size of step which is determined based on the 
problem’s conditions. If this step is accepted the local energy EL(x) 
calculated at this walker’s coordinate contributes to the integral in 
equation (5). 

If the trial function chosen to be ΦT,a(x) =exp(-ax2), the value of 
<E> is than calculated according to the formula 

 

 (7) 
 
where counts are the number of accepted steps across all walkers’ 
trajectories. 

Here we used expression for EL derived from equation (5). We 
also assume that in Hamiltonian, see equation (2), we choose the 
values of ћ=m=k=1. It is very neat numerical problem to implement 
in a single thread and in parallel.  

 
 
Results and Discussions 
 
The problem itself is pretty straightforward to formulate using 

C++ programming language, see Table 1. We have structured the 
code in such a way that if one decides to comment out the code lines 
printed in boldface font he will end up with the regular single thread 
program. The parallel version is compiled and run in 8 threads 
through the following set of commands 

 

$ mpicxx \-o Jan06_vmc_paral Jan06_vmc_paral.cpp 
$ mpirun -np 8 Jan06_vmc_paral (8) 

 
while the single thread version is compiled and run in a more con-
ventional fashion 
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$ g++ -o arman_vmc arman_vmc.cpp 
$./arman_vmc (9) 

 
If you are running a parallel program on a cluster of individual 

machines the second line in equation (8) is replaced with  
 

$ mpirun --hostfile my_hostfile -np 8 Jan06_vmc_paral (10) 

 
where the text file my_hostfile specifies the configuration of your 
network and the number of cores per individual CPU. 

The configuration of our computer is listed as follows: Intel 
Core i7 4790K, 4.0GHz/LGA-1150/22nm/Haswell/8Mb L3 
Cache/IntelHD4600/EM64T, DDR-3 DIMM 16Gb/1866MHz 
PC14900 Kingston HyperX Fury Black, 2x8Gb Kit, CL10. 

The main features of our code are the following: we split, see the 
lines 41-53, the total number of walkers uniformly between the clai-
med number of threads, which is eight, see equation (8); then we 
used the Box-Muller transform [14] to generate the pairs of indepen-
dent, standard, normally distributed with zero expectation and unit 
variance random numbers, given a source of uniformly distributed 
random numbers from standard C++ rand() generator, see the lines 
32-33; the MPI_Scatter and MPI_Gather were the MPI functions to 
facilitated our data exchange between the threads, see the lines  
52 and 62. We have not made an additional effort to optimize the 
step’s size or the standard random generator’s quality. 

 
Table 1  

C++ code used to calculate the range of ground state energy values as a 
function of parameter a. In bold font are given the pieces of code which 

convert a single thread program to a multithread. 
 
1  //header file to provide parallel programing environment 
2  #include <mpi.h> 
 
3  #include <cstdlib> 
4  #include <iostream> 
5  #include <cmath> 
6  using namespace std; 
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7  double a,e,sum_e,*x; 
8  int c_ounter; 
 
9  //walkers’ number and Monte Carlo steps values 
10  int recv_data[2]={2400, 20000}, *send_data; 
 
11  // arrays to collect energy and accepted steps data from individual 
parallel process 
12  double senback_data[2], *collect_data;  
 
13  int id, ntasks, len; 
14  double w(double xt, double x) { 
 
15  //the ratio of the weight function computed for consecutive x values 
16  return exp(-2*a*(xt*xt - x*x));}   
 
17  double e_nergy(double x) { 
 
18  // local energy function 
19  return a+x*x*(0.5-2*a*a);} 
 
20  //function to initialize starting point for all walkers 
21  void Assign_Positions(){ 
22  srand(time(NULL)*id+1); 
23  x = new double [recv_data[0]]; 
24  for (int i = 0; i < recv_data[0]; i++){ 
 
25  //walkers uniformly distributed within (-0.5:+0.5) range 
26  x[i] = rand()/(RAND_MAX + 1.0) - 0.5;}}  
 
27  //function to move all walkers according to Metropolis algorithm 
28  void Stir_All_Walkers(){     
29  for(int j=0;j < recv_data[0]; j++){ 
 
30  // Box-Muller transform to generate normal distribution 
31  double xt=x[j]+pow(-2.0*log(rand()/(RAND_MAX+1.0)),0.5)*  
32  cos(2.0*3.141592*rand()/(RAND_MAX+1.0)); 
33   
34  if(w(xt, x[j])>1){ 
35  x[j] = xt;++c_ounter;e = e_nergy(x[j]);sum_e += e;} 
36  else{ 
37  if (w(xt,x[j])>rand()/(RAND_MAX+1.0)){ 
38  x[j] = xt;++c_ounter; e= e_nergy(x[j]);sum_e += e;}} 
39  }} 
40  int main(int argc, char *argv[]){ 
41  MPI_Init(&argc, &argv); 
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42  MPI_Comm_size(MPI_COMM_WORLD, &ntasks); 
43  MPI_Comm_rank(MPI_COMM_WORLD, &id); 
 
44  //subroutine to evenly distribute walkers between the claimed number of 
processes 
45  if(id==0){ 
46  int WperTask = floor(recv_data[0]/ntasks); 
47  send_data = new int [2*ntasks]; 
48  for (int i = 0; i < ntasks; i++) 
49  {send_data[2*i]=WperTask; 
50  if(i<=recv_data[0]%ntasks-1){send_data[2*i]++;} 
51  send_data[2*i+1]=recv_data[1];} 
52  collect_data = new double [2*ntasks];} 
 
53  //sending assigned number of walkers and individual number of step to 
each process 
54  MPI_Scatter(send_data,2,MPI_INT,recv_data,2,MPI_INT,0,MPI_COM
M_WORLD);  
 
55  Assign_Positions(); 
56  for(a=0.1;a<=1.5;a+=0.05){ 
57  for(int k=0;k<=floor(0.2*recv_data[1]);k++){Stir_All_Walkers();} 
58  double avg_e=sum_e=0;c_ounter=0; 
59  for(int k=0;k<=recv_data[1];k++){ 
60  Stir_All_Walkers();} 
61  avg_e = sum_e/c_ounter; 
62  senback_data[0]=sum_e;senback_data[1]=c_ounter; 
 
63  //collecting data back from all processes and calculating alpha and 
average energy values 
64  MPI_Gather(senback_data,2,MPI_DOUBLE,    
65  collect_data,2,MPI_DOUBLE,0,MPI_COMM_WORLD); 
66  if(id==0){double total_e=0;double total_count=0; 
67  for(int i=0;i<ntasks;i++){ 
68  total_e+=collect_data[2*i]; 
69  total_count+=collect_data[2*i+1];} 
70  cout<<a<<"\t"<<total_e/total_count<<"\n";} 
71  c_ounter=0;} 
 
72  MPI_Finalize(); 
73  exit(0);} 

 
The data obtained from our simulations are plotted on Figure 1. 
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 The left part represents the plot of the average energy versus 
parameter a. As expected, we can clearly see the minimum at a=0.5 
where the local energy function has no dependence on a. This value 
of a corresponds to the zero variance value on the right plot which 
pinpoints the ground state in our problem. 

In order to test the performance improvement we have run the 
code listed in Table 1 with the following parameters: 2400 walkers 
and 20000 iterations plus the thermalization stage in 4000 steps. As 
we can see from Table 2, the same computational problem experien-
ced more than fourfold increase in performance being implemented 
in the parallel algorithm compared to the single threaded one. 
 

Table 2 
Performance comparison between the parallel and single threaded 

implementations of the variational Monte Carlo algorithm 
 
 Wall time CPU time 
Parallel algorithm timing (averaged between 
8 threads). Process name is Jan06_vmc_paral 

54.8723 53.709 

Single threaded one. Process name is 
arman_vmc 

275.519 275.361 

 
For the reader’s info, CPU time is the time which is actually 

spent by CPU to work on the process, while the Wall time additional-

 
 

Figure 1. Numerical simulation data for the quantum harmonic oscillator.  
The average energy value <E> on the left and the quantity <E2>-<E>2  

on the right are both plotted as the functions of parameter a 
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ly includes the time spent by the process in the line awaiting to be 
handled plus some other delays. How the work load is now uniform-
ly spread across the processes is clearly seen from the Figures 2 and 
3. The single instance of arman_vmc process is managed singlehan-
dedly by one core #2, see Figure 2. While in case of the parallel pro-
gram all eight cores of our CPU are loaded with their own fraction of 
work, running 8 instances of the Jan06_vmc_parall simultaneously 
each with their own parameter, see Figure 3. 

 

 
 

Figure 2. Output of the top command displaying info about the state  
of the individual cores of our CPU for a single thread C++ program of variational 

Monte Carlo simulation 
 
As we can see, the relatively straightforward modification of our 

system allows us to run multiple parallel algorithms and increase 
productivity of our code in many times. The coding and experience 
gain in such an exercise is a good start in transition to the distributed 
and high performance computations. Implemented variational Monte 
Carlo method is a key tool for many computationally extensive and 
effective numerical methods in science. 

As we said before, we need two individual random numbers 
distributions to move a singlewalker around. The firrst one is the 
normal distribution and another one is a uniform randomnumber 
distribution used to sample the regions with low-density probability, 
see equations (4)-(5).The splinefit function, implemented in Octave 
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package on Debian, has been used to detect characteristic variations 
in the intensities of the cosmic rays and to subtract them as a baseline 
from the raw data thus producing the Gaussian white noise, see 
Figure 4 (a)-(c). 

 

 
 

Figure 3. Output of the top command displaying info about the state of the 
individual cores of our CPU for the multithreaded C++ program of variational 

Monte Carlo simulation 
 

 
 

(a) Original data approximated using the function splinefit, (b) white noise obtained 
as a result of mathematical processing, (c) normal and (d) uniform distribution of 

random numbers obtained from white noise 
 

Figure 4. Modeling of the random number generator 
 
The standardization procedure, see equation (11) further trans-

forms the filtered noise component to a new one with zero mean  
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and unit variance, which is our final normal distribution, see  
Figure 4 (b)-(c) 

x=(x-µ)/σ (9) 
 
where σ and µ are the standard deviation and mean values of the 
extracted noise before standardization procedure. 

It is known from the probability integral transform that data 
values that are generated from any given continuous distribution, 
normal in our case, can be transformed to random deviates with a 
uniform distribution on the interval [0,1] as U=F(x), where F(x) is 
the standard normal cumulative distribution function. We used this to 
produce a uniform random distribution plotted on Figure 4 (d). 

As a reference simulations we have used a pseudo-random 
generator provided by the g++ compiler on Debian Linux OS. In 
this reference case, Box-Muller transform was used to go from a 
uniform random number distribution to a normal random distri-
bution. In order to compare these data with our experimentally gene-
rated random numbers distributions we need the number of walkers 
to be the same in both cases.  

If the walkers are placed not far away from the origin, we need 
no more than 1000 steps, including thermalization stage, to reach and 
amply sample the area of maximum probability. 

All channels are highly correlated in general. The sources of 
extracted noise in each individual channel may be different from just 
a local background radiation and other independent processes in the 
registration hardware and could correlate as well. Fitting the data 
with splines may be not good enough to get rid of the possible 
statistical imprints of the common registered events. 

Nevertheless, we obtained a nearly perfect match, see Figure 5, 
when we pulled the new values of the random normal and random 
uniform deviates from all available channels, in a successive order, 
one by one from each channel. We have got this match from as many 
as 17 walkers. 

As one can see, the quality of experimental data, after few 
simple transformations, is reasonably good to bring the walker even 
from the remote location to the maximum probability point, see 
Figure 5 (a). The data were good enough not to introduce a special 
procedure to treat the outliers in the raw data. 
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The next two plots to the right from trajectories' plot, represent 
the average energy and its variance versus variation parameter α=0. 
As expected, we can clearly see the minimum at α=0.5 because the 
EL loses its α dependence at this point, see equations (6) and (7). This 
value of α corresponds to the zero variance value on the right plot 
which pinpoints the ground state in our problem. 

The slight differences observed on the picture are related to the 
quality of the random numbers used in our simulations. 

Supporting our MCMC simulations, the one-sample 
Kolmogorov-Smirnov test kstest(x) returns a positive test decision 
for the null hypothesis that our data indeed come from a standard 
normal distribution. 

The formal application of the full range of normality tests, as 
well as the tests of global and local randomness, has been left for a 
further study. 

 

 
 

The 3D trajectories (a) of individual walkers driven to the maximum probability 
region by a regular pseudorandom distributions (red), and by a random numbers 

from our experimental data (blue).Computed average energy values (b) and 
computed values of the variance (c), where blue open circles stand for a regular 
pseudorandom distributions and red pentagrams stand for an experimental data. 

 
Figure 5. Data comparison for the different random number generators 

 
 
Conclusions 
 
We have successfully used the neutron monitor data as a source 

for the normal and uniform random number distributions to drive a 
MCMC method. The desired stochastic component was extracted by 
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fitting the data with splines and subtracting this fit from the raw data. 
Further scaling of our data to zero mean and variance of one was 
sufficient to obtain a stable standard normal random variate. 
Cumulative distribution function was used as a source of the uniform 
random numbers. 

We are able to obtained the exact values of the variational 
parameter αand local energy value EL required to pinpoint the ground 
state of the three dimensional quantum harmonic oscillator. The 
negligible difference in the calculated values of the local energy for 
different $\alpha$ values as compared to a reference case may be 
attributed to the multiple factors related not only to the quality of the 
noise extraction but to a thorough analysis of this noise sources in 
different channels. For some problems, as ours, this quality is good 
enough or may be improved by additional treatment of the raw data. 
Distributions under consideration pass additional normality test. 
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Questions: 
1. What is message passing interface is used for? 
2. Describe the main principle behind the basic variational principle. 
3. What is the difference between multiprocessing on the clusters and on the 

individual multicore CPUs? 
4. Describe the basic features of the Monte Carlo methods. 
5. How the quantum oscillator is different from the classic oscillator? 
6. What are the minimum requirements to install and run the Linux 

operational system on PC? 
7. What is an alternative for full installation of the operational system on PC? 
8. What is the difference between 32 and 64-bit register size operational 

system? 
9. What package is used on Linux software to install the missing software? 
10. Describe the time independent Schrodinger equation for the quantum 

oscillator in 1D.  
11. What are the eigenfunctions? 
12. How to calculate the average value of the observable? 
13. Describe Metropolis-Hasting algorithm. 
14. What is the biased sampling? 
15. What types of trial function in variational method could be used? 
16. What is the compiler directive to compile an openmpi program? 
17. How to specify multiple threads when you run a multithread program? 
18. What is the walker? 
19. Describe the syntax and usage of the MPI_Scatter and MPI_Gather 

directives. 
20. How to create the array with dynamically allocated size? 
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21. Describe the syntax and outcome of the MPI_Finalize directive. 
22. How to define the stop point for the variational Monte Carlo method? 
23. What is the Wall and CPU times? Which was is bigger? 
24. How to visualize the CPU load for each core on the Linux system? 
25. Explain the information provided by each column in the output of the top 

command. 
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2  
 
HURST EXPONENT ESTIMATION, VERIFICATION,  
PORTABILITY AND PARALLELIZATION 

 
 

We present multiple software programs for the Hurst exponent 
calculations for a sample time series collected by a neutron monitor 
detectors array. The first application is carried out by the finite 
differences approach, using a spreadsheet-type application for a 
single one hour long data series; the second is a complete, one and a 
half week long, mathematical and graphical analysis of six acqui-
sition channels in Matlab; the third and the fourth are the data file 
parser and analyzer in C/C++ compiler on Windows platform, and its 
modified Linux version for simultaneous, parallel computing on a 
virtual cluster of three machines. All applications produce the same 
results proving the codes’ validity and portability across the opera-
tional systems and software packages.  

 
 
Introduction 
 
The applications of the Hurst exponent are ranging from stock 

market analysis [1] to electron gas modeling [2] and addressing data 
statistics and system’s fractal properties. Originally, it was 
introduced in hydrology [3] with the purpose to construct an optimal 
irrigation system. Since then, multiple studies have been done 
including the studies of cosmic rays variations. Hurst exponent 
estimates are strongly dependent on the length of data sample. For 
example Sankar N.P. et al [4] analyzed 36 years long data series on 
cosmic rays density covering almost three solar cycles and came to 
conclusion that «the present data is anti-persistent in behavior and 
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the process is a short memory process» with the H value of 0.15. 
Flynn M.N. and Pereira W. on the contrary, studied extra short, 
hundred points and less, data sequences [5] and extracted vital 
information from a data sample on population dynamics. 

Our primary goal in this work is effective parsing of raw data, 
reliability of results of the Hurst exponent calculations and cross 
platform compatibility software.  

 
 
Methods 
 
Conventional algorithm for the Hurst exponent calculation is as 

follows: 
Original time series of length N is divided into the sets of shorter 

series with length n = N, N/2, N/4, …, 4, 3,and 2 points. The upper, n 
= N, and lower, n = 2, cutoff limits are different from study to study 
and depend on data availability and the phenomena, targeted for 
analysis. 

