

RECENT ADVANCES IN INFORMATION TECHNOLOGY

EDITED BY WALDEMAR WÓJCIK AND JAN SIKORA

Faculty of Electrical Engineering and Computer Science, Lublin University of Technology,

Lublin, Poland

LUBLIN 2017

CONTENS

1. CHAPTER 1: SECURITY ESTIMATES UPDATING OF ASYMMETRIC

CRYPTOSYSTEMS FOR MODERN COMPUTING

1.1. The effectiveness of different computational models for numbers factorization

1.2. Rho-pollard algorithm

1.3. Selecting crypto parameters

1.4. Distribution and amount of strong primes

1.5. Features of factorization algorithm elaboration for cloud computing

1.6. Conclusions

2. CHAPTER 2: GAME PROBLEMS OF CONTROL FOR FUNCTIONAL-

DIFFERENTIAL SYSTEMS

2.1. Problem statement, time of the “first absorption”

2.2. Sufficient conditions for the game termination

2.3. Integro-differential approach

2.4. Example of the integro-differential game approach

2.5. Quasilinear positional integral games approach

2.6. Case of the pursuit problem

2.7. Connection of integral and differential games of approach

2.8. Positional control in differential- difference games

2.9. Time of the ”first absorption” in the linear nonstationary differential game

2.10. Conflict-controlled impulse systems

2.11. Game problems for processes with fractional derivatives

3. CHAPTER 3: INFORMATION TECHNOLOGY FOR AUTOMATED

TRANSLATION FROM INFLECTED LANGUAGES TO SIGN LANGUAGE

3.1. Theoretical principles of automated translation system design

3.2. Algorithmic models of automated information technology of translation from

inflectional language to sign language

3.3. Experimental testing of informational technology of translation from ukrainian to

sign language

3.4. Conclusion

4. CHAPTER 4: INTEROPERABILITY OF THE HEALTH CARE INFORMATION

RESOURCES

4.1. Strategy for his development

4.2. The fhir specification concept

4.3. Integrating the healthcare enterprise

4.4. Technology integration of the information resources

4.5. Ehealth resource server

4.6. Vital sign representation framework

4.7. Conclusions

5. CHAPTER 5: INDEPENDENT DEVICES AND WIRELESS SENSOR NETWORKS

FOR AGRICULTURE AND ECOLOGICAL MONITORING

5.1. State of the art

5.2. Principles of device operation

5.3. Portable device “floratest”

5.4. Creating main application software

5.5. Contract manufacture

5.6. Optical sensor testing

5.7. Application of the “floratest” device in agriculture and ecological monitoring

5.8. Distributed data acquisition system

5.9. Wireless sensor network

5.10. Multilevel sensor network

6. CHAPTER 6: THE MATHEMATICAL PROBLEMS OF COMPLEX SYSTEMS

INVESTIGATION UNDER UNCERTAINTIES

6.1. Global change as main generators of new risks

6.2. Complex environmental, economic and social systems

6.3. Complex biological systems

6.4. Conclusions

7. CHAPTER 7: STUDY OF THE IMPACT OF THE TECHNICAL STATE OF THE

TRANSFORMERS WITH THE LTC ON THE PARAMETERS OF THE EES MODES

OPTIMAL CONTROL

7.1. Materials and results of the research

7.2. Determination of current technical state of power transformers

7.3. Account of the forecast current value of residual resource of the transformers in

the process of optimal control of micronetworks modes

7.4. Conclusions

PREFACE

In this book, entitled: " RECENT ADVANCES IN INFORMATION TECHNOLOGY "contains

a body of work whose common denominator is a modern information technology, without which

it is difficult to imagine progress in modern technologies and manufacturing processes.

Topics addressed in the work is very extensive ranging from the game theory to the advanced

control problems.

The individual chapters are separate, closed issues, which are the fruit of the cooperation of

Ukrainian Kazakh and Polish scientists.

The editors and the authors hope that this issue will allow to strengthen friendship between our

communities and consequently between our nations.

Waldemar Wójcik

Jan Sikora

Lublin, July 2017

CHAPTER 1

Security estimates updating of Asymmetric cryptosystems for
modern computing

V.K. Zadiraka , A.M. Kudin, I.V. Shvidchenko & P.V. Seliukh,
V.M. Glushkov Institute of Cybernetic of NAS of Ukraine, Kyiv, Ukraine

P. Komada,
Lublin University of Technology, Lublin, Poland

A. Kalizhanova,
al-Farabi Kazakh National University, Almaty, Kazakhstan

INTRODUCTION

Today RSA is still one of the most common and widespread asymmetric cryptosystems.

A lot of cryptographic protocols that deal with encryption, digital signature, and distribution of

key information are based on RSA scheme. The basis of scheme’s security is a complex

theoretical and numerical factorization problem: to find the prime divisors of large n.

The issue of cryptosystem’s security in practice is associated with the task of correct choice

of cryptosystem parameters. A recent research by a group of scientists led by Arjen Lenstra (2012)

confirms the problem of RSA implementation, namely generation of parameters that will ensure

the system’s security in practice. From among 11.5 million of RSA key certificates under research

there has been found more than 26000 vulnerable keys with size of 1024 bits and 10 keys with

size of 2048 bits. In this case the vulnerability was to factorize the cryptosystem’s module.