For each set with particular n value, and for every partial series 
{Xi} within this set, the following intermediate values have been 
calculated: 

The mean value of each partial series 
 

𝑚𝑚 =
1
𝑛𝑛
�𝑋𝑋𝑖𝑖

𝑛𝑛

𝑖𝑖=1

 

 

(1) 

The mean-adjusted series derived from each {Xi} 
 

𝑌𝑌𝑡𝑡 = 𝑋𝑋𝑡𝑡 − 𝑚𝑚 for 𝑡𝑡 = 1, 2, … ,𝑛𝑛.  (2) 

 
The standard deviation S 
 

𝑆𝑆(𝑛𝑛) = �
1
𝑛𝑛
�(𝑋𝑋𝑖𝑖 − 𝑚𝑚)2

𝑛𝑛

𝑖𝑖=1

 (3) 

and the rescaled range R 



23 
 

𝑅𝑅(𝑛𝑛) = max(𝑍𝑍1,𝑍𝑍1, …𝑍𝑍𝑛𝑛) − min⁡(𝑍𝑍1,𝑍𝑍1, …𝑍𝑍𝑛𝑛) (4) 
 
where the cumulative deviate series Zn are given by the following 
expression 
 

𝑍𝑍𝑖𝑖 = �𝑌𝑌𝑖𝑖

𝑡𝑡

1=1

for 𝑡𝑡 = 1, 2, … ,𝑛𝑛. (5) 

 
The procedure is repeated for all possible values of n. Based on 

these E(n) and n values we have tabulated the following function 
 

𝐸𝐸 �
𝑅𝑅(𝑛𝑛)
𝑆𝑆(𝑛𝑛)

� = 𝐶𝐶𝑛𝑛𝐻𝐻  (6) 

 
The value of H then could be calculated from fitting the tabular 

data into a polynomial (see Matlab’s polyfit data on Fig.3), or 
calculating the slope of the straight line log(E)=log(C)+H*log(n) 
(see Matlab’s lsqcurvefit model plotted on Fig.2). For more elaborate 
and mathematically sound calculations one may choose to work with 
the generalized Hurst exponent which is directly related to fractal 
dimension [6]. 

Fig.1 shows our H estimates for an hour-long observation, 
calculated with the algorithm above. The complete 6 channels, 10 
days long data analysis is shown on Fig.2-3. The results of the code 
adaptation to a C/C++ programming environment and parallel 
computation code are listed on the last Fig.4. 

 
 
Results and Discussion 
 
The original data were retrieved from the Nikolay Pushkov‘s 

Institute of Earth Magnetism, Ionosphere and Radiowaves Propa-
gation of the Russian Academy of Sciences (IZMIRAN) mobile 
6NM64 supermonitor database [7]. Neutron counts were acquired at 
one minute interval from June the 31st, 2014 till August the 8th, 
2014 in the vicinity of Moscow city. 
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All the steps described above in Eq.1-6 are shown in our first 
example in Fig.1. Here, the initial 64 data points (see column B) 
where divided into n=8 series each 8 points long. The following 
parameters have been calculated for each series: the mean values (see 
column C), cumulative deviate series Zi (see column D), minimum 
and maximum values of this deviate series, and the range R (see 
column F). The last three columns G-I are the standard deviations 
S(n), R/S for each subseries and a single value of E for n=8 which is 
an average over all values of R(n)/S(n). 

 

 
 

Figure 1. Microsoft Excel spreadsheet calculation of a single E value for n=8  
for the first acquisition channel in the data file 

 
 Next, using the range of the matrix tools and loop structures 

available in Matlab, we have calculated multiple values of E as a 
function of n for all 6 channels in the data file and fit them with the 
straight line for log(n) vs log(E) representation (see Fig.2), and with 
polynomial function similar to Eq.6 (see Fig.4).  

Both linear and polynomial fitting models closely follow the 
original data points in the selected range of n. 

Coefficients C, log(C) and H values are shown above each 
subplot, with 5 significant figures after the decimal point, though we 
use such precision mainly to control the algorithm performance 
across the different channels. No more than 2 significant figures are 
usually taken into consideration for data analysis. 
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Microsoft Excel was used for the spreadsheet calculations, and 
Matlab 8.2.0.701 (R2013b) for Fig.2-3 results. 

Next, we implemented our algorithm on C/C++ language with 
Bloodshed Dev-C++ compiler (the data is not shown for the brevity 
sake). Then, to address a persistent need for the effective parallel 
algorithms in data processing we designed the basic adaptation of 
C/C++ code to the Message Passing Interface (MPI, and OpenMPI in 
our case) parallel computations environment. We have used channel-
by-channel workload distribution between the threads, as shown in 
Fig.4. The coefficients log(C) and H with corresponding thread 
(process) for each individual channel, are also shown. 

For the purpose of parallel computing we have configured a 
virtual cluster on the Oracle VM VirtualBox. The host is 64 bit 
Windows 8.1 operating system running on Intel Core i3-3220 CPU 
with 4 Gb of RAM. The guest operating systems are the three Linux 
machines with 64 bit Debian GNU/Linux 7.4 (wheezy) with 512 Mb 
of RAM per each server and two nodes. Message Passing Interface is 
provided by OpenMPI v.1.4.5 bundled with Debian distribution. 

 

 
 

Figure 4. Calculated data displayed in the terminal window of the master process in 
the virtual cluster. Calculated values of log(C) and H, process id, hostname and 

execution times for each process are given 
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The Hurst exponent estimates in our study are matching the 
majority of the previously obtained results for geomagnetic indices 
[8] where H value is above 0.5. Variations in our computed values of 
the C and log(C) (see the Fig.2-3 and Fig.4) are caused by the 
slightly different fitting models used for these estimates. 

In addition, we have tested the code with a generated sine wave 
of the same duration as the longest neutron data sequence and with 
close to diurnal variations frequency. As we have anticipated, the 
obtained results of H~0.15 reflect no short memory in the series, 
supporting the validity of the coding. 

 

 
To estimate the coding performance the «wall time» and «cpu 

time» have been streamed to the screen and file output for each 
process. To avoid possible interference between the processes the 
individual copies of the data files were supplied to each process/node 

 
 

Figure 5. Higuchi time series (red lines), neutron monitor data (blue lines)  
and Gaussian noise (green lines) calculations of H and D values 
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at the beginning of the execution time by physically copying the data 
to the specified location, as shown in Fig.4. 

Next figure 5 shows our H estimate for the first out of six 
registration channels of the nuclear monitor, see the blue line with 
the negative slope. Each data time series contains 10 days long data, 
taken with one minute resolution. Operator makes the choice of 
registration channel within the program. 

Fractal dimension D is closely related to the Hurst exponent and 
could be calculated, according to Higuchi cornerstone paper [3], by 
constructing the following sets of subseries 𝑋𝑋𝑘𝑘𝑚𝑚  
 

𝑋𝑋(𝑚𝑚),𝑋𝑋(𝑚𝑚 + 𝑘𝑘),𝑋𝑋(𝑚𝑚 + 2𝑘𝑘), … ,𝑋𝑋 �𝑚𝑚 + �
𝑁𝑁 −𝑚𝑚
𝑘𝑘

� 𝑘𝑘� ;  (7) 
𝑚𝑚 = 1,2, … , 𝑘𝑘;  𝑘𝑘 = 1,2, … , �2(𝑗𝑗−1) 4⁄ � ;  𝑗𝑗 = 11,12,13, … 

 
where the square brackets are used to denote the closest integer after 
rounding the fraction to zero. 

Next, we calculate the normalized lengths Lm(k) of the construc-
ted subseries  

 

𝐿𝐿𝑚𝑚(𝑘𝑘) =

⎩
⎨

⎧ 𝑁𝑁 − 1

�𝑁𝑁−𝑚𝑚
𝑘𝑘
� 𝑘𝑘

� |𝑋𝑋(𝑚𝑚 + 𝑖𝑖𝑘𝑘) − 𝑋𝑋(𝑚𝑚 + (𝑖𝑖 − 1)𝑘𝑘)|

�𝑁𝑁−𝑚𝑚𝑘𝑘 �

𝑖𝑖=1 ⎭
⎬

⎫
𝑘𝑘−1 (8) 

 
These are expected to follow the power law in the form of 

〈𝐿𝐿𝑚𝑚 (𝑘𝑘)〉 ∝ 𝑘𝑘−𝐷𝐷  after averaging within all sets of k values for diffe-
rent m=1,2, … , k. 

To test the validity of the program we reproduced the exact same 
time series Y(i) which were used by Higuchi in his derivations [3] 
and plotted the results on the same figure, see Figure 1 and the red 
line with the negative slope. 

Here (𝑖𝑖) = ∑ 𝑍𝑍(𝑗𝑗)1000+𝑖𝑖
𝑗𝑗=1  , where Z(j) is a Gaussian noise with 

mean zero and standard deviation equals to 1. The set of Lm(k) 
subseries is again expected to produce data following the power law 
〈𝐿𝐿(𝑘𝑘)〉 ∝ 𝑘𝑘−𝐷𝐷  and the value of D could be extracted following the 
same procedure as described above for the Hurst exponent. The same 
code can be applied to this procedure. We get D value equals 
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precisely -1.5341 for a Higuchi’s time series, see Table 1. Separate 
test run of the code for the Gaussian time series Z(j) produced 
another set of values H and D equal -1.9999 and 0.54000 correspon-
dingly, as expected for the highly uncorrelated times series, see 
Table I. The Y(j) data are plotted with the green color on Figure 5. 

The n length of subseries,in case of the Hurst exponent calcu-
lations, and k value for the fractal dimension calculation have been 
treated equally in our code, that is as a single variable k=n in one of 
the outer parent loops. Two separate arrays of size k were allocated 
for both types of calculations. In case of the Hurst exponent calcu-
lations the array’s values have been filled sequentially by the data 
file readout. For fractal dimension calculations, each array’s element 
contained the value <Lm(k)> assembled through the data readout 
according to the scheme described in Eq.6. The number of processes 
was equal to the number of virtual machines and kept equal to three. 

The original neutron monitor data were retrieved from the 
Nikolay Pushkov‘s Institute of Earth Magnetism, Ionosphere and 
Radiowaves Propagation of the Russian Academy of Sciences 
(IZMIRAN) mobile 6NM64 supermonitor database [7]. Neutron 
counts were acquired at one minute interval from June the 31st, 2014 
till August the 8th, 2014 in the vicinity of Moscow city. Neutron 
monitor time series data additionally underwent simple exponential 
smoothing filtration procedure as described in [9]. 

To address a persistent need for the effective parallel algorithms 
in data processing we designed our piece of C/C++ code compatible 
with available on Debian distribution Open Message Passing Inter-
face (OpenMPI) parallel computations environment. We have confi-
gured our virtual cluster using the Oracle VM VirtualBox. The host is 
64 bit Windows 8.1 operating system running on Intel Core i3-3220 
CPU with 4 Gb of RAM. The guest operating systems are the three 
Linux machines with 64 bit Debian GNU/Linux 7.4 (Wheezy) with 
512 Mb of RAM per each server and two nodes. 

Calculated slopes for all three sets of data are given in the Table 
1. These are the Higuchi time series, Gaussian noise and neutron 
monitor data H and D values.  

The ±Δyi error bars were plotted on the figure around the 
experimental data points (xi,yi) using polyfit, polyval and errobar 
functions available in Matlab/Octave in such a way that then yi±Δyi 
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contains at least 50% of the predictions of future observations at xi, 
see Matalb/Octave help notes on the selected functions. 

In both H and D calculations, different scales evaluations were 
distributed between three processes. The number of processes in our 
case is equal to the number of machines used for calculations.  

 
Table 1  

Curve’s slope estimates in D and H calculations 
 

Time series name Number of points in 
time series, N 

Fractal 
dimension, D 

Hurst 
exponent, H 

Higuchi time series 217 -1.5143 0.98758 
Gaussian noise 1000+217 -1.9999 0.54000 

NM data, 1st 
channel 

14703 -1.9973 0.68353 

2nd channel 14703 -1.9984 0.66275 
3rd channel 14703 -1.9985 0.63786 
4th channel 14703 -1.9982 0.67716 
5th channel 14703 -1.9994 0.64220 
6th channel 14703 -1.9973 0.65107 

 
H and D values for Higuchi time series in our calculations were 

found to be equal to the D and H values in [3], where H value close 
to 1 (see Table 1) indicates long term positive autocorrelation, as 
expected from the Y(i) series. For the neutron monitor series, Hurst 
exponent estimates are matching the majority of the previously 
obtained results for geomagnetic indices [10] where H value is above 
0.5. In our previous studies [11] of the same data with the same 
algorithm, the H value was slightly bigger than 0.6. The single 
reason for this change in the first decimal place is the change in the 
spectrum of k values used for our calculation. These slight changes 
easily rotate the curve in log(E) vs. log(k) plane. Nethertheless, all 
values stay well above 0.5. Between all six channels, the H values 
are in 0.64-0.68 range, suggesting that at the chosen series duration, 
our time series do have some scalable order. However, possibility of 
a long-term positive autocorrelation requires further studies. 

The Gaussian noise data Z(i) in its turn produces values of  
D=-1.9999 and H=0.54000 as expected from the highly uncorrelated 
data. 



32 
 

As we can see, for all sets of data the processes are not comple-
tely self-affine in the sense of D+H=n+1 relationship, and the depen-
dence between D and H is not of linear nature. 

It is also interesting to observe how the slope changed according 
to the changes in data structure. We can see this transition when we 
come from Higuchi time series down to the chaos in the Gaussian 
noise. Rotations happen to be around (2:0) point for the Hurst 
exponent and (2:14) points for Hurst exponent and fractal dimension 
data calculations. This may be due to the loss of differences between 
time series of different origin at the small scales. 

 
 
Conclusion 
 
We have demonstrated various methods of the Hurst exponent 

calculation on different OS and software. Basic parallel algorithm 
allocating the data as one channel per one thread fashion has been 
demonstrated as well. Further studies involve parallel algorithm 
optimization and interpretation in terms of quantum algorithms. 

Our values for H range from 0.55 to 0.58 across all 6 channels, 
suggesting that at the chosen series duration, without prior noise 
filtering, we are pretty close to a stochastic signal. However, 
possibility of a long-term positive autocorrelation requires further 
studies. 

The code is compiled to run independently on different 
computers and could be used as a tool to study time series of 
different nature and origin. Timing and optimization in this study are 
the subjects of further studies. Using C++ programming language 
we implemented an algorithm for the simultaneous parallel 
calculations of Hurst exponent H and fractal dimension D over 
specific time series. Parallel programming environment was provided 
by an OpenMPI package installed on three machines networked in 
the virtual cluster and operated by a 64 bit Debian Wheeze 7.4 
operating systems. We used our program to perform a comparative 
analysis of the week and a half long, one minute resolution, six 
channels data file from neutron monitor. To verify the functionality 
of the written code, we compared these results with a similar data 
analysis of the random Gaussian noise signal and time series with 
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manually introduced self-affinity features and known values of H 
and D. All results are in good correlation with each other and are 
supported by the modern theories on signal processing, thus 
confirming the validity of the implemented algorithms. 

Besides the straightforward workload distribution between the 
parallel processes, performed by splitting the data on the channel or 
on the calculated scale basis, we also identified common features in 
the calculations of two variables of interest, and tracked them in a 
single common outer loop within a single thread, providing 
additional optimization for the code. Our data and algorithms have 
multiple applications such as quick data self-affinity [12] test and 
have great potentials for the future development. The code is 
compiled to run independently on different networked computers and 
could be used as a tool to study time series of different nature and 
origin. Timing and optimization in this study are the subjects of 
further studies. 
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Questions: 
1. When was the first time the Hurst exponent was used for scientific data 

analysis? 
2. What are the characteristic time scales in the cosmic ray data analysis? 
3. How long/short should be the data time series to provide a reliable 

information about the process under consideration? 
4. What is the raw data parsing? 
5. Describe the main steps in data formatting procedures for the Hurst’s 

exponent calculations. 
6. Describe and sketch up a simple code explaining how to use Matlab’s 

polyfit and lsqcurvefit functions for data analysis. 
7. How one could benefit from the explicitly chartering Hurst’s exponent 

calculation procedure in Microsoft Excel spreadsheets? 
8. Estimate the performance in data analysis when switching consequently 

from Microsoft Excel up to the serial type C++ code and further to the 
parallel multithreaded implementation of the algorithm. 