This vulnerability was implemented through the use of common divisors for modules, what

is more, only a small amount of such common divisors was found as a result of key reissuing for

the same owner. At most this situation is caused by the presence of the global problem of

generating “qualitative” modules that are built with large prime numbers (Bernstein et al. 2013,

Heninger et al. 2012), besides, the authors conclude that crossing to larger modules does not lead

to the expected decrease of vulnerable keys number. The mechanisms for generating prime

numbers that are used for constructing modules should be additionally studied.

Given the above we formulate the problems of effectiveness analysis of applying different

computational models (including probabilistic, parallel and hybrid) for factorization and discover

the existence of polynomial complexity algorithm of numbers factorization of special form; and

as a result to clarify practical security of RSA cryptosystem.

We will discover the amount of “secure” RSA modules. If we find out the limited amount

of such modules of defined size and this limitation turns out to be the polynomial of the module’s

size then there is a critical issue of RSA security in practice, namely if the cryptanalysis or RSA

is P (by factoring the module).

Adi Shamir offered the research of RSA module break “cost” of certain length by

constructing a specific factorization machine (Shamir 1999). This research was continued in

Shamir, Tromer and Bernstein papers (Shamir et al. 2003, Bernstein 2001). This task is urgent

now due to cloud computing and flexible computing architecture models (Programmable logic

device (PLD)) rise. To research the impact of new computer (cloud computing, etc.) technology

on complexity and RSA module break cost is the main idea of the article.

1.1. THE EFFECTIVENESS OF DIFFERENT COMPUTATIONAL MODELS FOR

NUMBERS FACTORIZATION

Let us briefly look through the characteristics and applicability of sequential, parallel and

probabilistic computational models. It should be noted that quantum calculations and their

applicability to the cryptography problems, in particular factoring problem have gained a wide

interest in recent years (Zadiraka et al. 2013). P.W. Shor (1999) has proved the polynomial

complexity of factorization and discrete logarithm for this computational model. This gives an

additional possibility to construct effective factor algorithm and to discover more precisely the

connection between computational models and their practical implementation. This topic requires

a separate discussion, so it is beyond the scope of this chapter.

The most studied sequential computational model uses determined operations performed

one after another and the results of the previous calculations are used in the next step.

Deterministic factoring algorithms are fully expressed through this model of computations. Today

there are no practical ways to significantly improve the performance of such factoring algorithms

for arbitrary input.

The extension for sequential model is probabilistic. It is a good framework for inherently

probabilistic algorithms. There are two types of algorithms: Monte Carlo and Las Vegas. The

algorithms of the first type give the answer that may be correct for some random sequences that

are generated during the algorithm, but may be incorrect. The probability of false answers is

reduced by repeated execution of the algorithm.

The Las Vegas algorithms respond correctly or finish with answer “don’t know”. The

probability of getting an incorrect result is zero. Exactly the study of probabilistic factoring

algorithms can lead to getting an effective performance of algorithms for numbers factoring of

special form. This can happen due to the “nature” of Las Vegas algorithm to “split” input data by

subsets with different estimates of algorithm’s complexity.

Consider the algorithm which can be divided into blocks of operations, the result of which

indirectly affects the further work, so the branches for independent computing that can be

executed simultaneously are allowed. This arrangement of computing defines the parallel

computational model. The application of parallel model for k separated branches is expected to

give at best the k time’s speedup of algorithm runtime (linear decrease computational

complexity).

Unfortunately, in practice, to achieve such speedup for factoring algorithm is impossible

because of the inability to efficiently use CPU time of each of k branches through the existing

need for communication between processors.

The well-known Brent’s review (Brent 1990) states that certain factor algorithms ECM

(Elliptic Curve Method (Lenstra 1987) for example) are good-suited for parallelization that yields

almost linear effect of decreasing computational complexity, but some algorithms (including rho-

Pollard method (Pollard 1975)) can achieve this effect only in theory (Crandall 1999).

Recent research of Pollard’s method (Crandall 1999, Koundinya 2013) shows that the linear

effect can be achieved only for the small number of parallel branches. Note that there are two

possible ways to parallelize the algorithm – to build various elements of one random sequence,

or to look up different sequences. Namely, the application of the second approach and possibility

of its effective improvement are discussed below.

Note that the mentioned above can be applied only for general factoring algorithms. It is

clear that these estimates are the upper bounds for factorization the numbers of special form.

Moreover, the study the effectiveness of factorization algorithms determines the so-called

problem of “impact of algorithm optimization on the PC’s structure”. Or rather it can be defined

as the problem of constructing an effective computational model (possibly hybrid) for number

factoring and discovering its implementation on the base of programmable logic devices PLD,

GPUs. This confirms the relevance of discovering the existence of time-efficient factoring

algorithms of special numbers, some results are discussed below.

1.2. RHO-POLLARD ALGORITHM

Pollard’s rho-method is a probabilistic algorithm that once made a significant breakthrough

and still is not completely researched. The complexity of the algorithm does not depend on the

factor but on its divisors. Thus, like the ECM algorithm (Lenstra 1987), Pollard’s method is

effective for factoring multi-prime RSA modules, such numbers of fixed length that are the

product of more than two primes.

Pollard used two simple ideas: the birthday paradox (Sekey 1993) and the ability to check

divisibility of number n by p computing (,)GDC x y n , if modx y p . We can choose the

starting point 0x , function f and construct recurrent sequence 1()i ix f x which plays the role

of a “random” sequence. Considering it by the module p , where p is a divisor of n there must

exist two comparable elements.

Pollard chose
2() 1f x x as a recurrence. The subtraction of two elements is always

split into a product
2 2

1 1 1 1 1 1()()k j k j k j k jx x x x x x x x . These divisors are tested

as possible for the number n .

This brings up the question – is it possible to obtain a significant improvement in the

performance of the algorithm by choosing another recurrent function. The study of this issue

(Hartman 1982) was carried out only with the use of numerous assumptions that narrow the set

of numbers to factor. Despite the application of different functions the effectiveness turned out to

be negative. So we considered the sets of numbers reduced by the module p and the capacity of

such sets for the following cases: 2 ' 1p p , where 'p is prime; 3(mod4)p or

2(mod3)p .

Hartman obtained the following results about the capacity of the sets that are generated by

different functions.

1. mod , 0,1,..., 1ax b p x p is complete set of residues. It is determined as a

permutation.

2. If k is odd and , 1 1k p , then mod , 0,1,..., 1kx p x p is a permutation.

3. If () modP x p is a permutation, then () modaP x b p is a permutation for

0moda p .

4. If modP x p generates the set of size n , then () modaP x b p and

 pbaxP mod)(are the different sets, but also of the size n .

5. pxxP mod2 generates the set of size
2

1p
. This statement is correct for all

polynomials of degree 2.

6. If xPxP 21 , are permutations, then xPxP 21 , does not generate the whole set of

residue. Little is known about the size of the set.

7. Cubic polynomial dcxbxaxxP 33 23
 separates the complete set of residues

into two size-equivalent subsets corresponding to the following:

a.
3x of size 2p b ac ;

b. xxxx 33 , of size acb
p

 21
3

1
2 .

8. xPP 21 generates the set of size less than or equal xPxP 21 ,min .

http://www.multitran.ru/c/m.exe?t=1615770_1_2&s1=%EE%F1%F2%E0%F2%EE%EA%20%EC%ED%EE%E6%E5%F1%F2%E2%E0

But to discuss only the size of set does not make sense. It is important to consider how

much calculations should be done to find an item that is congruent to module p with the

previously calculated one. If the selected function, and therefore, the generated sequence has

many “small” loops and does not have “long” loops and “tails” then the probability to find quickly

the decomposition of number n is high (Fig. 1.1). But hypothetically this is possible only under

the condition that n has only small prime divisors. If sequence has “long” loops then the

probability that the selected starting element will lead us to the desired collision is high and the

probability of choosing a starting element, which quickly leads to collision, is low.

To use high-degree functions is impractical because of the large time-costs of sequence

calculations. Using the linear function Nbaxxf mod the subtraction

 jcxkcxxx jk 00 does not seem to be random comparing with 12 xxf

proposed by Pollard (1975).

Fig. 1.1. Loops and “tails” in rho-Pollard method

Applying two different linear recurring sequences also does not give any improvements in

performance; we can conclude nothing about the residue of elements of two such sequences

21 jckcxx jk , where 21,cc are the constants. As we can see, the matter of selecting the

function that generates random sequence for Pollard’s rho-method is still open.

1.3. SELECTING CRYPTO PARAMETERS

Let us define n as a module and e as an exponent for RSA cryptosystem; these parameters

are the public key. Cryptosystem’s module is a product of odd primes ip , ui ,..,2,1 where

2u , and public exponent e is an integer that takes the value between 3 and 1n ,

1))(,(neGCD , where)1,...,1()(1 uppGCDn – generalized Euler function and some

additional conditions (Mukhachev et al. 2005). Private key d is a positive integer that satisfies

))((mod1 nde .

Let consider RSA key size as a length of module n in bits. NIST limits the set of key size

values as 1024, 2048 and 3072 bits. In addition, restrictions are imposed on the generation of

module n only as a product of two primes qpn (FIPS PUB 186-4-1).

The Public-Key Cryptography Standards (PKCS) #1 of version 2.1 and more it is allowed

to use modules that are the product of more than two numbers (multi-prime modules), but it does

not determine any restrictions on the choice of divisors. For a fixed size of the module the usage

of more than two divisors reduces the size of such divisors and thus increases the probability of

these modules to be factored by the algorithm, the complexity of which depends not on the size

of factored number but on the size of number’s divisor.

To deploy RSA cryptosystem first we need to select exponent e , fixed or random integer
25616 22 e . It is not permitted to choose random primes p and q to generate module with

size of 1024 bits, but only those that satisfy the following (FIPS PUB 186-4-1):

 1p has prime divisor 1p ,

 1p has prime divisor 2p ,

 1q has prime divisor 1q ,

 1q has prime divisor 2q .

Here 1p , 2p , 1q , 2q are so-called auxiliary primes, p і q are primes with conditions.

For modules of size 2048 and 3072 bits we may use random primes p , q , that are built using

probabilistic or constructive algorithms of generating prime numbers (Maurer 1990, Gordon

1984, Zadiraka et al. 2007, Shawe-Taylor 1986). Table 1.1 shows the limitation on the length of

numbers when using different algorithms of generating primes. The function plen is the bit

length of p .