 
Program code 
1  // References to the functions’ description  
2  /* http://www.cplusplus.com/reference/clibrary/cstdio/fgets/ */ 
3  /* http://www.cplusplus.com/reference/clibrary/cstdio/feof/ */ 
4  /* http://www.cplusplus.com/reference/clibrary/cstring/strstr/ */ 
5  /* http://www.cplusplus.com/reference/cstdio/fgetc/ */ 
6  #include <stdio.h> 
7  #include <string.h> 
8  #include <string> 

http://cr29.izmiran.ru/vardbaccess/frames-vari.html
http://cr29.izmiran.ru/vardbaccess/frames-vari.html
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9  #include <stdlib.h> 
10  #include <sstream> 
11  #include <iostream> 
12  #include <fstream> 
13  #include <cmath> 
14  #include <new> 
15  #include <math.h> 
16  #include <mpi.h> 
 
17  // library to organize time counters 
18  #include <sys/time.h> 
 
19  using namespace std; 
 
20  // functions to provide timers 
21  double get_wall_time(){ 
22  struct timeval time; 
23  if (gettimeofday(&time,NULL)){return 0;} 
24  return (double)time.tv_sec + (double)time.tv_usec * .000001;} 
25  double get_cpu_time(){ 
26  return (double)clock() / CLOCKS_PER_SEC;} 
 
27  int main(int argc, char *argv[]){ 
28  double wall0 = get_wall_time(); 
29  double cpu0 = get_cpu_time(); 
 
30  // pointers to the data files 
31  FILE * pFile; 
32  FILE * mFile; 
 
33  int row_count; 
34  char mystring [200]; 
35  char mean_value [200]; 
36  int chnls_nmbr=6; 
37  string m; 
38  string read_out;  
 
39  // data from channel in numerical format 
40  double ch; 
41  int s_um=0.0; 
42  double m_ax, m_in; 
43  double Z=0.0; 
44  int E_count; 
45  double m_ean,s_td,E; 
46  int c_ount,point_count=0; 
47  double xy=0.0, x=0.0, y=0.0, x2=0.0, a,b; 
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48  int id, ntasks, len; 
49  char single_channel[]="single_channel_"; 
50  char mean_data[]="mean_data_";  
51  char E_data[]="E_data_"; 
 
52  char current_id [33]; 
53  char hostname[MPI_MAX_PROCESSOR_NAME]; 
 
54  // basic parallel environment variables 
55  MPI_Init(&argc, &argv); 
56  MPI_Comm_size(MPI_COMM_WORLD, &ntasks); 
57  MPI_Comm_rank(MPI_COMM_WORLD, &id); 
58  MPI_Get_processor_name(hostname, &len); 
 
59  sprintf(current_id,"%d",id); 
60  strncat(strncat(single_channel, current_id,1),".txt",4); 
61  strncat(strncat(mean_data, current_id,1),".txt",4); 
62  strncat(strncat(E_data, current_id,1),".txt",4); 
 
63  // selecting a single data channel for processing 
64  int clmn=id+1;  
 
65  // reading the data base 
66  pFile = fopen ("izmi!borons!31.7.2014!10.8.2014.txt" , "r"); 
67  fstream SingleChannel; 
68  SingleChannel.open(single_channel); 
69  if (pFile == NULL) perror ("Error opening data file"); 
70  else{while(!feof(pFile)){ 
71  fgets (mystring ,200, pFile); 
72  if (strlen(mystring)>=4){ read_out=string(mystring); 
73  row_count++; 
74  read_out.erase(0,20); 
75  m.assign(read_out,(clmn-1)*4,3); 
76  SingleChannel<<atof(m.c_str())<<"\n";}} 
77  c_ount=row_count;} 
78  fclose (pFile);SingleChannel.close(); 
 
79  point_count=0; 
80  ofstream Efile; Efile.open(E_data);  
81  for(int i=4;i<=900;i++){ 
82  point_count++; 
83  // how points are spreading out 
84  int n=i*2;  
85  for(int pass=1;pass<=2;pass++){ 
86  /* Calculate and save to a separate file mean vales*/ 
87  if(pass==1){row_count=0; 
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88  pFile = fopen (single_channel, "r"); 
89  ofstream outFile; outFile.open(mean_data);  
90  if (pFile == NULL) perror ("Error opening data file"); 
91  else{s_um=0.0;while(!feof(pFile)){ 
 
92  fgets (mystring ,200, pFile); 
 
93  read_out=string(mystring); 
94  row_count++; 
 
95  // removing time stamp from the data field 
96  m.assign(read_out,0,3); 
97  s_um=s_um+atof(m.c_str()); 
 
98  if(row_count%n==0 && row_count<=c_ount){ 
99  outFile<<double(s_um)/double(n)<<"\n";s_um=0;} 
100  }} 
101  fclose (pFile);outFile.close(); 
102  } 
 
103  else{E=0.0;E_count=0;row_count=0; 
104  pFile = fopen (single_channel, "r"); 
105  mFile = fopen (mean_data, "r"); 
 
106  if (mFile == NULL) perror ("Error opening data file"); 
107  else{while(!feof(pFile)){ 
 
108  row_count++; 
109  if (row_count%n==1 && row_count<=c_ount){fgets (mean_value ,200, 

mFile); 
110  read_out=string(mean_value); 
111  // 8 because I need more decimal points 
112  m.assign(read_out,0,8); 
113   m_ean=atof(m.c_str());} 
 
114  fgets (mystring ,200, pFile); 
115  read_out=string(mystring); 
116  m.assign(read_out,0,3); 
117  ch=double(atof(m.c_str()));   
 
118  if(row_count%n==1&&row_count<=c_ount){ 
119  m_ax=ch-m_ean; m_in=ch-m_ean;s_td=0.0;} 
120  Z=Z+ch-m_ean; 
121  s_td=s_td +(ch-m_ean)*(ch-m_ean);   
122  if (Z>m_ax){m_ax=Z;};if(Z<m_in){m_in=Z;}; 
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123  if (row_count%n==0 && row_count<=c_ount){E_count++; 
124  E=E+(m_ax-m_in)/(sqrt(s_td/double(n))); 
125  s_td=0;Z=0;}}} 
 
126  fclose (pFile);fclose(mFile);}} 
 
127  Efile<<n<<"\t"<<E/double(E_count)<<"\n"; 
 
128  // if E=C*n^H then log(E)=log(C)+H*log(n) 
129  // y = a + b*x 
130  // b=[<xy>-<x><y>]/[<x^2>-<x>^2] 
131  // a=<y>-b*<x>; 
132  xy+=log(n)*log(E/double(E_count)); 
133  x+=log(n); 
134  y+=log(E/double(E_count)); 
135  x2+=log(n)*log(n);} 
 
136  b=(xy-x*y/double(point_count))/(x2-x*x/double(point_count)); 
137  a=(y-b*x)/double(point_count); 
 
138  // Stop timers 
139  double wall1 = get_wall_time(); 
140  double cpu1 = get_cpu_time(); 
 
141  printf("\n %s \t %s \t %s \t %s \t %s \t %s \n","log(C)","H","id", 

"hostname", " wall time, sec", "CPU time, sec"); 
142  printf("%6.3f \t %s %6.3f \t %d \t %s \t %6.3f \t %6.3f \n",a," 

",b,id,hostname, wall1-wall0,cpu1-cpu0); 
 
143  Efile<<a<<"\t"<<b<<"\n"; 
144  Efile.close();  
 
145  MPI_Finalize();  /* Terminate MPI */ 
146  if (id==0) printf("Ready\n"); 
147  exit(0);} 
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3  
 
QUICK AND EASY PARALLELIZATION TECHNIQUE  
FOR THE ISING 2D MODEL IN OPEN MPI 
 
 
Below, we have demonstrated a quick and easy compartmentali-

zation method of the 2D Ising model and studied its efficiency and 
data produced. To optimize optional distributed computations, the 
intercompartmental communication was kept at minimum level. 
Boundary data between the compartments were updated only with 
each Monte Carlo step, that is, only after annealing has taken place 
within each individual compartment with number of steps bigger 
than the number of sites in compartment. Open MPI package 
implementing Message Passing Interface (MPI) for Debian Linux 
operational system was chosen to provide parallelization environ-
ment. The suggested method is straightforward, easy to use, produces 
correct results and is seamlessly scaled. Simulated ferromagnetic 
domains beyond the compartment size are clearly observed, and 
freely develop across the simulation grid. Exact results from the 
existing publications have been reproduced with greater efficiency. 
Significant speedup on the octacore desktop computer has been 
demonstrated. 

 
 
Introduction 
 
Powerful personal desktops or workstations, as well as clusters 

and high performance computing systems with remote access, are 
widely available nowadays. These are state-of-the-art and expensive 
machines maintained by numerous staff and capable of addressing 
the fundamental pure and applied science problems of today. Still, 
enormous amount of numerical simulations are done in a single 
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thread. This fact seriously deteriorates the efficiency of computations 
and reduces the naturally parallel tasks to the bottleneck of a single 
thread application. Many scientists, though having in their possession 
the state-of-the-art multicore computing systems, are able to utilize 
only a small portion of their computational power. Multiple studies 
and helpful resources are published and circulated within the 
interested scientific and research communities to help them get 
familiar with parallel programming [1, 2]. 

Physicists have made many major advances in computational 
and mathematical physics. They clearly see the underlining physical 
processes and could tailor mathematics and programming algorithms 
to their specific tasks. For example, quantum computing is essen-
tially a parallel multitasking at all levels. Blind use of an automated 
parsing software is unacceptable. Programming that uses the basic 
physics principles is required. 

We address these and many other points by using the Open MPI 
library [3] that can handle multithread coding and feed it to a 
multicore CPU (central processing unit) or distribute the tasks across 
a network of computers connected in the computational cluster. 
Unlike its counterpart, the Open MP development of the message 
parsing protocols, [4] Open MPI is extensively documented in 
electronic resources and much easier to deploy. 

We have implemented Monte Carlo method with importance 
sampling in 2D spin glasses for the Ising model [5] as an example of 
multithreading and performance optimization in scientific compu-
ting. Conventionally, performance could be gain by compartmentali-
zation and deployment of custom-made communicator between com-
partments for the transient phenomena. The same results could be 
achieved by understanding the simple topology and physics of the 
problem, reducing communication time and instances to a minimum. 

 
 
Methods 
 
The Ising model we chose is described by the two-dimensional 

m x n grid of spins [6]. Each spin can take only two values, up or 
down, si={+1,-1}. Assuming that magnetic interaction strength is 
dropping as fast as 1/r3 with the distance, we will consider interac-
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tions only between the closest neighbors. These neighbors are for-
ming a cross pattern, (see, for example, five spins’ sites shaded in red 
in Fig.1(a)). Immediately, we introduce periodic boundary condi-
tions. That is, if the left neighbor in the left corner of interaction 
pattern is missing, (see yellow-shaded areas), we assume that its 
place is taken by the spin across the whole grid on the right boun-
dary. The same technique is valid for the right, upper and bottom 
boundary sites. 

One could directly index such sites and use them as a precursor 
to a custom-made communicator between the processes in the 
parallel version of the program. Our choice is to increase the simu-
lation grid by copying the right boundary column to the left and the 
left boundary column to the right, as well as the top row to the bot-
tom and bottom row to the top, (see the gray-shaded columns and 
rows in Fig. 1 (b)). In Figure 1(c) this procedure will insure the com-
munication between the compartments in parallel algorithm. How-
ever, in this case, the boundary will be provided by a neighboring 
compartment. 
   

(a)  (b) 
 

  
 

(c) 
 

  
 

Figure 1. Compartmentalization scheme for three processes 
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Mathematical description of the model is presented below. The 
total interaction energy associated with all possible closest neighbor 
spins is given by  

 
𝐸𝐸 = −𝐽𝐽 ∑ 𝑠𝑠𝑖𝑖𝑠𝑠𝑗𝑗𝑖𝑖𝑗𝑗 − 𝐻𝐻 ∑ 𝑠𝑠𝑖𝑖𝑚𝑚×𝑛𝑛

𝑖𝑖=1 , (1) 
 
where J is the spin-spin interaction strength and H is the external 
magnetic field strength. If J>0 the system is ferromagnetic, other-
wise, if J<0, it is paramagnetic. Indices i and j sample all the avai-
lable pairs of neighboring spins on the grid, excluding the double 
count of ij and ji pairs. The upper bound for the first sum is deter-
mined by the range of interaction and number of spins within this 
range. If the spins are allowed to have Q ≥ 2 states, this will be the 
generalized Q-state Potts model [7]. Total magnetization value at the 
certain spins configurations is calculated as a sum 
 

𝑀𝑀 = � 𝑠𝑠𝑖𝑖
𝑚𝑚×𝑛𝑛

𝑖𝑖=1
 (2) 

 
If the external field strength H is set to zero then there are two 

distinct states at low and high temperatures. These are ferromagnetic 
and paramagnetic phases separated by the transition region around 
Currie temperature Tc. 

According to Metropolis algorithm [8] instead of trying to 
calculate quantum-mechanical observables over all possible 
combinations of states  

 

𝑀𝑀 =
∑ 𝑀𝑀𝑒𝑒𝐸𝐸 𝑘𝑘𝑘𝑘⁄
𝑐𝑐𝑐𝑐𝑛𝑛𝑐𝑐 .𝑠𝑠𝑠𝑠𝑠𝑠𝑐𝑐𝑒𝑒

∑ 𝑒𝑒𝐸𝐸 𝑘𝑘𝑘𝑘⁄
𝑐𝑐𝑐𝑐𝑛𝑛𝑐𝑐 .𝑠𝑠𝑠𝑠𝑠𝑠𝑐𝑐𝑒𝑒

 , (3) 

 
Temperature T is given in the units of [E/k], where k is the 

Boltzmann factor. E is dimensionless but in general has the units 
provided by expression (1). We should include only those confi-
gurations which are sampled according to the Boltzman factor, see 
algorithm below. For a sequence of N such states, magnetization for 
the particular temperature will be given by the formula 
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⟨𝑀𝑀⟩ = 1 𝑁𝑁⁄ � � 𝑠𝑠𝑖𝑖

𝑚𝑚×𝑛𝑛

𝑖𝑖=1

𝑁𝑁

𝑗𝑗=1

 (4) 

 
The following steps should be taken repeatedly to achieve a 

desired distribution of states at the certain temperature T: 
1. Choose at random any spin si and flip its sign, si’=-si . 
2. Calculate change in the total energy according to formula 
 

∆𝐸𝐸 = 𝐸𝐸𝑠𝑠𝑖𝑖 ′ − 𝐸𝐸𝑠𝑠𝑖𝑖  (5) 
 
3. If e∆E/kT>X, where X∼U([0,1]) is a random variable uniformly 

distributed on [0,1], the change in sign is accepted. 
4. Repeat the previous steps to achieve an equilibrium magneti-

zation value for a given simulation grid at the temperature selected 
for the system. 

These four steps, repeated multiple times but usually not less 
than the number of sites in simulation grid or compartment, represent 
one Monte Carlo step. To calculate any observable value for a given 
temperature, MC steps have to be repeated several times. Other pro-
perties, including density of states, could be calculated via similar 
algorithms [9, 10]. 

Convergence to the equilibrium values of observable parameters 
with one spin flip is slow. Changes introduced by a single local spin 
flip propagate diffusively. Various algorithms have been proposed to 
speed up the process by flipping the whole clusters of spins at once. 
Swendsen-Wang [11] and Wolff [12] Monte Carlo methods are 
among them. The Wolff algorithm is an improvement over the 
Swendsen–Wang algorithm since it has a larger probability of flip-
ping bigger clusters. Alternatively, we could partition the simulation 
volume for the parallel processing [13, 14] as we did in this paper, 
see Figure 1. 

One may also avoid numerous exponentiation steps by noticing, 
that for a two dimensional grid, ∆E takes a limited number of values 
depending on orientation of the four neighboring spins. We can easi-
ly show that this number is equal to five and it doubles if the external 
magnetic field H is switched on. 
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Results and Discussions 
 
Configuration of our eight core desktop computer is listed as 

follows: Intel Core i7 4790K, 4.0GHz/LGA-
1150/22nm/Haswell/8Mb L3 Cache, DDR-3 DIMM 16Gb/1866MHz 
PC14900, 2x8Gb Kit, CL10. 

As we said before, we perform the boundary conditions exchan-
ge every time the equilibrium within each compartment is reached. 
That is the boundary conditions are renewed for all compartments 
every time after each Monte Carlo step in accordance with equilib-
rium spins configuration in the neighboring compartments. One 
should take care not to replicate the simple periodic boundary condi-
tions for each compartment. This means that we have to make sure 
that compartments are communicating with each other and supplying 
each other with information about the boundary conditions along the 
interface line. 

Fig. 2(a) shows the spins orientation distribution computed in 
one thread without any compartmentalization. 

 
                       (a)                                          (b)                                        (c) 

 
 

Figure 2. Sample magnetization distribution under different boundary conditions 
 

Simple periodic boundary conditions on four boundaries were 
used. In Fig. 2(b), we plotted the case of eight communicating com-
partments when data in the compartments are formatted according to 
our algorithm. The case when the closed toroidal boundary condi-
tions were implemented for each compartment without the proper 
boundary information exchange is shown in Fig. 2(c). Fig. 2(c) 
shows the obvious signs of an erroneous dynamics, such as band 
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structure, indicating that the compartments are not able to com-
municate with each other. 

The next Fig.3 gives a diagram for the simulated annealing of 
our system. Normalized magnetization M/M0, where M0 is the sum of 
all spins, changes its value from 1 at T=0, to 0 as the temperature 
rises beyond the critical value. Temperature of the phase transition Tc 
is about 2.3. 

As one can see, the data from a single thread experiment with no 
compartmentalization, (represented by a green line and triangle 
markers), and data with proper compartmentalization, (blue line and 
diamond markers, are almost identical. The red line with pentagram 
markers stands for the incomplete implementation of the boundary 
conditions and exhibits a deviant behavior at phase transition. 
Nevertheless, all give about the same value of Tc. 

Next, Fig. 4 shows the timing data from our simulations when 
the number of threads goes up from 1 to 12, see the Y axis. Two sets 
of curves are plotted. The one on the left is for 200 by 200 data grid 
another one is for 400 by 400 grid. The obvious benefits of 
compartmentalization are visible. For the 200 by 200 grid, five 
thousands Monte Carlo steps and only one temperature value, CPU 
time is cut in half if we split the simulation volume between eight 
cores of a single processor. Normally, we simulate annealing for the 
range of T values and number of Monte Carlo steps is much higher 
than the number we used. Thus, the time savings are enormous. 

 

 
 

Figure 3. Simulated annealing for the 200 x 200 grid. Green line and triangle 
markers – no compartmentalization; Blue line and diamond markers – custom made 
compartmentalization and data exchange technique; Red line and pentagram markers 

– data produced with unadjusted boundary conditions between compartments 
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Figure 4. Parallelization algorithm performance for 200 x 200 and 400 x 400 grids. 
CPU, blue lines, and wall, red lines, times are given as a function of number of 

threads on the octacore processor 
 

Multiple parallel platforms and custom made algorithms make it 
difficult to compare performance for each case. For the formal 
performance evaluation and further optimization of the arbitrary code 
the LogP model of Culler is available [15]. 

 
 
Conclusions 
 
We reported our studies of implementation and efficiency of the 

quick and robust method of compartmentalization for the 2D Ising 
model. Open MPI package has provided the parallel computation 
environment. Algorithm structure is optimized for optional distribu-
ted computations by updating the boundary data between compart-
ments with each Monte Carlo step. Meanwhile annealing, within 
each Monte Carlo step and for each individual compartment, takes 
the same number of steps as the number of sites in a compartment. 

This boundary information update is enough to couple the statis-
tical processes within each individual compartment to its neighbors. 
Thus construction of the complicated blocking type communications 
through a message passing interface is avoided. In general, it allows 
us to keep the basic simple model of the spin glass intact and evenly 
distribute intensive computations between the available threads. 
These two facts about our method contribute to the clarity of the 
model and its data interpretation as well as to increased speed of 
calculations. 
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Our proposed method is straightforward, easy to use, and pro-
duces correct results identical to the previously published data. Si-
mulated ferromagnetic clusters of spins, freely developing between 
individual compartments, are clearly observed. Significant speedup 
on the octacore desktop computer has been demonstrated. 

The model and its development represent the computational 
basis for the whole generation of the quantum algorithms for 
approximating partition.  
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Questions: 
1. Describe the basic elements for the Ising and other spin glasses numerical 

models. 
2. How dimensionality of the model related to the phase transition 

phenomena? 
3. Describe Hamiltonian for the basic Ising spin grid model. 
4. How big is the range of interaction in the Ising model? 
5. What are the boundary conditions for the basic spin glass model? 
6. Why we give a name «toroidal» boundary condition for the special type of 

the boundary conditions in the Ising model? 
7. Describe the possible way of compartmentalization for the Ising model. 
8. How different compartments in the Ising model could and should interact 

with each other? 
9. How to calculate magnetization M for the spin grid? 
10. How to calculate different observables for the Ising model? 
11. Give a description of the Metropolis biased sampling scheme. 
12. What are the equilibrium values? 
13. What is the critical temperature Tc? 
14. How the performance of the algorithm relates to the 2D grid size? 
15. What are the factors preventing the linear increase in the algorithm 

performance with the increase of the parallel threads number? 
16. What is the regular number of Monte Carlo steps required for the system’s 

thermalization process? 
 

Program code 
1  #include <cmath> 
2  #include <cstdlib> 
3  #include <iostream> 
4  #include <fstream> 
5  #include <mpi.h>  
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6  #include <sys/time.h> 
7  using namespace std; 
8  const double pi = 3.14159; 
9  const int qq=2; 
 
10  // timing functions 
11  double get_wall_time(){ 
12  struct timeval time; 
13  if (gettimeofday(&time,NULL)){ return 0;} 
14  return (double)time.tv_sec + (double)time.tv_usec*.000001;} 
 
15  double get_cpu_time(){return (double)clock() / CLOCKS_PER_SEC;} 
 
16  int main(int argc, char *argv[]){ 
 
17  // Start Timers 
18  double wall0 = get_wall_time(); 
19  double cpu0 = get_cpu_time(); 
 
20  double J=+1,H=0,T,k=1; 
21  int m=200, n=200; 
22  int id, ntasks; 
23  int total_steps=5100; int therm_steps=int(0.2*total_steps); 
24  MPI_Init(&argc, &argv); 
25  MPI_Comm_size(MPI_COMM_WORLD, &ntasks); 
26  MPI_Comm_rank(MPI_COMM_WORLD, &id); 
 
27  // Memory and variable allocation stage 
28  // this will clean the previous data stored in these files 
29  if(id==0){ 
30  ofstream file("ising.txt");file.close(); 
31  ofstream mfile("magnetization.txt");mfile.close();} 
 
32  // changing value of n to make sure that each process recives the same 

ammount of data 
33  // the array will be expanded to provide threads with equal amount of data  
34  int RowsPerTask = ceil(double(n)/double(ntasks)); 
35  n=RowsPerTask*ntasks; 
 
36  // now we need to simulate periodic boundary by additional data columns 

for each 
37  // process/thread. Each data piece should get two additional rows  
38  int N=n+ntasks*2; // two extra column for each data band 
 
39  // 1D array to collect magnetization data in root process 
40  double* collect_data = new double [ntasks]; 
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41  // 1D spin orientation data recieved by single array 
42  double* s_recv = new double[(m+2)*(RowsPerTask+2)]; 
43  // 2D array of spins for indiviudal process for its own chank of data 
44  double* spin_s = new double[(m+2)*(RowsPerTask+2)]; 
45  double** s_pins = new double*[m+2]; 
46  // initialize it 
47  for(int i = 0; i < m+2; ++i) 
48  s_pins[i] = spin_s + (RowsPerTask+2)*i; 
 
49  // create initial collective 2D array of spins 
50  double* s_data = new double[m*n]; 
51  double** s = new double*[m]; 
52  // initialize it 
53  for(int i = 0; i < m; i++) 
54  s[i] = s_data + n*i; 
55  // set element values = 1 
56  // for(int j=0;j<n;j++){for(int i=0;i<m;i++){s[i][j] = +1;}} 
57  for(int j=0;j<n;j++){ 
58  for(int i=0;i<m;i++){ 
59  int nn=rand()%qq; 
60  s[i][j] = cos(2*pi*double(nn)/double(qq));}} 
 
61  // create linear array of spins to distribute data between the processes 
62  // OpenMPI could only sends linear data array 
63  double* s_send = new double[(m+2)*N]; 
 
64  // Array will be holding all data including the boundaries above and 

between the clusters 
65  double* S_data = new double[(m+2)*N]; 
66  double** S = new double*[(m+2)]; 
67  for (int i = 0; i < (m+2); ++i) 
68  S[i] = S_data + N*i; 
69  for(int i=0;i<(m+2);i++){for(int j=0;j<N;j++){S[i][j] = 0;}} 
 
70  //************************ 
71  double dT=0.01; srand ((double(id)+1)*time(NULL)); 
72  for(double T=2.2;T<=2.5;T+=dT){ 
73  double M=0; 
74  for(int c_ount=1;c_ount<=total_steps;c_ount++){ 
 
75  if(id==0){ 
76  // Active part of DATA reshafling  
 
77  int cou_nt=0; 
78  for(int p_os=1;p_os<=1+(ntasks-1)*(RowsPerTask+2); 
79  p_os+=(RowsPerTask+2)){ 
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80  for(int j=0+p_os;j<RowsPerTask+p_os;j++){ 
81  for(int i=1;i<(m+2)-1;i++){ 
82  S[i][j] = s[i-1][j-1-2*cou_nt];}}cou_nt++;} 
 
83  // global top and bottom boundaries 
84  for(int j=0;j<N;j++){S[0][j]=S[(m+2)-2][j];S[(m+2)-1][j]=S[1][j];} 
85  // global left and right boundaries 
86  for(int i=0;i<(m+2);i++){S[i][0]=S[i][N-2];S[i][N-1]=S[i][1];} 
87  // internal boundaries 
88  for(int j=0;j<ntasks-1;j++){ 
89  for(int i=0;i<(m+2);i++){ 
90  // innner boundaries between the processes 
91  S[i][(j+1)*(RowsPerTask+1)+j]=S[i][(j+1)*(RowsPerTask+1)+j+2]; 
92  S[i][(j+1)*(RowsPerTask+1)+j+1]=S[i][(j+1)*(RowsPerTask+1)+j-1];}} 
 
93  // reassigning 2D data to this 1D array for further distribution 
94  // COLUMN by COLUMN 
95  for (int t = 0; t < N; t++){ 
96  for (int q = 0; q < (m+2); q++){ 
97  s_send[t * (m+2) + q] = S[q][t];}} 
98  } 
99  // distribute data 
100  // individual process gets its data beyond this point 
101  MPI_Scatter(s_send,(m+2)*(RowsPerTask+2),MPI_DOUBLE, 
102  s_recv,(m+2)*(RowsPerTask+2),MPI_DOUBLE,0,MPI_COMM_WORLD); 
 
103  // reconstruct from linear to 2D 
104  for (int t = 0; t < RowsPerTask+2; t++){ 
105  for (int q = 0; q < m+2; q++){ 
106  s_pins[q][t] = s_recv[t * (m+2) + q];}} 
 
107  // we assume that we should randomly access pretty much all spins in the 

array 
108  for (int ii=0;ii<8*m*RowsPerTask;ii++){  
109  int i = rand()%m+1; int j = rand()%RowsPerTask+1;  
 
110  // the indices should fall within the boundaries 
111  double dE=2*J*s_pins[i][j]*(s_pins[i+1][j] + s_pins[i-1][j] + 
112  s_pins[i][j-1] + s_pins[i][j+1]); 
113  if (exp(-dE/(k*T))>(rand()/(RAND_MAX + 1.0))){s_pins[i][j] = -

s_pins[i][j];}} 
 
114  double M_0=0; 
115  for(int i=0;i<m;i++){for(int j=0;j<RowsPerTask;j++) 
116  {M_0+=s_pins[i][j];}} 
117  // collect magnetization data only after thermalization stage 
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118  if (c_ount>=therm_steps){M+=M_0;}  
119  // convert from 2D to linear to send back 
120  for(int t=0; t<(RowsPerTask+2); t++){ 
121  for(int q = 0; q<(m+2); q++){ 
122  s_recv[t*(m+2)+q] = s_pins[q][t]; }} 
 
123  // send it back to root process 
124  MPI_Gather(s_recv,(m+2)*(RowsPerTask+2),MPI_DOUBLE, 
125  s_send,(m+2)*(RowsPerTask+2),MPI_DOUBLE,0,MPI_COMM_WORLD); 
 
126  if(id==0){ 
 
127  // reconstruction of the collected data from 1D array 
128  for(int t=0;t<N;t++){ 
129  for(int q=0;q<(m+2);q++){ 
130  S[q][t]= s_send[t*(m+2)+q];}} 
 
131  // back reconstruction of the expanded array to the original ones, 
132  // that is stripping from boundaries 
133  int cou_nt=0; 
134  for(int p_os=1;p_os<=1+(ntasks-1)*(RowsPerTask+2); 
135  p_os+=(RowsPerTask+2)){ 
136  for(int j=0+p_os;j<RowsPerTask+p_os;j++){ 
137  for(int i=1;i<(m+2)-1;i++){ 
138  s[i-1][j-1-2*cou_nt]=S[i][j]; 
139  }}cou_nt++;}  
140  } 
141  // loop over id==0 
142  } 
143  // loop "for(int c_ount=1;c_ount<=total_steps;c_ount++)" over monte 

carlo steps is  
144  // over,that includes thermalization and magnetization stage 
 
145  double M_local=M/double(m*RowsPerTask)/double(0.8*total_steps); 
146  MPI_Gather(&M_local,1,MPI_DOUBLE, 
147  collect_data,1,MPI_DOUBLE,0,MPI_COMM_WORLD); 
 
148  if(id==0){ 
149  cout<<id<<"\t"<<T<<"\t"<<M/double(m*RowsPerTask)/double(0.8*total

_steps) 
150  <<"\n"; 
151  ofstream file("ising.txt",std::ofstream::out | std::ofstream::app); 
152  double M_total=0; 
153  for(int i=0;i<ntasks;i++) 
154  M_total+=collect_data[i]; 
155  file<<T<<"\t"<<M_total/ntasks<<"\n";file.close(); 
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156  // to save magnetization configuration data 
157  ofstream mfile("magnetization.txt",std::ofstream::out | std::ofstream::app);  
158  for(int q = 0; q < m; q++){ 
159  for(int t = 0; t < n; t++){ 
160  mfile<<s[q][t]<<"\t";}mfile<<"\n";}mfile.close();} 
 
161  } // loop over T values of temperature 
162  // dynamic arrays clean up 
163  //************************ 
164  delete[] spin_s; 
165  delete[] s_pins; 
166  delete[] s_recv; 
167  delete[] s_data; 
168  delete[] s; 
169  delete[] s_send; 
170  delete[] S_data; 
171  delete[] S; 
 
172  delete[] collect_data; 
 
173  MPI_Finalize(); 
174  // Stop timers 
175  double wall1 = get_wall_time(); 
176  double cpu1 = get_cpu_time(); 
177  cout<<wall1-wall0<<"\t"<<cpu1-cpu0<<"\n"; 
178  return 0;} 
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4  
 
BUILDING THE DENSITY OF STATES FROM  
THE WANG-LANDAU PARALLEL ALGORITHM  
FOR THE SIMPLE SPIN GRID SYSTEMS 

 
 

Below we have described a universal algorithm to build a resul-
tant density of states from the multiple data pieces provided by the 
parallel implementation of the Wang Landau sampling Monte Carlo 
algorithm. Vector and standard Pott model as well as the Ising model 
were used as an example of two dimensional spin lattices. Several 
factors of an immediate importance for the seamless stitching pro-
cedure were considered. These include but not limited to the speed 
and universality of the original parallel algorithm implementation as 
well as data post processing technique to produce a final density of 
states. Additional efforts were taken to include steps implementing 
the latest development of the algorithm as the replica exchange 
scheme. 

 
 
Introduction 
 
Wang-Landau algorithm became a tool of choice to study com-

plex energy landscapes of the multidimensional systems with mul-
tiple degrees of freedom especially those who exhibit the phase tran-
sitions and complex behavior around the critical points [1]. Its 
simplicity and universality allowed application to the diverse range 
of phenomena. Its power came from the fact that it is able to include 
in its fabric almost every effective modern algorithm modeling the 
behavior of the spin glasses. These systems play the crucial role in 
the efficient complex optimization, graph theory etc. Wang-Landau 
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algorithm is based on the Monte Carlo method and Metropolis 
algorithm and includes multiple methods to sample complex systems 
and to overcome critical slowdown around the transition points. 

 
 
Methods 
 
We reproduced a unique variation of the Monte Carlo method 

with Metropolis algorithm type importance sampling [2]. Applied to 
the density of states it is known as the Wang-Landau algorithm. 
Systems of interest existing nowadays are usually bigger than  
643 points and exhibit critical slow down not only around the 
transition points but also during the regular thermalization stage. The 
single spin flip algorithm is generally inefficient. Convergence to the 
equilibrium values of the observable parameters with one spin flip is 
slow. Changes introduced by a single local spin flip propagate 
diffusively. One approach is to deploy a spin cluster flip algorithm. 
Various algorithms have been proposed to speed up the process by 
flipping the clusters of spins at once. Swendsen-Wang [3] and  
Wolff [4] Monte Carlo methods are among them. The Wolff algo-
rithm is an improvement over the Swendsen–Wang algorithm since it 
has a larger probability of flipping the bigger clusters. 

Another approach is to parallelize the tasks between the multiple 
walkers [5-6] or split the energy range into pieces. In all cases the 
unique and custom made procedure to unify the results from a 
multiple sources is required. 

We used the Open MPI library [7] that can manage the multi-
thread coding and feed it to the multicore CPU (central processing 
unit) or distribute the tasks across a network of computers connected 
in the computational cluster. OpenMPI is extensively documented in 
electronic resources and much easier to deploy on the Linux systems. 
Among the available alternatives the most efficient one is OpenMP 
project though it works at its full power on the paid platform and 
software [8]. In our project, Linux based GCC 6.3 compiler and the 
latest update for Octave package were used. 

The model we used is originally credited to Domb [9] and 
represents a two-dimensional Euclidian m x n lattice hosting a single 
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spin in every node of its discreet structure. The spin is taking q 
possible values distributed about the circle with the following steps  

 
𝜃𝜃𝑛𝑛 = 2𝜋𝜋𝑛𝑛 𝑞𝑞�  , (1) 

 
where n goes from 1 to q and interaction Hamiltonian is defined as  
 

ℋ = 𝐽𝐽� cos �𝜃𝜃𝑠𝑠𝑖𝑖 − 𝜃𝜃𝑠𝑠𝑗𝑗 � .
𝑖𝑖 ,𝑗𝑗

 (2) 

 
This model is known as vector Pott’s model or clock model [8]. 

Here J is some spin-spin coupling constant and θsi and θsi are the 
spins’ positions around the clock dial. The simpler standard Potts 
model has the Hamiltonian 

 
ℋ = −𝐽𝐽� 𝛿𝛿(𝒔𝒔𝒊𝒊, 𝒔𝒔𝒋𝒋)

𝑖𝑖 ,𝑗𝑗
, (3) 

 
where δ is the Kroneker’s delta. This delta could be replaced by a 
simple scalar product of two spin-vectors, where each spin can take 
only two values, up or down, si={+1,-1}. In this case it is known as 
the Ising model [11]. As one can see this scalar product gives twice 
as big energy range compared to the standard Pott’s model. 

Assuming that magnetic interaction strength is dropping as fast 
as 1/r3 with the distance, we need to consider interactions only 
between the closest neighbors. For the rectangular grid these 
immediate neighbors are forming a straight cross pattern. Periodic 
boundary conditions are used. That is, if the left neighbor in the left 
corner of the interaction pattern is missing, we assume that its place 
is taken by the spin across the whole grid on the right boundary. The 
same technique is used for the right, upper and bottom boundary 
sites. 

If the external magnetic field B≠0 is superimposed, the total 
interaction energy associated with the presence of all closest 
neighbor spins is given by  

 
𝐸𝐸 = −𝐽𝐽 ∑ 𝒔𝒔𝒊𝒊𝒔𝒔𝒋𝒋𝑖𝑖𝑗𝑗 − 𝑩𝑩∑ 𝒔𝒔𝒊𝒊𝑚𝑚×𝑛𝑛

𝑖𝑖=1 , (4) 
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where J is again the spin-spin interaction strength and B is the 
external magnetic field strength. Some normalization constants may 
be used to adjust dimensionality of the equation to the common 
energy units. If J>0 the system is ferromagnetic, otherwise, if J<0, it 
is paramagnetic. Indices i and j are sampling all available pairs of 
neighboring spins on the grid, excluding the double counts of ij and 
ji pairs. The upper bound for the first sum is determined by the range 
of interaction, which is a simple pairwise interaction, and by the 
number of spins within this range on the simulation grid. 

To study these systems further we need to consider the thermo-
dynamic partition function and density of states. For canonical  
ensemble the partition function Z is given by the following expres-
sion [12] 

𝑍𝑍 = � 𝑒𝑒−𝐸𝐸𝑟𝑟/𝑘𝑘𝐵𝐵𝑘𝑘

𝑐𝑐𝑐𝑐𝑛𝑛𝑐𝑐𝑖𝑖𝑐𝑐 .
𝑠𝑠𝑠𝑠𝑠𝑠𝑐𝑐𝑒𝑒

. (5) 

 
Summation is run over all configuration space, kb is the Boltz-

mann constant, Er and T are the enumerated energy values and the 
temperature for this particular configuration.  