Table 1.1. Valid length values for auxiliary primes 1p , 2p , 1q , 2q

 plen
Min. length of auxiliary

primes

Max. value of 21 plenplen

p , q probable

primes

p , q provable

primes

1024 >100 bits <496 bits <239 bits

2048 >140 bits <1007 bits <494 bits

3072 >170 bits <1518 bits <750 bits

Probably the prime number p is a number generated by the following algorithm: to

determine the length of the desired number p ; to generate odd random number; to check if the

number is prime using a probabilistic test. The most widespread is Miller-Rabin test. The

algorithm tests if given N is prime following the next steps:

1. To calculate t and s so that sN t21 , s has to be odd.

2. To randomly choose b , 22 Nb .

3. To calculate Nby s mod .

4. If 1y and 1 Ny , then while ti and 1 Ny starting from 1i do:

Nyy mod2 . If 1y , then Exit with “ N is composite”, otherwise 1 ii .

5. If 1 Ny , then Exit with “ N is composite”.

6. Exit with “ N is composite”.

While constructing the module the following requirements on the amount of rounds of

Miller-Rabin testing of the generated number should be met. This is caused by the decreasing

probability to choose composite number as a prime with each additional round. Below there is the

table (see table 1.2) with the amount of required rounds of testing for error level less than
1002

is given.

Table 1.2. Minimum number of rounds of Miller-Rabin testing when generating primes for RSA

scheme, the error level is
1002

Parameters Number of rounds

100,,, 2121 qqpp bits

p and q : 512 bits

For 2121 ,,, qqpp : 38

For p і q : 7

140,,, 2121 qqpp bits

p and q : 1024 bits

For 2121 ,,, qqpp : 32

For p і q : 4

170,,, 2121 qqpp bits

p and q : 1536 bits

For 2121 ,,, qqpp : 27

For p і q : 3

Note that the use of probably prime numbers while implementing the cryptosystem not only

significantly increases the time of module constructing but in case of mistaken use of composite

number can cause malfunctions, which reduces the resistance to cryptanalysis. So we refer to

deterministic algorithms that construct prime numbers in polynomial time. With the help of these

algorithms we can reduce the problem of selecting the module by testing number’s primality to

the problem of generating provably prime number. Let’s take a look at Maurer’s (1990) and

Shawe-Taylor’s algorithms (1986). They are the so-called “tornado” algorithms: small prime

number is used at the first iteration. Each following iteration determines provably prime number

in a certain range that guarantees an increase of the resulting number.

Maurer’s algorithm of generation of provably prime random number

The input of the algorithm is integer k – the number of bits of the desired prime. The

algorithm uses the following parameters: L is the border for trial divisions; M is a parameter

that ensures the existence of the desired prime. 20M is recommended.

1. If Lk 2 , then to generate random odd k -bit number N and to test its primality

with trial division. Repeat until a prime number N is generated. Exit.

2. If Mk 2 , then let
2

1
r , else repeat the following until Mrkk .

2.1.1. Choose random integer s , 10 s ,
12 sr .

3.
1 1k rk . Repeat steps 1-2 to construct 1k -bit random prime q .

4. Let)2/(2 1 qt k .

5. Let R is random integer, tRt 2 . 12 RqN .

6. Let a is integer and 11 Na . If 1)(mod1 NaN
 and

1),1(2 NaGCD R
, then Exit with “ N is prime”.

7. Else repeat steps 5-6.

The second algorithm of constructing provably prime random number is Shawe-Taylor’s

algorithm. The input of the algorithm is an integer k – the number of bits of the desired prime.

The algorithm uses parameter L as a border for trial divisions.

Shawe-Taylor’s algorithm

1. If Lk 2 , then to generate random odd k -bit number N and to test its primality

with trial division. Repeat until a prime number N is generated. Exit.

2. If k is odd, let 2/)3(1 kk . If it is even, let 12/1 kk . Recursive pass the

algorithm with input parameter 1k to construct a 1k -bit prime number.

3. Let x is random integer and
kk x 22 1

.

4. Let t is the smallest integer greater than)2/(qx .

5. If
ktq 212 , then let t be the smallest integer greater than)2/(2 1 qk

.

6. Let 12 tqN .

7. Chose random integer a , 11 Na , let Nax t mod2 . If 1x ,

1),1(NxGCD , Nxq mod1 , then N is generated prime.

8. Else let 1 tt and repeat steps 5-7.

However, the above algorithms guarantee only the primality of generated numbers.

Additional requirements for numbers that are divisors of RSA module are the property of their

so-called “maximization of the complexity of specialized factoring algorithms” (Zadiraka et al.

2007). For example, for 1p algorithms this property is revealed if n has prime factor p so

that number 1p has sufficiently large power-smooth boundary (Mukhachev and Khoroshko

2005), in other words, 1p has large prime factors. This divisor p is called “strong” prime

number. So we bring up an important question about the number and the distribution of such

strong primes.

1.4. DISTRIBUTION AND AMOUNT OF STRONG PRIMES

Let p be a classic strong prime if the following requirements are met:

)(mod1 rp ,)(mod1 sp , 1(mod)r t , (1.1)

where r , s , t are large primes. This means that p , r , s , t can be shown as 12 jrp ,

12 ksp , 12 ltr , whereby the lower the numbers lkj ,, the better.