High degree of the system’s degeneracy, that is different Er may 
have the same values, allows us to describe all possible configu-
rations only in terms of energy, that is 

 
𝑍𝑍 = �𝑐𝑐(𝐸𝐸)𝑒𝑒−𝐸𝐸/𝑘𝑘𝐵𝐵𝑘𝑘

𝐸𝐸

, (6) 

 
where g(E) is the density of states. 

For our analysis we need to keep track of the two values, that is 
H(E) – the number of times this particular configuration is observed 
and g(E) – calculated density of states. Probability of the system 
transition to the next configuration is given by an expression 

 

𝑠𝑠(𝐸𝐸1 → 𝐸𝐸2) = 𝑚𝑚𝑖𝑖𝑛𝑛 �
𝑐𝑐(𝐸𝐸1)
𝑐𝑐(𝐸𝐸2) , 1�. (7) 

 
At the very beginning H(E) is taken to be zero everywhere. The 

unknown density of states g(E) is taken to be one for any value of E. 
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Both values are modified every time any configuration with this 
particular value of E is visited. For g(E) modification factor f is 
chosen to be bigger than 1 and equal e≈2.71828 for this particular 
implementation. It is better to keep track of g(E) changes through the 
following expression ln[g(E)]→ln[g(E)]+ln[f]. As soon as the condi-
tion of flatness for H(E) is met we change modification factor to a 
new value fi+1=√fi and repeat the procedure starting with H(E) equals 
zero everywhere again. Measure of flatness is chosen to be 
mean(H(E))/max(H(E))*100%. H(E) is incremented by 1 every time 
the state with particular E is visited or the system stays with the old 
value of E. After multiple iterations, g(E) should converge to the real 
density of states for the simulated system. 

Thus, to find this density of states flat histogram random walk 
method of Wang and Landau goes through following steps: 

1. Choose at random any spin si and flip its sign so si`=-si . 
2. Calculate the total energy according to Eq. (4).  
3. Calculate the transition probability according to Eq. (7) and 

keep the updated configuration if the criterion is met. If not, reverse 
the spin flip and keep the current configuration. 

Repeat the previous steps to achieve the proper flatness of the 
histogram. 

As were told, every instance of visiting the different configu-
ration with certain value of energy E or keeping the old one, when 
the transition rules in Eq. (7) are not met, is followed by an increase 
ln[g(E)]→ln[g(E)]+ln[f] and H(E)→H(E)+1. 

These steps, repeated multiple times on the order of the number 
of sites in the simulation grid represent a single Monte Carlo step. To 
calculate any observable value for a given temperature or energy 
range, Monte Carlo steps have to be repeated numerous times. Diffe-
rent physical properties, including magnetization, specific heat, den-
sity of states etc, could be calculated via similar algorithms [9, 10]. 

Splitting the energy range between the processes require some 
additional thoughts and design. The different energy range pieces 
should overlap. Firstly, because it is required to cover the whole 
energy range under investigation without the gaps. Secondly, this 
overlap in the further development of the Wang-Landau sampling 
algorithm allows us to propagate the certain spin configuration 
between the processes. Special attention was paid to the areas with 
the highly improbably configurations to avoid a processes queue. 
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Each configuration (with particular E value) is enumerated and has 
its own slot to accumulate the number of visits H(E). It is easy to show 
that the number of these slots, for the m by n 2D grid, is 2nm+1. 

 
 
Results and Discussions 
 
Configuration parameters for our eight-core desktop PC are read 

as follows: Intel Core i7 4790K, 4.0GHz/LGA-1150/22nm/ 
Haswell/8Mb L3 Cache, DDR-3 16Gb/1866MHz PC14900. Debian 
Linux OS with gccC++ compiler and Octave packages were 
deployed. 

On Figure 1 we plotted the data from our algorithm implemen-
tation for the three separate spin models. These are the Ising, Pott 
and Domb models. In all cases the grid size is 162 and the flatness 
criterion is 80%. For the Ising model the number of spin’s orien-
tations is 2 (spin is up or down), the clock model has q=7 and the 
standard Potts model has q=13. For simplicity, magnetic field B is 
taken to be zero everywhere. 

 

 
 

Figure 1. Three columns, from left to the right: Accumulated histogram of the H(E) 
visits, intermediate density function data and final reconstructed density of state g(E) 

function. Three rows, from top to the bottom: The first row is the Ising model, the 
second is clock model and the third is the standard Potts model 
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First left column of the plots on Figure 1 represents H(E) – the 
number of visits per energy value accumulated for each separate 
energy range for all three models right after the last modification of 
g(E), before flashing the data to hard drive. The separate energy 
ranges and their overlap extent are clearly visible on all plots. The 
second column is the density of states g(E) before stitching them to a 
single function. The thick line of zeros at the bottom represents the 
states included into 2mn+1 range but not accessible due to the system 
configuration and its interaction Hamiltonian. The models were 
implemented in C++ language. The output data were later displayed 
and further processed with Octave script. The third column is the 
final reconstructed density function. 

 For the sake of simplicity, we studied only the region from -2 to 
0 [E/N]. In case of the Ising model the positive part is easily 
reconstructed by the mirror reflection. In all other cases the energy 
range could be expanded as far as it necessary. 

One can see that the difference between the number of visits 
may be significant for the different pieces of the same model, see 
subplots (a),(d) and (g), nonetheless the first derivative (the factor 
determining the quality of stitching) for the two g(E) pieces at the 
connection points, as could be understood from the process, is 
mainly dependent on the smoothness of H(E).  

Every data piece head is already normalized to zero in C++ 
script. The final data postprocessing is done in Octave package. At 
this stage, depending on the number of artefacts in the data, each 
head of the consecutive data piece is aligned with the tail of the 
previous. The head of the first data piece is normalized to 2. The 
latter is done because there are only two states with all spins aligned 
in one direction. If head-to-tail stitching is incorrect we are 
automatically switching to the different but overlapping in the energy 
space points. Another observation worth mentioning is that systems 
with multiple degrees of freedom have more states available 
(compare subplots (b) and (h)). Thus it takes more iterations to visit 
all of them (compare subplots (a) and (g)). 

 
 
Conclusions 
 

We have implemented Wang-Landau algorithm to calculate 
density of states based on the Monte Carlo method with importance 
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sampling in 2D spin glasses for the Ising, Domb and Potts models as 
an example of multithreading and performance optimization in 
scientific computing. 

We reported a generalized set of rules represented in terms of 
algorithms and programs to construct a density of stated produced by 
a multithread algorithm. 

The algorithm works fine for all type of models and only 
requires correct definition of the interaction Hamiltonian in C++ 
script. 

Significant speedup compare to the linear model on the 
multicore computer has been observed. 

The model and its development represent the computational 
basis for the whole generation of the quantum algorithms for 
approximating partition.  
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Questions: 
1. What is the density of states? 
2. Describe the vector and standard Pott’s model. 
3. What are the differences between the basic spin grid models? 
4. What is importance sampling? 
5. How is Wang-Landau algorithm is incorporated in the biased sampling 

scheme? 
6. Describe the convergence process for the Wang-Landau sampling 

algorithm. 
7. What is the spin cluster? 
8. How we could multithread the Wang-Landau algorithm? 
9. Determine the partition function for canonical ensemble. 
10. What is the system degeneracy and how it affects the partition function? 
11. What is the transition probability for the Wang-Landau algorithm? 
12. How we measure the flatness of the histogram? 
13. How the flatness of the histogram could affect the stitching procedure? 
 
Program code 
1  #include <cmath> 
2  #include <cstdlib> 
3  #include <iostream> 
4  #include <fstream> 
5  #include <mpi.h> 
6  #include <iomanip> 
7  #include <sys/time.h> 
8  using namespace std; 
9  const double pi = 3.14159; 
10  const int qq=10; 
11  const int m=16, n=16; 
12  int nn; 
 
13  // timing functions 

http://www.open-mpi.org/
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14  double get_wall_time(){ 
15  struct timeval time; 
16  if (gettimeofday(&time,NULL)){ return 0;} 
17  return (double)time.tv_sec + (double)time.tv_usec*.000001;} 
 
18  double get_cpu_time(){return (double)clock() / CLOCKS_PER_SEC;} 
19  double E_nergy(int *s[], double* cos_theta[], int m, int n, double J){ 
20  double s_um=0; 
21  int up,down,left,right; 
 
22  for(int i=0; i<m; i++){ 
23  for(int j=0; j<n; j++){ 
24  i==0 ? up=m-1 : up=i-1; 
25  i==m-1 ? down=0 : down=i+1; 
26  j==0 ? left=n-1: left=j-1; 
27  j==n-1 ? right=0 : right=j+1; 
 
28  s_um=s_um+(cos_theta[s[i][j]][s[down][j]]+ 
29  cos_theta[s[i][j]][s[up][j]]+cos_theta[s[i][j]][s[i][right]]+ 
30  cos_theta[s[i][j]][s[i][left]]);}} 
 
31  return s_um*J/2;}  
 
32  double dE(int *s[], double* cos_theta[], int m, int n, int i, int j, int nn 

,double J){ 
33  double d_e=0; 
34  int up,down,left,right; 
 
35  i==0 ? up=m-1 : up=i-1; 
36  i==m-1 ? down=0 : down=i+1; 
37  j==0 ? left=n-1: left=j-1; 
38  j==n-1 ? right=0 : right=j+1; 
 
39  d_e=( 
40  cos_theta[nn][s[down][j]]+ 
41  cos_theta[nn][s[up][j]]+ 
42  cos_theta[nn][s[i][right]]+ 
43  cos_theta[nn][s[i][left]])- 
 
44  (cos_theta[s[i][j]][s[down][j]]+ 
45  cos_theta[s[i][j]][s[up][j]]+ 
46  cos_theta[s[i][j]][s[i][right]]+ 
47  cos_theta[s[i][j]][s[i][left]]); 
48  return d_e*J;} 
 
49  int main(int argc, char *argv[]){ 
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50  // Start Timers 
51  double wall0 = get_wall_time(); 
52  double cpu0 = get_cpu_time(); 
 
53  int id, ntasks; 
54  MPI_Init(&argc, &argv); 
55  MPI_Comm_size(MPI_COMM_WORLD, &ntasks); 
56  MPI_Comm_rank(MPI_COMM_WORLD, &id); 
 
57  const clock_t begin_time = clock(); 
 
58  cout<<setprecision(3); 
 
59  double r_atio=0.1; 
60  double J=-1; 
61  double E1t=-3*(m*n),E2t=-3*(m*n); // Just the arbitrary numbers to start 
 
62  double l_ow=-2, u_pper=-0.1, l_ength=1.1*((u_pper-l_ow)/ntasks); 
63  double small_piece=(u_pper-l_ow-l_ength)/(ntasks-1); 
 
64  double E_min=l_ow+small_piece*double(id), E_max=E_min+l_ength; 
65  long int total_steps=90000000; 
 
66  double f=2.71828; 
67  // Introduce arrays to keep log_gE and H_E data. it covers the whole 

energy range 
68  int n_odes=m*n*4+1; 
69  double* log_gE = new double[n_odes]; 
70  double* log_gE_total = new double[n_odes*ntasks]; 
71  double* H_E = new double[n_odes]; 
72  double* H_E_copy = new double[n_odes];  
73  double* H_E_total = new double[n_odes*ntasks]; 
 
74  double* EpN = new double[n_odes]; 
75  for(int i=0;i<n_odes;i++){ 
76  log_gE[i]=0;H_E[i]=0;EpN[i]=double(i-2*m*n);} 
77  double* cost_heta = new double[qq*qq]; 
78  double** cos_theta = new double*[qq]; 
79  // initialize it 
80  for(int i = 0; i < qq; ++i){ 
81  cos_theta[i] = cost_heta + qq*i;} 
82  // precomputing the array 
83  for(int t = 0; t < qq; t++){ 
84  for (int q = 0; q < qq; q++){ 
85  // clock model 
86  // cos_theta[q][t] = cos(2*pi*double(q-t)/(qq-1)); 



65 
 

87  // standard Pott with delta function 
88  // does not work properly...in the begining and for qq=2 
89  // need to check how it's interact with ising... 
90  (q==t)?(cos_theta[q][t]=1):(cos_theta[q][t]=0);  
 
91  // Ising 
92  // (q==t)?(cos_theta[q][t]=1):(cos_theta[q][t]=-1); 
93  }} 
 
94  // create the main, basic 2D array of spins 
95  int* s_data = new int[m*n]; 
96  int** s = new int*[m]; 
97  // initialize it 
98  for(int i = 0; i < m; i++){ 
99  s[i] = s_data + n*i;} 
 
100  for(int j=0;j<n;j++){ 
101  for(int i=0;i<m;i++){ 
102  s[i][j] = qq-1;}} // filling array with MAX value 
 
103  E1t=E_nergy(s, cos_theta, m, n, J)/(m*n); 
 
104  while((E1t/(m*n)<E_min)||(E1t/(m*n)>E_max)){  
105  int i = rand()%m; int j = rand()%n; // the indices should fall within the 

boundaries 
 
106  //int nn=s[i][j]; // save the old spin value of the site 
107  // need for sure another value... yes..otherwise no flip is observed 
108  //while(nn==s[i][j]){  
109  // nn =rand()%qq;} // nn takes values from 0 to qq-1, because 

array indexed from 0 ==> cos(2pi*nn/qq)....  
110  // nn takes values from 0 to qq-1, because array indexed from 0 ==> 

cos(2pi*nn/qq).... 
111  int nn =rand()%qq; 
 
112  s[i][j] = nn; 
113  E1t=E_nergy(s, cos_theta, m, n, J);} 
 
114  cout<<id<<"\t"<<E_min<<"\t"<<E_max<<"\t"<<E1t/(m*n)<<"\n"; 
115  log_gE[int(E1t)+2*m*n]+=log(f); 
116  H_E[int(E1t)+2*m*n]+=1; 
 
117  int c_ount=0; 
118  srand (time(NULL)+id); 
119  while(c_ount<=total_steps){c_ount++; 
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120  for (int ii=0;ii<m*n;ii++){ 
 
121  // the indices should fall within the boundaries 
122  int i = rand()%m; int j = rand()%n;  
123  // nn takes values from 0 to qq-1, because array indexed from 0 ==> 

cos(2pi*nn/qq).... 
124  int nn =rand()%qq;  
 
125  // should stay here. before I've change the matrix s 
126  float d_e=dE(s, cos_theta, m, n, i,j,nn,J); 
 
127  int nn_old=s[i][j];s[i][j]=nn; 
 
128  E2t=E1t+d_e; 
129  if((E_min<=E2t/(m*n)) && (E2t/(m*n)<E_max)){ 
 
130  if(exp(log_gE[int(E1t)+2*m*n]-log_gE[int(E2t)+2*m*n])>= 
131  rand()/(RAND_MAX + 1.0)){ 
132  E1t=E2t; 
133  log_gE[int(E2t)+2*m*n]+=log(f); 
134  H_E[int(E2t)+2*m*n]+=1; 
 
135  }else{// walker stays.  
136  log_gE[int(E1t)+2*m*n]+=log(f); 
137  H_E[int(E1t)+2*m*n]+=1; 
138  // no spin configuration update here. Reverse s[][] 
139  s[i][j]=nn_old;} 
 
140  }else{ 
141  log_gE[int(E1t)+2*m*n]+=log(f); 
142  H_E[int(E1t)+2*m*n]+=1;//} 
143  // no spin configuration update here. Reverse s[][] 
144  s[i][j]=nn_old;} 
145  } 
 
146  int max_H=1; 
147  for(int i=0;i<n_odes;i++){  
148  if(H_E[i]>=max_H){max_H=H_E[i];}} 
 
149  int min_H=max_H;  
150  for(int i=0;i<n_odes;i++){ 
151  if(H_E[i]>1 && H_E[i]<min_H){min_H=H_E[i];}} 
 
152  (min_H!=max_H)?(r_atio=double(min_H)/double(max_H)):(r_atio=0); 
 
153  if(r_atio>=0.85){ 
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154  // Stop timers 
155  double wall1 = get_wall_time(); 
156  double cpu1 = get_cpu_time(); 
 
157  if(wall1-wall0>=60){ 
 
158  cout<<setprecision(3)<<id<<"\t["<<min_H<<":"<<max_H<<"]\t["<<E_m

in<<":" 
159  <<E_max<<"]\t"<<c_ount<<"\t"<<setprecision(5)<<f<<setprecision(3)<<

"\t"<< 
160  (wall1-wall0)/60<<"m\t"<<(cpu1-cpu0)/60<<"m\n";} 
161  else{ 
162  cout<<setprecision(3)<<id<<"\t["<<min_H<<":"<<max_H<<"]\t["<<E_m

in<<":" 
163  <<E_max<<"]\t"<<c_ount<<"\t"<<setprecision(5)<<f<<setprecision(3)<<

"\t"<< 
164  (wall1-wall0)<<"s\t"<<(cpu1-cpu0)<<"s\n";}    
 
165  // Start Timers 
166  double wall0 = get_wall_time(); 
167  double cpu0 = get_cpu_time(); 
 
168  f=sqrt(f); 
169  for(int i=0;i<n_odes;i++){H_E_copy[i]=H_E[i];H_E[i]=0;} 
 
170  c_ount=0;} 
 
171  if (f<=1.0001){break;}} 
 
172  MPI_Gather(H_E_copy,n_odes,MPI_DOUBLE,H_E_total,n_odes,MPI_D

OUBLE,0,MPI_COMM_WORLD); 
 
173  MPI_Gather(log_gE,n_odes,MPI_DOUBLE,log_gE_total,n_odes,MPI_D

OUBLE,0,MPI_COMM_WORLD);     
 
174  // stitching pieces of different energy range together 
175  if(id==0){ 
176  ofstream gfile("log_gE_HE.txt"); 
177  H_E_total[0]=ntasks; // need to save number of tasks for Matlab reader 
178  for(int j=0;j<ntasks;j++){ 
179  for(int i=0;i<n_odes;i++){ 
180  gfile<<EpN[i]/(m*n)<<"\t"<<log_gE_total[i+j*n_odes]<<"\t" 
181  <<H_E_total[i+j*n_odes]<<"\n";}} 
182  gfile.close();} 
 
183  // dynamic arrays clean up 
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184  //************************ 
185  delete[] EpN; 
 
186  delete[] s_data; 
187  delete[] s; 
 
188  delete[] cost_heta; 
189  delete[] cos_theta; 
 
190  delete[] log_gE; 
191  delete[] H_E_copy; 
192  delete[] H_E; 
193  delete[] H_E_total; 
194  delete[] log_gE_total; 
 
195  MPI_Finalize();  
 
196  // Stop timers 
197  // double wall1 = get_wall_time(); 
198  //double cpu1 = get_cpu_time(); 
199  // 
200  //cout<<id<<"\t"<<(wall1-wall0)/60<<"\t"<<(cpu1-cpu0)/60<<"\n";  
 
201  return 0;} 
 
Matlab Script for Data Reconstruction 
202  %close all; 
203  clear all; clc; 
204  load('log_gE_HE.txt') 
 
205  c_olor=['k*' 'rp' 'go' 'bv' 'm^' 'c*']; 
206  co_lor=c_olor(1+round(rand*5)); 
 
207  %subplot(2,1,1) 
208  figure(1) 
209  d_ata=log_gE_HE(:,2); 
210  for i=1:length(d_ata) 
211  if d_ata(i)~=0 
212  % plot(log_gE_HE(i,1),d_ata(i),co_lor);hold on;drawnow; 
213  % axis square;axis tight; 
214  end 
215  end 
216  title('g(E)') 
217  %subplot(2,1,2) 
218  figure(2) 
219  d_ata=log_gE_HE(:,3); 
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220  for i=1:length(d_ata) 
221  if d_ata(i)~=0 
222  %plot(log_gE_HE(i,1),d_ata(i),co_lor);hold on;drawnow; 
223  %axis square;axis tight; 
224  end 
225  end 
226  title('H(E)'); 
227  ylabel('ln[g(E)]'); 
228  xlabel('E/N'); 
 
229  % stitching procedure 
230  ntasks=log_gE_HE(1,3); 
231  %ntasks=8; 
232  n_odes=floor(length(log_gE_HE(:,1))/ntasks) 
 
233  for i=2:ntasks 
234  % find the index of the first nonzero_right element in the data subset... 
235  non_zero_right=i*n_odes; 
236  for j=1:n_odes-1 % moving backward through subset 
237  if log_gE_HE(i*n_odes-j,2)~=0 
238  non_zero_right=i*n_odes-j; 
239  end 
240  end 
 
241  s_hift=log_gE_HE(non_zero_right-n_odes,2)-

log_gE_HE(non_zero_right,2) 
 
242  % rise/lower the whole RIGHT subset of data according to the findings of 

the previous loop 
243  for j=1:n_odes 
244  if log_gE_HE((i-1)*n_odes+j,2)~=0 
245  log_gE_HE((i-1)*n_odes+j,2)=log_gE_HE((i-1)*n_odes+j,2)+s_hift; 
246  end 
247  end 
248  end 
 
249  figure(3) 
250  sub_truct=0; 
251  for i=1:length(d_ata) 
252  if d_ata(i)~=0 
253  sub_truct=d_ata(i);break; 
254  end 
255  end 
256  d_ata=log_gE_HE(:,2); 
257  points_counter=0; 
258  for i=1:length(d_ata) 
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259  points_counter=points_counter+1; 
260  if mod(points_counter,n_odes)==0 
261  co_lor=c_olor(1+round(rand*5)) 
262  end 
263  if d_ata(i)~=0 
264  % plot(log_gE_HE(i,1),d_ata(i)-199993,co_lor);hold on;drawnow; 
265  plot(log_gE_HE(i,1),d_ata(i)-d_ata(1),co_lor);hold on;drawnow; 
266  % plot(log_gE_HE(i,1),d_ata(i),co_lor);hold on;drawnow; 
267  % plot(log_gE_HE(i,1),d_ata(i)/d_ata(1),co_lor);hold on;drawnow; 
268  axis square;axis tight; 
269  end 
270  end 
271  title('g(E)') 
272  ylabel('ln[g(E)]'); 
273  xlabel('E/N'); 
274  %print -deps -color single_cluster.eps 
275  %print -dpng -color single_cluster.png 
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5 
 
MICROSOFT VISUAL STUDIO IDE WITH OPENMP  
ADD-ON USED TO BUILD A RADIOLOGICAL  
PHANTOM, ITS PROJECTIONS  
AND RECONSTRUCTED CROSS-SECTIONS 
 
 
Introduction 
 
OpenMP API has been developed as an open standard for paral-

lel programing in C, C++ and Fortran languages. It has a full a set 
of compiler directives, library routines and environment variables 
that are dedicated for programming and running the multi-threaded 
applications on multiprocessor systems with the shared memory. 

The most exemplary usage has been done and widely available 
on the Microsoft Visual Studio integrated development environment. 

Several reasons are mentioned to motivate one to use OpenMP: 
First, OpenMP is the most widely standard for SMP (symmetric 
multiprocessing) systems; Second, it supports three differentmodern 
languages (Fortran, C, C++), and it has been implemented by many 
vendors, and the last but not the least is that OpenMP is arelatively 
small and simple specification, and it supports incremental paralle-
lism whereincremental parallelism is a technique for parallelizing an 
existing serial program, in which the parallelization is introduced as 
a sequence of incremental changes, parallelizing one loop at a time. 
After each transformation the program is tested to ensure that its 
behavior is the same as the original program, making it much easier 
to insure that no undetected bugs have been introduced. 

Nowadays, a lot of research is done on OpenMP including the 
major commercial software products. 
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When one want to compare OpenMPand OpenMPI, he should 
know that MPI which stands for Message Passing Interface has 
become accepted as a portable, cross-platform, style of parallel 
programming. MPI in general is considered as difficult to program 
and doesn’t support incrementalparallelization of an existing sequen-
tial program, though one could really see it as a matter of prefe-
rences. MPI was initiallydefined for client/server typeof program-
ming to run across a network, and so includes time and resources 
costlysemantics for message queuing and selection, and requires the 
existences of wholly separatememories. 

A significant part of OpenMP functionality is implemented 
using compiler directives. They must be explicitly placed by the user 
at the proper execution level, which will allow the program to run in 
parallel mode. In C/C++, the OpenMP directives are defined by the 
#pragma wordexisting both in C and C ++ standards, and used to 
specify additional instructions to the compiler. The use of the special 
key "omp" directive indicates that the commands are related to 
OpenMP and in order to avoid accidental coincidence of the names 
of OpenMP directives with other names. 

 
 
Methods 
 
Our task is to create a numerical phantom sized up to 1024 by 

1024 by 1024 voxels and provide for each voxel an information for 
the type of the material and attenuation coefficents µ, so later on this 
information could be used to create a projection in the illumina-
tinggamma ray field. 

 

 
 

Figure 1. Gamma rays attenuation processes as a function of energy, see [1] 
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When we are talking about the gamma rays attenuation by mat-
ter we need to consider three basic mecanisms of the gamma ray 
scattering, which is the photoelectric effect, Compton scattering, and 
pair production. Depending on the situation one or two of these 
meachnism may become the more prominent than the rest of them, 
see Figure 1. 

For the sake of numerical simulations, all three of them a usually 
combined into the single µ value, depending on the energy of gamma 
ray quanta, see figure 2. 

 

 
 

Figure 2. Gamma rays attenuation processes as a function of distance, see [1] 
 
In this case, the gamma rays attenuation process is reduced to a 

simple exponential form 

I=I0*exp(-µx), (1) 

where I and I0 are the intensities after and before the gamma ray 
traverses the sample, µ is the linear attenuation coefficient measured 
in inverse cantimeters. There are variations of this formula where the 
density of the matter is involved. In this case, the units of mu should 
ne given in inverse cantimeters squared. 

This research is using the tables of X-Ray Mass Attenuation 
Coefficientsand Mass Energy-Absorption Coefficientsfrom 1 keV to 
20 MeV for Elements Z = 1 to 92 and 48 Additional Substances of 
Dosimetric Interest provided by the Physical Measurement Labo-
ratory at National Institute of Standards and Technology, Gaithers-
burg, MD, USA [2]. 

Sample illumination setup is given on the next figure 3. The 
major parameters introduced onm this figure are the source elevation 
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above the central line, distances from the source to the center of the 
sample and from the center of the sample to the detector, bothe 
measured along the central ray. As we can see the phantom is placed 
in the center of coordinate system and could rotate around all three 
axises. Geometrical dimensions of the detector plate are given as 
well. Detector could be moved in the ZY plane as well, in case it is 
needed by the shifted image of the phantom’s projection. 
 

 
 

Figure 3. Phantom illumination setup 
 

Results and Discussions 
 
The separate Phantom class has been written to trace a projec-

tion according to the task, see the appendices to this chapter with the 
program code. 

Three projections, with nonzero elevation of the x-ray source, 
and the additional modulation coefficient proportional to the inverse 
square of the distance from the source to the detector cell are given, 
see figure 4. First projection (a) is the cube filled with inclussions of 
different nature, such whater, blood etc. The second projection (b) is 
the original projection with Gaussian noise added. The third one is 
different from the original by addition of the white noise. 

X 
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(a) original projection 

 
(b) Gaussian noise added 

 
(c) white noise added 

 
Figure 4. Multiple projections generated under different registration conditions  

 
The sample energy spectrum data are given by the following 

picture provided by the x-ray source producing company. 
 

 
  

Figure 5. Sample data sheet for the number of photons per energy bin as provided 
by the manufacturer  

 
Names of the elements used for the phantom generation is taken 

from the input_file.txt text file, see the end of the chapter and mu 
data is extracted according to the energy bins stepping used in the  
x-ray source spectrum description. 
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The backprojection according to the Radon transform is done in 
a seoarate class Loadprojection.cpp, see figure 6. 

In both cases, see the program code below, we have parallelized 
the loop scaning the voxels of the detectors from top to the buttom. 
This approach was good enough to produce a reasonable 
performance. 

Phantom which has been used to reconstruct these slices is 
shown below on figure 6. As one can see, we have pretty good 
resolution and feature’s visibility. 

Artifacts, visible on the pictures as the light rays streaking from 
the sharp angles of the phantom originates from the beam hardening. 

 

 
(a) coronal 

 
(b) axial 

 
(c) sagittal 

 
Figure 6. Reconstructed sagittal, axial and coronal slices  

of the arbitrary phantom 
 

Beam hardening is seen with polychromatic gamma ray spectra. 
As the ray passes through the body, low energy gamma quanta are 
attenuated, absorbedand scattered more easily, while the remaining 
high energy quanta stay on course and do not diminish in number 
drastically. Thus, beam transmission does not follow the simple 
exponential decay seen with a monochromatic ray, see figure 2. This 
is observed to be a particular problem with high atomic number 
materials such as bone, iodine, or metal. Compared to low atomic 
number materials such as water, or for the low energy X-ray tubes, 
these high atomic number materials have dramatically increased 
attenuation at lower energies thus making the passing beam 
«harder».  
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This particular crossections have been reconstructed from the 
361 projections taken from the phantomwith one degree step, see 
figure 7. 
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(a) α=00 

 
 

(b) α=260 

 
 

(c) α=520 
 

Figure 7. Sample projections from the reconstructed phantom taken  
ad different angles 
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Questions: 
1. What is the motivation behind the building the radiological numerical 

phantom. 
2. What is main differences between OpenMP and OpenMPI? What are their? 
3. How we could introduce dynamically allocated arrays into a parallel 

region? 
4. What are the most obvious sources of the memory leaks in OpenMP 

parallel programming? 
5. What is the difference between projections altered with Gaussian and with 

white noise? 
6. What are the main featrures of OpenCV that have been used in this 

program? 
7. How we address the phantom rotations in our simulations? 

http://www.nuclear-power.net/nuclear-power/reactor-physics/interaction-radiation-matter/interaction-gamma-radiation-matter/gamma-ray-attenuation/
http://www.nuclear-power.net/nuclear-power/reactor-physics/interaction-radiation-matter/interaction-gamma-radiation-matter/gamma-ray-attenuation/
http://www.nuclear-power.net/nuclear-power/reactor-physics/interaction-radiation-matter/interaction-gamma-radiation-matter/gamma-ray-attenuation/
https://www.nist.gov/pml/x-ray-mass-attenuation-coefficients
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8. What are the main mechanisms of gamma ray attenuation in matter? 
9. What is registered by the detector arrays? If it is an intensity or the number 

of photons striking the detector, then how we can get the attenuation 
coeeficient distribution? 

10. What should be closely monitored to maintain a proper performance of the 
multiple nested loops construction? 

 
Program code 
 
Phantom.h 
 
1  #ifndef PHANTOM_H 
2  #define PHANTOM_H 
3  #include <cmath> 
4  #include <cstdlib> 
5  #include <iostream> 
6  #include <fstream> 
7  #include <iomanip> 
8  #include <ctime> 
9  #include <cstring> 
10  #include <sstream> 
11  #include <omp.h> 
 
12  #include<algorithm> 
 
13  #include <opencv2/imgproc/imgproc.hpp> 
14  #include <opencv2/core/core.hpp> 
15  #include <opencv2/highgui/highgui.hpp> 
 
16  #define SSTR( x ) static_cast< std::ostringstream &>( \ 
17  ( std::ostringstream() << std::dec << x ) ).str() 
 
18  class Phantom { 
19  int w_idth, d_epth, h_eight, interpolation_points, elements_count; 
20  // Blurred and noise added projection paramenters 
21  int gaussblur_kernel, gaussnoise_sigma, gaussnoise_mean; 
22  float a_multiplier; 
23  public: 
24  // Phantom variables   
25  uchar *ph_antom; 
 
26  Phantom(int, int, int); 
27  ~Phantom(); 
 
28  void create_phantom(uchar); 
29  void grow_random_defects(int, int, int, int); 
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30  void save_phantom(); 
31  void o_bject(int,int,int,int,int,int,int,float, float, float,int); 
32  void set_blur_and_noise(int,float,int,int); 
33  // Projections variables  
34  int x_source, y_source, z_source;  
35  int x_detector, y_detector, z_detector ;  
36  void create_projection(int, int, int, float, int, int, float*[], float*[], int,int, 

float, int, int, float, float, int);}; 
37  #endif 
 
 
Phantom.cpp 
 
1  #include "Phantom.h" 
2  using namespace cv; 
3  using namespace std; 
 
4  const float pi = 3.14159f; 
5  const float rad_grad = 0.01745f; 
 
6  Phantom::Phantom(int a, int b, int c) { 
7  w_idth = a; d_epth = b; h_eight = c; 
8  ph_antom = new (std::nothrow) uchar[w_idth*d_epth*h_eight]; 
9  if (ph_antom == 0) { std::cout << "\n Error assigning memory \n"; } 
10  } 
 
11  Phantom::~Phantom(){ 
12  // This destructor function for class Phantom deallocates the directory's 
13  // list of Entry objects. 
14  delete [] ph_antom;} 
 
15  // main bulk phantom structure 
16  void Phantom::create_phantom(uchar phantom_material){ 
17  std::fill(ph_antom, ph_antom + w_idth*d_epth*h_eight, phantom_material);} 
 
18  void Phantom::grow_random_defects( 
19  int material_1,int quantity_1, int material_2,int quantity_2){ 
20  int defect_material[2], defect_quantity[2]; 
21  defect_material[0]=material_1; defect_material[1]=material_2; 
22  defect_quantity[0]=quantity_1; defect_quantity[1]=quantity_2; 
 
23  srand(static_cast<unsigned char>(time(NULL))); 
24  for (int d_efects=0;d_efects<=1;++d_efects){ 
25  for(int ie=1;ie<=defect_quantity[d_efects];ie++){ 
26  // randomly choose defects shape. Two shapes are available: ellipsoids and 

cuboids 
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27  int defect_type=rand()%2; 
28  // defect's random dimensions 
29  int max_size=w_idth/4; 
30  int min_size=w_idth/8; 
 