Note that a generalization of the classical notion of prime number is a concept of strong

primes that maximize the complexity of all known algorithms for factorization.

R.L. Rivest denied the idea of need to use strong primes as factors for RSA modules (Rivest

and Silverman 1999). On the base of Lenstra’s algorithm he wanted to show that the choice of p

did not take an effect on the efficiency of obtaining the factorization, and that, in general, it is

enough to choose random primes to obtain RSA modules. Later his ideas were refuted, since some

algorithms, including ECM, work better if the number 1p is smooth.

Here follows the Gordon’s method of generating strong prime numbers.

1. Construct a random prime number s of pre-selected size. We can select a

pseudorandom number x of the desired size and using trial divisions we may leave

the numbers in the range]log,[2 xxx that do not have small divisors. Among the

remaining numbers choose prime number s with the help of primality test.

2. Generate random t in the same way.

3. Using trial division and primality test generate prime 12 ltr , sorting out l in

]log,1[2 t .

4. Calculate rsrssruu sr mod)(),(11 .

5. If u is odd, then let up 0 , else rsup 0 .

6. Test if krspp 20 is prime for 0, 1, 2, ...k

Assume the condition of applying strong primes while generating cryptosystem’s module.

The following conditions for factors should be met:

5.0,,0,,1|,,1|,,1|

5.0,,0,,1|,,1|,,1|

6543321211

3213321211

654

321

xxxnqqqnqqqnqqq

xxxnpppnpppnppp

xxx

xxx

 (1.2)

Let)(npi be i -th the greatest divisor of n . Let })(,1:{#),(x

ii ntpnttxnw is

the amount of integers less or equal n for which)(npi does not exceed xn . Applying the result

of Knuth and Trabb Pardo (1976) we have the probability that random number has the greatest

divisor bigger than some border:

.ln}{

1

1 x
t

dt
nqP

x

x (1.3)

Using Adamar and Vallee Poussin (Porter 1915) estimates we obtain the following estimate

of the number of classic strong primes in ba, :

.

ln
lnlnln),(321

b

a

s
t

dt
xxxba (1.4)

Considering the independence of the described divisors the estimate amount of RSA

modules is defined as:

 .)),((2bas (1.5)

Let us compare the resulting estimate of the number of RSA modules generated with

random primes (no requirements for “strong” primes). RSA module is a so-called semiprime

number because it has exactly two prime factors. The number whose prime factors less particular

bound will be called B -smooth. Works (Ishmukhametov and Sharifullina 2014) present the

distribution of semiprime and smooth numbers, the estimates are based on Riemann hypothesis.

Probabilistic function)(yg corresponds the probability that the number y will be “semiprime”.

Function approximation using series summation by prime numbers p :

.

)ln(ln

1
)(

yp pyp
yg (1.6)

Using Mertens’s formula:

),1(ln

ln
Ox

p

p

xp

 (1.7)

and Abel’s theorem results we have:

,

ln

ln ln
)(

y

y
yg

 where .2lnln1 (1.8)

Let),(yx be the amount of all y -smooth numbers less than x , we have the recurrent

formula for the calculation:

1

0

(,) (,),
kt

k ki
i k

x
x p p

p

k

k
p

x
t

ln

ln
, ,1k (1.9)

where kp – k -th prime (21 p),
ln

(, 2) 1.
ln 2

x
x

There are rough estimates for calculating the number of smooth numbers because with the

growth of smoothness bounds the computational complexity increases exponentially. Hildebrand

(1986) obtained the following estimation:

,

ln

)1ln(
1)(),(

y

u
Ouxyx where .uyx (1.10)

Here)(u is the Dickman-de Bruijn function, yxu ln/ln ,)(u is the solution of

differential equation 0)1()(uuu for 1u , this approximation is valid only with the

simultaneous growth of x and y keeping yx ln/ln as a constant. Here is the approximate

formula for
1/2(ln ln ln)y x x :

 21 ln
(,) 1 .

()! ln ln ln

x y
x y O

y p x y

 (1.11)

But to estimate the capacity of the set of smooth numbers with practically used boundaries

this approximation is inapplicable.

The considered estimations of semiprime number’s distribution give an opportunity to

present the size of the whole set. To solve the problem of RSA crypto parameters choice we

should restrict this set only by choosing such semiprimes that are not smooth for some smoothness

border B in order to maximize the complexity of solving the factorization problem of semiprime

numbers.

In the above-mentioned notations we are interested in the following estimation for the

number of semiprimes in the range],2[T that are not B -smooth (Ishmukhametov and

Sharifullina 2014):

2

ln ln
(,) (,)

ln

T
x

K T B dx T B
x

 , where 1 ln ln 2. (1.12)

On the other hand it is possible to evaluate the amount of B -smooth numbers in],2[T

with the help of combinatorial methods and group theory. It makes sense to choose primes as

smoothness boundary. So having fixed kpB as k -th prime number, the problem to evaluate

the number of combinations

ki

i
ipx

,1

 where Tx . Note that the estimates (1.4) and (1.12)

are close in value, but (1.4) is obtained in much easier way and takes into account the condition

of choosing “strong” primes.