31  int widt_h= min_size + rand()%max_size; 
32  int dept_h= min_size + rand()%max_size; 
33  int heigh_t=min_size + rand()%max_size; 
34  // location of the defect's principal corner 
35  int x=widt_h+ rand()%(w_idth-widt_h); 
36  int y=dept_h+ rand()%(d_epth-dept_h); 
37  int z=heigh_t+ rand()%(h_eight-heigh_t); 
38  // defect's random orientations 
39  float alpha= float(rand())/RAND_MAX*2*pi; 
40  float beta = float(rand())/RAND_MAX*2*pi; 
41  float gamma= float(rand())/RAND_MAX*2*pi; 
42  // 3D rotation matrices 
43  float Rx[3][3]={1,0,0, 
44  0,cos(alpha),-sin(alpha), 
45  0,sin(alpha),cos(alpha)}; 
46  float Ry[3][3]={cos(beta),0,sin(beta), 
47  0,1,0, 
48  -sin(beta),0,cos(beta)}; 
49  float Rz[3][3]={cos(gamma),-sin(gamma),0, 
50  sin(gamma),cos(gamma),0, 
51  0,0,1}; 
52  for(int k=0;k<widt_h;++k){ 
53  for(int l=0;l<dept_h;++l){ 
54  for(int m=0;m<heigh_t;++m){ 
55  // consecutive rotations about three major axis as defined by the input_file.txt 
56  // rotation around X axis 
57  float k1=k*Rx[0][0]+l*Rx[0][1]+m*Rx[0][2]; 
58  float l1=k*Rx[1][0]+l*Rx[1][1]+m*Rx[1][2]; 
59  float m1=k*Rx[2][0]+l*Rx[2][1]+m*Rx[2][2]; 
60  // rotation around Y axis 
61  float k2=k1*Ry[0][0]+l1*Ry[0][1]+m1*Ry[0][2]; 
62  float l2=k1*Ry[1][0]+l1*Ry[1][1]+m1*Ry[1][2]; 
63  float m2=k1*Ry[2][0]+l1*Ry[2][1]+m1*Ry[2][2]; 
64  // rotation around z axis + translation + transform to index notation 
65  int X= static_cast<int>(k2*Rz[0][0]+l2*Rz[0][1]+m2*Rz[0][2]+x); 
66  int Y= static_cast<int>(k2*Rz[1][0]+l2*Rz[1][1]+m2*Rz[1][2]+y); 
67  int Z= static_cast<int>(k2*Rz[2][0]+l2*Rz[2][1]+m2*Rz[2][2]+z); 
68  // growing the defect inside the phantom's matrix 
69  if((X>=0)&&(Y>= 0)&&(Z>=0)&&(X<=w_idth-1) 
70  &&(Y<=d_epth-1)&&(Z<=h_eight-1)&& 
71  // next line makes sure that voids destroys everything 
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72  (ph_antom[X + Y*w_idth + Z*w_idth*d_epth]!=0)){ 
73  if(defect_type==0){// ellipsoids 
74  if( pow((k-widt_h/2.0),2)/(widt_h*widt_h/4.0)+ 
75  pow((l-dept_h/2.0),2)/(dept_h*dept_h/4.0)+ 
76  pow((m-heigh_t/2.0),2)/(heigh_t*heigh_t/4.0)<=1) 
77  {ph_antom[X + Y*w_idth + Z*w_idth*d_epth]=defect_material[d_efects];}} 
78  else{ 
79  //cuboids 
80  ph_antom[X + Y*w_idth + Z*w_idth*d_epth]=defect_material[d_efects];}} 
81  }}}}}} 
 
82  void Phantom::o_bject(int object_shape, 
83  int object_x,int object_y,int object_z, 
84  int object_width,int object_depth,int object_height, 
85  float object_alpha, float object_beta, float object_gamma, 
86  int object_id){    
 
87  float Rx[3][3]={1,0,0, 
88  0,cos(object_alpha),-sin(object_alpha), 
89  0,sin(object_alpha),cos(object_alpha)}; 
90  float Ry[3][3]={cos(object_beta),0,sin(object_beta), 
91  0,1,0, 
92  -sin(object_beta),0,cos(object_beta)}; 
93  float Rz[3][3]={cos(object_gamma),-sin(object_gamma),0, 
94  sin(object_gamma),cos(object_gamma),0, 
95  0,0,1}; 
96  for(int k=0;k<object_width;++k){ 
97  for(int l=0;l<object_depth;++l){ 
98  for(int m=0;m<object_height;++m){ 
99  // rotation around X axis 
100  float k1=k*Rx[0][0]+l*Rx[0][1]+m*Rx[0][2]; 
101  float l1=k*Rx[1][0]+l*Rx[1][1]+m*Rx[1][2]; 
102  float m1=k*Rx[2][0]+l*Rx[2][1]+m*Rx[2][2]; 
103  // rotation around Y axis 
104  float k2=k1*Ry[0][0]+l1*Ry[0][1]+m1*Ry[0][2]; 
105  float l2=k1*Ry[1][0]+l1*Ry[1][1]+m1*Ry[1][2]; 
106  float m2=k1*Ry[2][0]+l1*Ry[2][1]+m1*Ry[2][2]; 
107  // rotation around z axis + translation + transform to index notation 
108  int X= 

static_cast<int>(k2*Rz[0][0]+l2*Rz[0][1]+m2*Rz[0][2]+float(object_x)); 
109  int Y= 

static_cast<int>(k2*Rz[1][0]+l2*Rz[1][1]+m2*Rz[1][2]+float(object_y)); 
110  int Z = static_cast<int>(k2*Rz[2][0] + l2*Rz[2][1] + m2*Rz[2][2] + 

float(object_z)); 
111  // growing the defect inside the phantom's matrix 
112  if((X>=0)&&(Y>=0)&&(Z>=0)&&(X<=w_idth-1)&& 
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113  (Y<=d_epth-1)&&(Z<=h_eight-1)&& 
114  // next line makes sure that voids destroys everything 
115  (ph_antom[X + Y*w_idth + Z*w_idth*d_epth])!=0){ 
116  if(object_shape==0){// ellipsoids 
117  if( pow((k-object_width/2.0),2)/(object_width*object_width/4.0)+ 
118  pow((l-object_depth/2.0),2)/(object_depth*object_depth/4.0)+ 
119  pow((m-object_height/2.0),2)/(object_height*object_height/4.0)<=1) 
120  {ph_antom[X + Y*w_idth + Z*w_idth*d_epth]=object_id;}} 
121  else{ //cuboids 
122  ph_antom[X + Y*w_idth + Z*w_idth*d_epth]=object_id;}} 
123  }}}} 
 
124  void Phantom::save_phantom(){ 
125  // saving generated data 
126  // I'm using three elements of the phantom data to save info about size of the 

matrix 
127  double dtime1 = omp_get_wtime(); 
128  FILE* fout; 
129  fopen_s(&fout, "phantom.txt", "wb"); 
130  for (int k = 0; k < h_eight; ++k) { 
131  for (int j = 0; j < d_epth; ++j) { 
132  for (int i = 0; i < w_idth; ++i) { 
133  int c_ounter = i + j*w_idth + k*w_idth*d_epth; 
134  if (c_ounter == 0) { fprintf(fout, "%u\t", w_idth); } 
135  else if (c_ounter == 1) { fprintf(fout, "%u\t", d_epth); } 
136  else if (c_ounter == 2) { fprintf(fout, "%u\t", h_eight); } 
137  else { fprintf(fout, "%u\t", ph_antom[c_ounter]); } 
138  }fprintf(fout, "\n");}} 
139  fclose(fout); 
140  dtime1 = omp_get_wtime() - dtime1; 
141  std::printf("time to save phantom to text file in seconds = %f\n\n", dtime1); 
142  } 
 
143  void Phantom::set_blur_and_noise(int gaussblurkernel, float a_value, 
144  int noisemean, int gaussnoisesigma) { 
145  gaussblur_kernel = gaussblurkernel; 
146  gaussnoise_sigma = gaussnoisesigma; 
147  gaussnoise_mean=noisemean; 
148  a_multiplier =a_value;} 
 
149  void Phantom::create_projection(int y_source, int z_source, int y_detector, 
150  float theta_phantom, 
151  int w_detector, int h_detector, 
152  float** interpolated_mu, float** s_pectrum , int interpolation_points, 
153  int elements_count,float total_photons, int image_compression, int 

voxels_per_cm, 
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154  float t_before, float t_after, int mamo){ 
155  float a_ngle = theta_phantom; 
156  if (mamo == 1) { theta_phantom = 0; }; 
 
157  // t_before and t_after are used to cut the time of calculations over the empty 

space 
158  cout << y_source << "\t" << z_source << "\t" << y_detector << "\t"  
159  << t_before << "\t" << t_after << "\n"; 
 
160  double dtime = omp_get_wtime(); 
 
161  float c_os=cos(theta_phantom*rad_grad); 
162  float s_in=sin(theta_phantom*rad_grad); 
 
163  float y_dist = float(y_detector - y_source);  
164  float y_dist_cos = y_dist*c_os; 
165  float y_dist_sin = y_dist*s_in; 
 
166  float y_source_cos = static_cast<int>(round(float(y_source)*c_os + w_idth / 

2.0f)); 
167  float y_source_sin = static_cast<int>(round(float(y_source)*s_in - d_epth / 

2.0f)); 
168  float z_source_add = static_cast<int>(round(float(z_source) + h_eight / 2.0f)); 
 
169  float voxel_size = 1.0f / float(voxels_per_cm); // cm 
 
170  // need to move the center of detector back and fourth to keep projection in the 

center 
171  // depending on the source's elevation 
172  float z_detector = float(z_source*y_detector) / float(abs(y_source)); 
173  // in case of mammography the detector is not moving 
174  if (mamo == 1) { z_detector = 0; } 
 
175  // original projection 
176  Mat img_float = cv::Mat(h_detector, w_detector, CV_32FC1, Scalar::all(0)); 
177  Mat img;// = cv::Mat(h_detector, w_detector, CV_16UC1); // original 

projection 
 
178  // gauss blur added projection 
179  Mat g_auss; 
180  // random white gaussian noise 
181  Mat n_oise = cv::Mat(h_detector, w_detector, CV_16UC1); 
 
182  // to keep sqrt(1+a*img_float) data  
183  Mat s_um;  
184  Mat noise_float; // random white gaussian noise type float 
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185  // some auxilary noise conversion data, see algorithm below 
186  Mat add_noise = cv::Mat(h_detector, w_detector, CV_32FC1); 
187  Mat img_noise = cv::Mat(h_detector, w_detector, CV_32FC1); 
188  Mat img_noise_uchar = cv::Mat(h_detector, w_detector, CV_16UC1); 
 
189  omp_set_dynamic(0); // Explicitly disable dynamic teams 
190  // Get the number of processors in this system 
191  int c_ores = omp_get_num_procs(); 
192  // Now set the number of threads 
193  omp_set_num_threads(c_ores); 
 
194  #pragma omp parallel  
195  { 
196  float * modified_photons; 
197  modified_photons = new (std::nothrow) float[interpolation_points]; 
198  if (modified_photons == 0) { std::cout << "\n Error assigning memory \n"; } 
 
199  float *e_xp; 
200  e_xp = new (std::nothrow) float[interpolation_points*(elements_count + 1)]; 
201  if (e_xp == 0) { std::cout << "\n Error assigning memory \n"; } 
 
202  // precompute exponent' argument for given elements and spectrum 
203  // for one voxel step!!!! 
204  for (int i = 0; i < interpolation_points; i++) { 
205  for (int j = 1; j <= elements_count; j++) { 
206  // interpolated_mu[j][interpolation_points] is density rho 
207  // overall expression is attenuation with one voxel step 
208  // our dt is about one voxel in all directions 
209  e_xp[j + i*elements_count] = 
210  float(exp(-interpolated_mu[j][i] * interpolated_mu[j][interpolation_points] 
211  * voxel_size)); 
212  }} 
 
213  // we multithread over the rows of the detector matrix 
214  #pragma omp for 
215  for (int j = 0; j<img_float.rows; j++) { 
 
216  float z_dist = float(j) - float(h_detector) / 2.0f - z_detector - float(z_source); 
 
217  for (int i = 0; i<img_float.cols; i++) { 
218  // we have number of photons... should we square it? 
219  float i_ntensity = 0; 
220  // copying the source's spectrum at the origin 
221  for (int k = 0; k < interpolation_points; k++) { 
222  modified_photons[k] = s_pectrum[k][1];} 
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223  float x_dist = float(i) - float(w_detector) / 2.0f; 
224  float x_dist_sin = x_dist*s_in; 
225  float x_dist_cos = x_dist*c_os; 
226  float xcos_ysin = x_dist_cos - y_dist_sin; 
227  float xsin_ycos = x_dist_sin + y_dist_cos; 
 
228  // let us assume that the sample is int he air chamber... 
229  int inde_x = 1; // the air!!! 
 
230  // distance in voxels 
231  float dist_to_voxel = pow(x_dist*x_dist+y_dist*y_dist +z_dist*z_dist, 0.5); 
232  for (int energy_bins = 0; energy_bins < interpolation_points; energy_bins++) { 
233  modified_photons[energy_bins] *= 
234  float(exp(-interpolated_mu[inde_x][energy_bins] 
235  * interpolated_mu[inde_x][interpolation_points]* 

voxel_size*dist_to_voxel));} 
 
236  float dt = pow((y_dist*y_dist + x_dist*x_dist + z_dist*z_dist), -0.5f); 
237  float r2 = (y_dist*y_dist + x_dist*x_dist + 

z_dist*z_dist)*(voxel_size*voxel_size); 
 
238  int Xt, Yt, Zt; 
239  // tracing only through the region occupied by a phantom 
240  for(float t= t_before;t<=t_after;t+=dt){  
241  if (mamo == 0) { 
242  // we have to move the origin to the center of the phantom by adding w_idth/2 

etc. 
243  // need two lines below for right solution 
244  // fancy way to speed up calculations by static_cast<int> 
245  Xt = static_cast<int>(xcos_ysin*t - y_source_sin); // 
246  Yt = static_cast<int>(xsin_ycos*t + y_source_cos); 
247  Zt = static_cast<int>(z_dist*t + z_source_add); 
248  } 
249  else { 
250  // this part has not been modified for long time. 
251  // phantom is immediately beside the detector MAMO case 
252  Xt = static_cast<int>((   (x_dist*t + floor(w_idth / 

2.0f)))); 
253  Yt = static_cast<int>((float(y_source) + (y_dist*t + floor(d_epth / 2.0f)))); 
254  Zt = static_cast<int>((float(z_source) + (z_dist*t + floor(h_eight / 2.0f)))); 
255  } 
 
256  // if the ray hits the phantom we do calculations 
257  if( (Xt>=0) && (Yt >= 0) && (Zt >= 0) && (Xt<w_idth) && (Yt<d_epth) 
258  && (Zt<h_eight) ){ 
259  int inde_x = ph_antom[Xt + Yt*w_idth + Zt*w_idth*d_epth]; 
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260  if (inde_x != 0) {// we did not strike the void 
261  for (int energy_bins = 0; energy_bins < interpolation_points; energy_bins++){ 
262  modified_photons[energy_bins]*=e_xp[inde_x + 

energy_bins*elements_count] 
263  /= e_xp[1 + energy_bins*elements_count];}} // reversing the effect of air 

voxel 
264  }} 
 
265  // accumulate illumination from the whole spectrum 
266  for (int energy_bins = 0; energy_bins < interpolation_points; energy_bins++) { 
267  i_ntensity += modified_photons[energy_bins];} 
268  //i_ntensity +=modified_photons[9];} 
 
269  // in case we need to attenuate the intensity proportionally to 1/r^2 
270  //i_ntensity /= r2; 
271  img_float.at<float>(h_detector - 1 - j, w_detector - 1 - i) = i_ntensity; 
272  }}} 
 
273  //recreate/overwrite/redifine the dynamic variable in order to delete them 
274  // bc does not work another way 
275  #pragma omp parallel  
276  { 
277  float * modified_photons; 
278  modified_photons = new (std::nothrow) float[interpolation_points]; 
279  if (modified_photons == 0) { std::cout << "\n Error assigning memory \n"; } 
280  delete[]modified_photons; 
 
281  float *e_xp; 
282  e_xp = new (std::nothrow) float[interpolation_points*(elements_count + 1)]; 
283  if (e_xp == 0) { std::cout << "\n Error assigning memory \n"; } 
284  delete[]e_xp; 
 
285  } 
 
286  normalize(img_float, img_float, 0, 65535, CV_MINMAX); 
287  img_float.convertTo(img, CV_16UC1); 
 
288  vector<int> compression_params; 
289  compression_params.push_back(CV_IMWRITE_PNG_COMPRESSION); 
290  compression_params.push_back(image_compression); 
291  string pa_th = 
292  "C:\\Users\\Martha\\Google Drive\\reconstruction_64_bit\\projections\\ 
293  old_projections\\air_chamber_900_200_512\\"; 
294  //string pa_th = 
295  "C:\\Users\\Martha\\Google Drive\\reconstruction_64_bit\\projections\\ 
296  old_projections\\no_r2_900_200_mono_1024\\"; 
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297  //string pa_th = "C:\\Users\\Martha\\Google Drive\\ 
298  reconstruction_64_bit\\projections\\old_projections\\no_r2_200_200_1024\\"; 
299  //string pa_th = "C:\\Users\\Martha\\Google Drive\\ 
300  reconstruction_64_bit\\projections\\old_projections\\no_r2_200_200\\"; 
301  //string pa_th = "C:\\Users\\Martha\\Google Drive\\ 
302  reconstruction_64_bit\\projections\\old_projections\\without_r2\\"; 
303  string projectio_n="projection_"; 
304  string extensio_n=".png"; 
305  string extension_gauss= "_gauss.png"; 
306  string extension_rand = "_rand.png"; 
307  string extension_noise = "_noise.png"; 
 
308  string counte_r = SSTR(a_ngle); 
 
309  string filenam_e = pa_th+projectio_n + counte_r + extensio_n; 
310  string filename_gauss = projectio_n + counte_r + extension_gauss; 
311  string filename_noise = projectio_n + counte_r + extension_noise; 
 
312  std::cout << filenam_e<<"\n"; 
313  std::cout << filename_gauss << "\n"; 
314  std::cout << filename_noise << "\n"; 
 
315  // 1. Gaussian blur 
316  GaussianBlur(img, g_auss, Size(gaussblur_kernel, gaussblur_kernel), 0, 0); 
317  // 2. Adding white noise 
318  // another uchar to float conversion, i.e. working with smaller 0-255 range of 

values now 
319  img.convertTo(img_float, CV_32FC1); 
320  float a = a_multiplier; 
321  sqrt(1+a*img_float, s_um); // s_um is float 
 
322  // unsigned char like in original projection 
323  randn(n_oise, gaussnoise_mean, gaussnoise_sigma); 
324  n_oise.convertTo(noise_float, CV_32FC1); // conversion without scaling 
325  multiply(noise_float,s_um, add_noise); // multiplication 
 
326  // addition of two floats 
327  img_noise = img_float + add_noise;  
328  img_noise.convertTo(img_noise_uchar, CV_16UC1); 
329  // clipping in the line above to 65535 value is done automaticaly  
 
330  cv::imwrite(filenam_e.c_str(), img, compression_params);  
331  //cv::imwrite(filename_gauss.c_str(), g_auss, compression_params); 
332  //cv::imwrite(filename_noise.c_str(), img_noise_uchar, compression_params); 
 