In general, the following statements are applicable for implementing RSA cryptosystems:

1. it is necessary to impose the restrictions for primes that are used for generation RSA

modules for system’s security in practice;

2. the output set algorithms that generate such primes have appreciably less cardinality

of a set than cardinality of prime number set.

For these reasons, we formulate the hypothesis that there exists a polynomial complexity

algorithm that enumerates the set of “secure” RSA modules. The above estimations support this

hypothesis.

1.5. FEATURES OF FACTORIZATION ALGORITHM ELABORATION FOR CLOUD

COMPUTING

The first problem of factorization price estimating for cloud computing is a form of ordering

the services, which are typically given by providers. For example, Windows Azure provides

services in a form of virtual machine with specific characteristics of the CPU, memory and disk

space (Accessed June 3 2016. http://azure.microsoft.com/en-us/pricing/details/cloud-services).

The most powerful architecture which is offered “for working applications with large databases,

server applications and high-speed applications” (e.g., “D14” has the characteristics of 112 GB

RAM, 800 GB of disk space, 16 core processor) costs $2.611 US per hour or about $1943 US per

month.

The cost of computing module rent with random configuration for most cloud platforms

may be estimated using the on-line calculators (Accessed June 3 2016. https://cloud.google.com/

products/ calculator, http://www.hpcloud.com/pricing). Thus, a computer module in the cloud

Google Cloud Platform with the configuration similar to “D14” costs $5.36 US per hour, but the

monthly rent will cost $689.08 (Accessed June 3 2016. http://azure.microsoft.com/en-

us/pricing/details/cloud-services). In HP's Public cloud the configuration, aimed at calculating the

maximum power (30 HP Cloud Compute Units, 4 virtual cores, 60GB RAM, 540GB ephemeral

disk) is $1.35/hr ($985.50/mo.) (Accessed June 3 2016. http://www.hpcloud.com/pricing). You

can also choose virtually unlimited (theoretically – only for the price) number of such machines.

So, to order a specific computing architecture targeted at particular factorization algorithm

is difficult, so you need to rely on many computing nodes of standard minimum configuration

aimed at powerful calculations that operate in parallel. The price of this node (e.g., n1-highcpu-2

for the cloud Google Cloud Platform) is $38.84 per month.

The second problem is that for factorization price estimating it is also necessary to choose

the fastest at present, universal (which can be used for any kind of numbers) algorithm, which

allows the simple implementation of a parallel computing model. The choice of this algorithm for

factorization price estimating has similar value to the choice of the universal models of

computation (Turing-Post machine, normal Markovian algorithm, brute-force program, etc.) for

algorithms complexity estimate.

The generally accepted solution to this problem is the choice of algorithm GNFS (Buhler

et al. 1993, Lenstra and Lenstra 1993, Couveignes 1993, Ishmukhametov and Sharifullina 2014).

This algorithm, like the most effective factorization algorithms at present time operates quite a

simple idea, proposed by Fermat, such as: if you find a pair of numbers BA, , that satisfy the

equation nBA 22
, then BABAn . So, if nm , then ,...2,1x calculate

the value of polynomial nxmxq
2

 until xq is not a perfect square.

A simple generalization of Fermat’s idea is to search for pairs of numbers that satisfy more

general equation nBA mod022 (Ishmukhametov and Sharifullina 2014). Along with this,

it appears that the value of the polynomial xq is the so-called “smooth” numbers. A pair of

integers BA, , is called “smooth” (on base factor F , formed of primes) if:

1. The relation nBA mod022 is performed.

2. B is multiplied only by prime factors that belong to the set F .

Representation of polynomial values xq by the elements of a vector space over F to

search the full squares has led to Dixon algorithm first, then to quadratic sieve (QS), but as a

generalization of the latter – the general number field sieve (GNFS). We will briefly present the

main stages of this algorithm to discuss major evaluations of its performance (Ishmukhametov

and Sharifullina 2014):

1. Choose irreducible polynomial degree 3d .

2. We choose an integer
 1/ 1 1/, d dm n m n , and represent n on the basis of m:

0

1

1 ... amamn d

d

d

3. With this representation we bind irreducible in the ring xZ (the ring of

polynomials of the variable x with integer coefficients) polynomial:

 0

1

11 ... axaxxf d

d

d

 .

4. Define sieving polynomial baF ,1 as a homogeneous polynomial of two variables

a and b :

b

a
fbbaF d

11 *,

5. Also define another polynomial mxxf 2 and the corresponding homogeneous

polynomial bmabaF ,2 . The main requirement for pair selection 21, ff is

to fulfill the condition: nmfmf mod21 which is obviously performed in our

case, because the first polynomial at the point m is n , and the second is zero.

6. Choose two positive numbers 1L and 2L , which define the certain rectangular area

 221,1 LaLLbSR , called “sieve area”.

7. Let – root of polynomial xf1 . Consider the polynomial ring Z (practically

root is not evaluated, and is only used for formal description of the algorithm).

Define the algebraic factor base 1FB , consisting of a first-order polynomial form

ba with the norm which is prime number. These polynomials are simple

irreducibility elements in the ring of algebraic field QK . The absolute value

of the norms of polynomials from factor base 1FB are bound above by some constant

1B .

8. At the same time let define rational factor base 2FB , consisting of all prime numbers

bound above by second constant 2B .

9. To be able to check the final stage of the algorithm, whether the determined

polynomial is perfect square, we define a relatively small set of polynomials dc

of the 1 order, the norm of which is also a simple number. Let this set be marked as

3FB . It must satisfy the condition 31 FBFB is called Quadratic Character

Factor Base.

10. Further simultaneous sieving of polynomials based on 1FB is performed and

integers based on 2FB to obtain the set M , consisting of smooth pairs ba, . The

pair ba, is called smooth if 1, baGCD and the polynomial ba and the

number bma are multiplied entirely by the relevant factor bases 1FB and 2FB .

The number of smooth pairs in the set M must exceed the total power of three factor

bases at least by two units.

11. The next step is to search the subset MS so that the product of all pairs ba

is
2H and pairs bma is

2B , ZBZH , . To search the set S as in the

quadratic sieve method, a system of linear algebraic equations is formulated with

coefficients from of the set 1,02 F , the solution of which will be the numbers of

the set S .

12. Next we form the polynomial:

Sba

baxfg
,

2

1 .

13. If the whole procedure is performed correctly, then the polynomial g is a perfect

square in the ring of polynomials Z . We extract square roots of the polynomial

 g and an integer
2B , finding some polynomial and the number B .

14. Replace the polynomial with the number m .

15. So, a pair of integers BA, , satisfying the condition nBA mod022 has been

found.

As seen from the description of the main stages of the algorithm there are two key

parameters that affect its complexity – the size of the sieve area and the size of factor base. The

complexity estimate of the algorithm GNFS is easy to measure by using

1
lnlnln1, nnoc

n ecL function. The most famous current estimates for the classical

method GNFS –

 1..92,1;

3

1
oLn

 (Ishmukhametov and Sharifullina 2014), for the “group”

GNFS (several numbers are factorized at a time for which common screening results, are used the

average factorization time per each number is calculated)

 1704,1;

3

1
oLn

 (Bernstein and

Lange 2014).

For approximate real cost estimate of factorization for the clouds given above let’s give the

estimate of the sieving area (the most complicated stage) of the classical method GNFS. It is

1

9

8
;

3

1
31

oLn .

If we take this estimate for the number of computing nodes of “minimal” configuration then

the factorization cost estimate of 1024-bit number is hundred trillion US dollars, if the number is

factorized during a month, which of course is much worse than the factorization cost estimates

specially designed by using the devices for factorization (TWIRL or SHARK) (Shamir and

Tromer 2003, Franke 2005). So the cost of the system SHARK (Franke 2005) for factorization of

1024-bit number is evaluated 160 million US dollars, if the number is factorized during a year.

Such estimate is explained first of all, by the lack of flexibility of cloud computing services

order, and, secondly, by the direct use of existing implementations of the algorithm GNFS for

cloud technologies. The doubtless advantage of cloud computing that determines the relevance of

further research in this area, is their relatively greater availability compared to specialized

calculators and opportunity to use the so-called “peak-mobilization” operation mode in “critical”

cases – the use of cloud resources across the corporation, state and international association.

1.6. CONCLUSIONS

Existing standards of implementation and usage of asymmetric cryptosystems impose

restrictions on the crypto parameters generation. This situation is conditioned by modern advances

in solving the problem of factorization of large numbers. The interest of assessing RSA security

in practice is the highlighted issue of size or rather the nature of size growth of the set of secure

crypto parameters, namely semiprime numbers that have additional constraints about their

divisors.

REFERENCES

Baydenko P.V., Kudin A.M., 2012: Efektyvnist' zastosuvannya alhorytmiv faktoryzatsiyi do moduliv

kryptosystemy RSA, X Vseukrayins'ka naukovo-praktychna konferentsiya studentiv, aspirantiv ta

molodykh vchenykh “Teoretychni i prykladni problemy fizyky, matematyky ta informatyky”, Zbirka

tez dopovidey uchasnykiv, Kyiv, Ukraine, pp. 253-254, (in Ukrainian).

Bernstein D.J., 2001: Circuits for integer factorization: a proposal, http://cr.yp.to/papers.html#nfscircuit.

Bernstein D.J., Chang Y.-A., Cheng C.-M., Chou L.-P., Heninger N., Lange T., van Someren N, 2013:

Factoring RSA keys from certified smart cards: Coppersmith in the wild, Cryptology ePrint Archive,

Report 2013/599, https://eprint.iacr.org/2013/598.pdf

Bernstein D.J., Lange T., 2014: Batch NFS, Selected Areas in Cryptography, LNCS, Springer, vol.8781,

pp. 38-58, http://cr.yp.to/factorization/batchnfs-20141109.pdf.

Brent R.P., 1990: Parallel algorithms for integer factorization, Number Theory and Cryptography (edited

by J.H. Loxton), London Mathematical Society Lecture Notes (Book 154), Cambridge University Press,

pp. 26-37.

Buhler J.P., Hendrik W., Lenstra Jr., Pomerance C., 1993: Factoring integers with the number field sieve,

The Development of the Number Field Sieve, Springer, vol.1554, pp. 50-94.

Couveignes J., 1993: A general number sieve implementation, Lecture Notes in Math., vol. 1554, pp. 103-

126.

Crandall R.E., 1999: Parallelization of Pollard-rho factorization, http://academic.reed.edu/physics/faculty/

crandall/papers/parrho.pdf.