333  dtime = omp_get_wtime() - dtime; 
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334  std::printf("elapsed build time in seconds = %f\n\n", dtime); 
335  } 
 
 
Loadprojection.h 
 
1  #ifndef LOADPROJECTION_H 
2  #define LOADPROJECTION_H 
 
3  #include <cmath> 
4  #include <cstdlib> 
5  #include <iostream> 
6  #include <fstream> 
7  #include <iomanip> 
8  #include <ctime> 
9  #include <cstring> 
10  #include <sstream> 
11  #include <omp.h> 
 
12  #include<algorithm> 
 
13  #include <opencv2/imgproc/imgproc.hpp> 
14  #include <opencv2/core/core.hpp> 
15  #include <opencv2/highgui/highgui.hpp> 
 
16  #define SSTR( x ) static_cast< std::ostringstream &>( \ 
17  ( std::ostringstream() << std::dec << x ) ).str() 
 
18  class Loadprojection { 
19  int y_source, z_source, y_detector; 
20  int w_detector, h_detector, projections_number; 
21  public: 
22  int slice_size; 
23  float *o_bject; 
24  Loadprojection(int, int, int,int,int,int); 
25  ~Loadprojection(); 
26  void load_images(); 
27  }; 
28  #endif 
 
 
Loadprojection.cpp 
 
1  #include "Loadprojection.h" 
 
2  using namespace cv; 
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3  using namespace std; 
 
4  const float pi = 3.14159f; 
5  const float rad_grad = 0.01745f; 
 
6  Loadprojection::Loadprojection(int ysource, int zsource, int ydetector, int 

wdetector, 
 
7  int hdetector, int projectionsnumber) { 
8  y_source = ysource; z_source = zsource; 
9  y_detector = ydetector; 
10  w_detector = wdetector; h_detector = hdetector; 
11  projections_number = projectionsnumber; 
12  slice_size = 130; 
13  o_bject = new (std::nothrow) float[slice_size * slice_size * slice_size]; 
14  if (o_bject == 0) { std::cout << "\n Error assigning memory \n"; } 
15  for (int k = 0; k < slice_size; ++k) { 
16  for (int j = 0; j < slice_size; ++j) { 
17  for (int i = 0; i < slice_size; ++i) { 
18  int c_ounter = i + j * slice_size + k * slice_size * slice_size; 
19  o_bject[c_ounter] = 0; 
20  }}}} 
 
21  Loadprojection::~Loadprojection() { 
22  delete[] o_bject;} 
 
23  // main bulk phantom structure 
24  void Loadprojection::load_images() { 
 
25  double dtime = omp_get_wtime(); 
 
26  vector<int> compression_params; 
27  compression_params.push_back(CV_IMWRITE_PNG_COMPRESSION); 
28  //compression_params.push_back(image_compression); 
29  compression_params.push_back(0); 
 
30  int t_arget = 65; 
31  int d_elta = 5; 
 
32  // number of projections should be = number of rays... 
33  projections_number = 360; 
34  float r_ange = 2.0f*pi; 
35  float db = r_ange / float(projections_number); 
 
36  float start_view_angle = 0; 
37  float view_angle; 
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38  Mat c_onvolved = cv::Mat(h_detector, w_detector, CV_32FC1, Scalar::all(0)); 
39  Mat reconstructed_image = cv::Mat(slice_size, slice_size, CV_32FC1,  
40  Scalar::all(0)); 
41  Mat reconstructed_scaled; 
 
42  Mat IMG_float = cv::Mat(h_detector, w_detector, CV_32FC1, Scalar::all(0)); 
43  Mat img_float = cv::Mat(h_detector, w_detector, CV_32FC1, Scalar::all(0)); 
44  Mat IMG = cv::Mat(h_detector, w_detector, CV_16UC1, Scalar::all(0)); 
45  Mat img_normalized = cv::Mat(h_detector, w_detector, CV_16UC1, 

Scalar::all(0)); 
 
46  Mat slice_normalized=cv::Mat(slice_size, slice_size, CV_16UC1, 

Scalar::all(0)); 
47  Mat slice_all = cv::Mat(slice_size, slice_size, CV_32FC1, Scalar::all(0)); 
 
48  float *g_na; 
49  //filter_width should be at least >=2 * w_detector; 
50  int filter_width = 2 * w_detector; 
51  g_na = new (std::nothrow) float[filter_width]; 
52  if (g_na == 0) { std::cout << "\n Error assigning memory \n"; } 
53  for (int ig = 0; ig < filter_width; ig++) { g_na[ig] = 0; } 
54  // precompute g_na filter values 
55  int center_point = static_cast<int>(floor(filter_width / 2.0f)); 
56  int A = 1; 
57  g_na[center_point] = 1 / float(8 * A*A); 
58  for (int ni = 1; ni <= int(floor(filter_width / 2.0f)) + 1; ni++) { 
59  int index_left = center_point - ni; 
60  if ((index_left >= 0) && (ni % 2 != 0)) { 
61  g_na[index_left] = -1 / (2 * ni*ni*pi*pi*A*A);} 
 
62  int index_right = center_point + ni; 
63  if ((index_right <= filter_width) && (ni % 2 != 0)) { 
64  g_na[index_right] = -1 / (2 * ni*ni*pi*pi*A*A); } 
65  } 
 
66  view_angle = start_view_angle; 
67  string extensio_n = ".png"; 
68  string a_ffix; 
69  for (int r_otate = 0; r_otate < projections_number; r_otate++) { 
70  Mat slice = cv::Mat(slice_size, slice_size, CV_32FC1, Scalar::all(0)); 
71  Mat v_isits = cv::Mat(slice_size, slice_size, CV_32FC1, Scalar::all(0)); 
72  float R2 = float(y_source*y_source); 
73  float dist_to_screen = float(-y_source + y_detector); 
74  float y_dist = float(y_detector - y_source); 
75  float c_os = cos(view_angle); 
76  float s_in = sin(view_angle); 
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77  float y_dist_cos = y_dist*c_os; 
78  float y_dist_sin = y_dist*s_in; 
 
79  float y_source_cos = float(y_source)*c_os + slice_size / 2.0f; 
80  float y_source_sin = float(y_source)*s_in - slice_size / 2.0f; 
81  float z_source_add = float(z_source)+ slice_size / 2.0f; 
 
82  int rotation_angle = r_otate*int(180/pi*r_ange/projections_number); 
83  string counte_r = SSTR(rotation_angle); 
84  string projectio_n = "projection_";  
85  string p_ath = "C:\\Users\\Martha\\Google Drive\\reconstruction_64_bit\\ 
86  projections\\old_projections\\air_chamber_900_200_512\\"; 
87  //string p_ath = "C:\\Users\\Martha\\Google Drive\\reconstruction_64_bit\\ 
88  projections\\old_projections\\no_r2_200_200_1024\\"; 
89  //string p_ath = "C:\\Users\\Martha\\Google Drive\\reconstruction_64_bit\\ 
90  projections\\old_projections\\no_r2_200_200_mono\\"; 
91  //string p_ath = "C:\\Users\\Martha\\Google Drive\\reconstruction_64_bit\\ 
92  projections\\old_projections\\without_r2\\"; 
93  //string p_ath = "C:\\Users\\Martha\\Google Drive\\ 
94  reconstruction_64_bit\\projections\\old_projections\\no_r2_200_200_1024\\"; 
 
95  string filenam_e = p_ath + projectio_n + counte_r + extensio_n; 
96  cout << filenam_e << "\n"; 
97  // LOAD image 
 
98  IMG = imread(filenam_e, CV_LOAD_IMAGE_UNCHANGED); 
99  //IMG = abs(IMG - 65535); 
100  //Mat IMG = cv::Mat(h_detector, w_detector, CV_16UC1, Scalar::all(65535)); 
 
101  if (!IMG.data) // Check for invalid input 
102  { 
103  cout << "Could not open or find the image" << std::endl; 
104  } 
 
105  IMG.convertTo(IMG_float, CV_32FC1); 
 
106  // This scaling is good for taking logarithm of data 
107  IMG_float = IMG_float * 35.0f; 
108  //IMG_float = 0; 
109  IMG_float = IMG_float + 2e6f; 
 
 
110  // convolve a single line of projection data with g_na 
111  // Q(n*a)=R(n*a)*gna(n*a) 
112  // f*g[n]=sum_m { f[m].g[n-m] } 
113  // g[n-m]=gna(n*a) is symmetric. which makes it easier 
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114  float Rna_prime, Dna, g_na_data; 
 
115  for (int ck = 0; ck < h_detector; ck++) { 
116  float dist_to_screen = float(-y_source + y_detector); 
117  float z_dist = float(ck) - float(h_detector) / 2.0f; 
118  for (int ci = 0; ci < w_detector; ci++) { 
119  float x_dist = float(ci) - float(w_detector) / 2.0f; 
120  // !!! NEED TO CHECK !!! 
121  Dna = dist_to_screen / pow(dist_to_screen*dist_to_screen + x_dist*x_dist +  
122  z_dist*z_dist, 0.5f); 
123  //incorrect Dna = -y_source / pow(y_source*y_source + x_dist*x_dist +  
124  z_dist*z_dist, 0.5f); 
125  //Dna = 1.0f; 
126  img_float.at<float>(h_detector - 1 - ck, w_detector - 1 - ci) = 
127  abs(log(IMG_float.at<float>(h_detector - 1 - ck, w_detector - 1 - ci)))*Dna;} 
 
 
128  for (int ci = 0; ci < w_detector; ci++) { 
129  float Qna = 0; 
 
130  for (int cj = 0; cj < w_detector; cj++) { 
131  Rna_prime = 0; 
132  if (cj < w_detector) { 
133  Rna_prime = img_float.at<float>(h_detector - 1 - ck, w_detector - 1 - cj);} 
 
134  g_na_data = g_na[center_point + ci - cj]; 
135  Qna = Qna + Rna_prime*g_na_data;} 
 
136  c_onvolved.at<float>(h_detector - 1 - ck, w_detector - 1 - ci) = Qna; 
137  }} 
 
138  float t_before = (float(-y_source) - float(slice_size) / pow(2.0f,0.5)) / (float(- 
139  y_source) + float(y_detector)); 
140  float t_after = (float(-y_source) + float(slice_size) / pow(2.0f, 0.5)) / (float(- 
141  y_source) + float(y_detector)); 
 
142  // Explicitly disable dynamic teams 
143  omp_set_dynamic(0); 
144  // Get the number of processors in this system 
145  int c_ores = omp_get_num_procs(); 
146  // Now set the number of threads 
147  omp_set_num_threads(c_ores); 
 
148  #pragma omp parallel for 
149  for (int ck = 0; ck < h_detector; ck++) { 
150  float z_dist = float(ck) - float(h_detector) / 2.0f; 



93 
 

151  for (int ci = 0; ci < w_detector; ci++) { 
 
152  float x_dist = float(ci) - float(w_detector) / 2.0f; 
 
153  float x_dist_sin = x_dist*s_in; 
154  float x_dist_cos = x_dist*c_os; 
155  float xcos_ysin = x_dist_cos - y_dist_sin; 
156  float xsin_ycos = x_dist_sin + y_dist_cos; 
 
157  float dt = pow((y_dist*y_dist + x_dist*x_dist + z_dist*z_dist), -0.5f); 
158  int Xt, Yt, Zt; 
 
159  for (float t = t_before; t <= t_after; t += dt) { 
160  // we have to move the origin to the center of the phantom by adding w_idth/2 

etc. 
161  // need two lines below for right solution 
162  // fancy way to speed up calculations by static_cast<int> 
163  Xt = static_cast<int>(xcos_ysin*t - y_source_sin);    

   
164  Yt = static_cast<int>(xsin_ycos*t + y_source_cos); 
165  Zt = static_cast<int>(z_dist*t + z_source_add); 
 
166  if ((Zt < slice_size-1) && (Xt < slice_size-1) && (Yt < slice_size-1) && 
167  (Zt > 0) && (Yt >0) && (Xt >0) ) { 
 
168  //if ((Yt >= t_arget - d_elta) && (Yt <= t_arget + d_elta)) 
169  //if ((Zt>= t_arget - d_elta) && (Zt <= t_arget + d_elta)) 
170  if ((Xt >= t_arget - d_elta) && (Xt <= t_arget + d_elta)) 
171  { 
172  // wrong...non uniform along the Z axis... 
173  float half_slice = float(slice_size) / 2.0f; 
174  //float s = pow(float((half_slice -Zt)*(half_slice - Zt)+((half_slice - 

Yt)*(half_slice – 
175  Yt))),0.5); 
176  // xt*sin or xt*cos.. 
177  float U2 = pow(float(y_source*y_source)/ 
178  (abs(float(y_source))+  
179  (float(Xt) - half_slice)*sin(view_angle) + (float(Yt)-  
180  half_slice)*cos(view_angle)),2.0); 
181  U2 = 1.0f; 
 
182  //a_ffix = "XZ"; slice.at<float>(Zt, Xt) 
183  //a_ffix = "XY"; slice.at<float>(Xt, Yt) 
184  a_ffix = "ZY"; slice.at<float>(Zt, Yt) 
185  += c_onvolved.at<float>(h_detector - 1 - ck, w_detector - 1 - ci)*U2; 
186  v_isits.at<float>(Zt, Yt) += 1; 
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187  }}}}} 
 
188  for (int i0 = 0; i0 < slice_size; i0++) { 
189  for (int j0 = 0; j0 < slice_size; j0++) { 
190  if (v_isits.at<float>(i0, j0)!=0) { 
191  slice.at<float>(i0, j0)/= (v_isits.at<float>(i0, j0));}}} 
 
192  slice_all = slice_all + slice; 
 
193  for (int i0 = 0; i0 < slice_size; i0++) { 
194  for (int j0 = 0; j0 < slice_size; j0++) { 
195  if (i0==0){slice_all.at<float>(i0, j0) = slice_all.at<float>(1, j0);} 
196  if (j0 ==0) { slice_all.at<float>(i0, j0) = slice_all.at<float>(i0,1);} 
197  if (j0 == slice_size-1) { slice_all.at<float>(i0, j0) = slice_all.at<float>(i0, 

slice_size - 2);} 
198  if (i0 == slice_size-1) { slice_all.at<float>(i0, j0) = 

slice_all.at<float>(slice_size - 2,j0); }}} 
199  slice_all.at<float>(0, 0) = slice_all.at<float>(1, 1); 
 
200  normalize(slice_all, slice_normalized, 0, 65535, CV_MINMAX); 
201  slice_normalized.convertTo(slice_normalized, CV_16UC1); 
202  imshow("reconstructed_image", slice_normalized);  
203  waitKey(1); 
 
204  // rotate the object to build another projection at the different view angle 
205  view_angle += db; 
206  } 
 
207  string n_ame = "_slice_"; 
208  string pat_h = "C:\\Users\\Martha\\Desktop\\slices\\"; 
209  string c_ounter = SSTR(t_arget); 
210  string time_stamp = SSTR(round(omp_get_wtime())); 
211  string rotation_s = SSTR(projections_number); 
212  string slic_e = SSTR(slice_size); 
213  string filenam_e = pat_h + rotation_s + "_" + a_ffix +n_ame + c_ounter 

+"_"+slic_e + "_"+time_stamp+ extensio_n; 
214  cv::imwrite(filenam_e, slice_normalized, compression_params); 
 
215  dtime = omp_get_wtime() - dtime; 
216  std::printf("elapsed build time in seconds = %f\n\n", dtime); 
 
217  waitKey(0); 
218  delete[]g_na; 
219  } 
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input_file.txt to define the phantom geometry 
 
Selecting path to the attenuation coefficients database and spectrum description text 

file 
 
1  path.mu.data:Attenuation coefficients\\NIST compounds\\ 
2  path.spectrum.data:100kV.txt 
 

choosing the type of computer tovography, which is the regular CT or mamography 
3  mammography.no 
 
4  element.id:Vacuum.0 
5  element.id:Air, Dry.1 
6  element.id:Polymethyl Methacrylate.2 
7  element.id:Water, Liquid.3 
8  element.id:Blood, Whole.4 
 
CT scan geometry 
9  source.to.phantom:200 
10  source.elevation:0 
11  phantom.to.detector:200 
 
Detector’s geometry 
12  detector.width:1024 
13  detector.height:1024 
 
Number and angular spacing of the projections 
14  start.angle:0 // from lesser number to bigger one 
15  end.angle:360 
16  projections.number:361 
17  image.compression:0 
 
18  voxels.per.cm:128 
 
Noise and blurring parameters 
19  gauss.blur.kernel:11 // should be ODD!! 
 
20  a.multiplier:0.10 
21  gauss.noise.mean:0 
22  gauss.noise.sigma:5 
 
Phantom geometry 
23  phantom.width:128 
24  phantom.depth:128 
25  phantom.height:128 
26  phantom.id:3 
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27  save.phantom.no 
 
28  defects.quantity:0 
29  defects.id:0 
 
30  voids.quantity:0 
31  voids.id:0 
 
Voids and defect descriptions 
32  object.shape:1  
33  object.x:64  
34  object.y:19 
35  object.z:32  
36  object.width:64 
37  object.depth:64 
38  object.height:64 
39  object.alpha:0 
40  object.beta:0 
41  object.gamma:45 
42  object.id:1 
 
43  object.shape:0  
44  object.x:32  
45  object.y:32 
46  object.z:32  
47  object.width:64 
48  object.depth:64 
49  object.height:64 
50  object.alpha:0 
51  object.beta:0 
52  object.gamma:0 
53  object.id:3 
 
54  object.shape:1  
55  object.x:42  
56  object.y:42 
57  object.z:42  
58  object.width:45 
59  object.depth:45 
60  object.height:45 
61  object.alpha:0 
62  object.beta:0 
63  object.gamma:0 
64  object.id:0 
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