Franke J., Kleinjung T., Paar C., Pelzl J., Priplata C., Stahlke C., 2005: SHARK: a realizable special

hardware sieving device for factoring 1024-bit integers, Cryptographic hardware and embedded

systems, LNCS, Springer, vol. 3659, pp. 119-130.

Gordon J., 1984: Strong RSA keys, Electronics letters, vol. 20(12), pp. 514-516.

Hartman W.J., 1982: An Experimental Study of Monte Carlo Factoring Techniques, National

Telecommunications and Information Administration.

Heninger N., Durumeric Z., Wustrow E., Halderman J.A., 2012: Mining Your Ps and Qs: detection of

widespread weak keys in network devices, In Proceedings of the 21th USENIX Security Symposium,

Bellevue, WA, USA, August 8-10, pp. 205-220.

Hildebrand A., 1986: On the number of positive integers x and free of prime factors y , Journal of

Number Theory, vol. 22(3), pp. 289-307.

Ishmukhametov Sh.T., Sharifullina F.F., 2014: On distribution of semiprime numbers, Russian

Mathematics, vol.58(8), pp. 43-48.

Koundinya A.K., Harish G., Srinath N.K., Raghavendra G.E., Pramod Y.V., Sandeep R., Kumar P.G.,

2013: Performance analysis of parallel Pollard’s RHO factoring algorithm, International Journal of

Computer Science & Information Technology (IJCSIT), vol. 5(2), pp. 157-164.

Knuth, Donald E., et al.: Selected Papers on Computer Languages, Stanford, CA, CSLI, 2003. ISBN 1-

57586-382-0) (typewritten draft, August 1976).

Lenstra Jr. H.W., 1987: Factoring integers with elliptic curves, Annals of Mathematics, Second Series,

vol. 126(3), pp. 649-673.

Lenstra A.K., Lenstra H.W., 1993: The development of Number Field Sieve, LNM, Springer-Verlag,

vol.1554.

http://link.springer.com/journal/11982
http://link.springer.com/journal/11982
http://en.wikipedia.org/wiki/Annals_of_Mathematics

Lenstra A.K., Hughes J.P., Augier M., Bos J.W., Kleinjung T., Wachter C., 2012: Ron was wrong, Whit is

right, Cryptology ePrint Archive, Report 2012/064, http://eprint.iacr.org/2012/064.pdf.

Maurer U.M., 1990: Fast generation of secure RSA-moduli with almost maximal diversity, Advances in

Cryptology – EUROCRYPT ’89, LNCS, Spinger-Verlag, vol. 434, pp.636-647.

Mukhachev V.A., Khoroshko V.A., 2005: Metody prakticheskoy kriptografii, Poligraf-Konsalting, Kyiv,

Ukraine, (in Ukrainian)

Pollard J.M., 1975: A Monte Carlo method for factorization, BIT Numerical Mathematics, vol. 15(3),

pp. 331-334.

Porter, M. B. 1915. Review: Cours d'Analyse Infinitésmale, by Ch.-J. de la Vallée Poussin. Bull. Amer.

Math. Soc. 22. pp. 77–85.

Rivest R.L., Silverman R.D., 1999: Are “strong” primes needed for RSA? RSA Laboratories Seminar

Series, Seminars Proceedings.

Sekey G., 1993: Paradoksy v teorii veroyatnostey i matematicheskoy statistike, Mir, Moscow, Russia (in

Russian).

Shamir A., 1999: Factoring large numbers with the TWINKLE device, Cryptographic Hardware and

Embedded Systems, LNCS, Springer-Verlag, vol. 1717, pp. 2-12.

Shamir A., Tromer E., 2003: Factoring large numbers with the TWIRL device, Advances in Cryptology –

CRYPTO 2003, LNCS, Springer-Verlag, vol. 2729, pp. 1-26.

Shawe-Taylor J., 1986: Generating strong primes, Electronic letters, vol. 22(16), pp.875-877.

Shor P.W., 1999: Polynomial Time Algorithms for Prime Factorization and Discrete Logarithms on a

Quantum Computer, SIAM Review, vol. 41(2), pp. 303-332.

Zadiraka V.K., Kudin A.M., Oleksyuk A.S., 2007: Adaptivnye algoritmy polucheniya prostykh chisel i ikh

primenenie v kriptografii, Komp'yuternaya matematika, no. 1, pp. 54-61, (in Ukrainian).

Zadiraka V.K., Kudin A.M., 2013: Cloud computing in cryptography and steganography, Cybernetics and

Systems Analysis, vol.49(4), pp. 584-588.

Digital signature standard, National Institute of Standards and Technology, Federal Information

Processing Standards Publication, FIPS PUB 186-4-1.

Google Cloud Platform pricing calculator, https://cloud.google.com/products/calculator.

HP Cloud pricing, http://www.hpcloud.com/pricing.

Microsoft Azure. Cloud services pricing, http://azure.microsoft.com/en-us/pricing/details/cloud-services.

http://link.springer.com/book/10.1007/3-540-46885-4
http://link.springer.com/book/10.1007/3-540-46885-4
http://link.springer.com/book/10.1007/3-540-48059-5
http://link.springer.com/book/10.1007/3-540-48059-5
http://link.springer.com/journal/10559
http://link.springer.com/journal/10559

