SCCS 2014

International Conference on Strongly Coupled Coulomb Systems

July 27th-August 1st Santa Fe, New Mexico, USA

- 15:15–15:30 J. L. Belof & J. L. DuBois, "Variational Path Integral Monte Carlo Approach for Warm Dense Contributed Matter"
- 15:30–15:45 Charles Starrett, Jérôme Daligault & Didier Saumon, "Pseudo-atom molecular dynamics" Contributed
- 15:45–16:00 V. Filinov, Yu. Ivanov, M. Bonitz, V. Fortov & P. Levashov, "Quantum simulation of Contributed thermodynamic and transport properties of quark gluon plasma"
- 16:00–16:15 A. D. Baczewski, L. Shulenburger, M. P. Desjarlais & R. J. Magyar, "Dielectric Response Contributed in Extreme Conditions Using Time-Dependent Density Functional Theory"
- 16:15–16:30 Coffee Break Lumpkin Ballroom North
- 16:30–18:30 Poster Session 1 Lumpkin Ballroom North
- Poster 1.01 A. Calisti, S. Ferri & B. Talin, "Ionization potential depression in hot dense plasmas through a pure classical model"
- Poster 1.02 D. Saumon, C. E. Starrett & J. O. Daligault, "The calculation of diffusion coefficients in warm and hot dense matter"
- Poster 1.03 Dongdong Kang, Jiayu Dai, Huayang Sun & Jianmin Yuan, "Nuclear quantum effects on the structure and dynamics of dense hydrogen"
- Poster 1.04 H. D. Whitley, W. E. Alley, J. I. Castor, A. Szoke, J. Nilsen & H. E. DeWitt, "Solidification and Screening Enhancement in Asymmetric Binary Ionic Mixtures"
- Poster 1.05 Huayang Sun, Jiayu Dai, Dongdong Kang, Jiaolong Zeng & Jianmin Yuan, "Temperature-dependent interatomic potential based on ab initio simulation"
- Poster 1.06 I. M. Saitov, "DFT calculation of plasma frequency and free electron density in dense xenon plasma"
- Poster 1.07 In Gee Kim & Michael S. Murillo, "Quantum Statistical Potentials for Electron-Ion Plasmas in the Random-Phase Approximation"
- Poster 1.08 Jérôme Daligault, "A step towards a kinetic theory of strongly coupled Coulomb systems."
- Poster 1.09 K. N. Dzhumagulova, E. O. Shalenov & T. S. Ramazanov, "Influence of dynamic screening on the scattering cross sections of the particles of the dense semiclassical plasma"
- Poster 1.10 L. G. Stanton & M. S. Murillo, "Impact of Screening and Ionization on Coulomb Coupling in Strongly Coupled Plasmas"
- Poster 1.11 M. T. Gabdullin, T. S. Ramazanov, T. N. Ismagambetova & G. B. Ahtanova, "Thermodynamic Properties of Semiclassical Partially Ionized Hydrogen and Helium Plasmas"

Influence of dynamic screening on the scattering cross sections of the particles of the dense semiclassical plasma

K.N. Dzhumagulova, E.O. Shalenov^(*), T.S. Ramazanov IETP, al-Farabi Kazakh National University, Al-Farabi 71, Almaty 050040, Kazakhstan

In work[1] the effective potential for electron – charge interaction considering both effects of screening and diffraction in the dense semiclassical plasma was presented. The way taking into account of the dynamic screening was proposed in work [2], where the static Debye radius was replaced by the dynamic screening radius:

$$r_o = r_D \left(1 + \frac{v^2}{v_{Th}^2}\right)^{\frac{1}{2}}.$$
(1)

Here v is the relative velocity of the colliding particles, v_{Th} is the thermal velocity of the particles in the system. Then the potential from [1] with dynamic screening can be rewritten as [3]:

$$\Phi_{\alpha\beta}(r) = \frac{Z_{\alpha}Z_{\beta}e^{2}}{\sqrt{1 - 4\lambda_{\alpha\beta}^{2} / (r_{D}^{2}(1 + \delta^{2}))}} \left(\frac{e^{-Br}}{r} - \frac{e^{-Ar}}{r}\right),$$
(2)

where

 $A^{2} = \frac{1}{2D^{2}} \left(1 + \sqrt{1 - 4D_{\alpha\beta}^{2} / (r_{D}^{2}(1 + \delta^{2}))} \right); \qquad B^{2} = \frac{1}{2D^{2}} \left(1 - \sqrt{1 - 4D_{\alpha\beta}^{2} / (r_{D}^{2}(1 + \delta^{2}))} \right);$ $\delta = v / v_{\tau_h}$ is the parameter of the relative velocity of the colliding particles.

In the same way the potential for electron-atom [4] taking into account the effect diffraction and dynamic screening effects has the following form:

$$\Phi_{ea}^{dyn}(r) = -\frac{e^2 \alpha}{2r^4 (1 - 4D_{ea}^2 / r_o^2)} \left(e^{-Br} (1 + Br) - e^{-Ar} (1 + Ar) \right)^2, \tag{3}$$

where, $A^2 = \frac{1}{2D_{ea}^2} \left(1 + \sqrt{1 - 4D_{ea}^2 / r_o^2} \right), \quad B^2 = \frac{1}{2D_{ea}^2} \left(1 - \sqrt{1 - 4D_{ea}^2 / r_o^2} \right), \quad r_o = r_D \left(1 + \frac{v^2}{v_{ea}^2} \right)^{\frac{1}{2}}$

Based on the new dynamic interactions models the scattering cross-sections of the plasma particles were investigated. Quantum mechanical method of phase functions was used for their calculation.

(*) shalenov.erik@mail.ru

^[1] Ramazanov T.S., Dzhumagulova K.N. Effective screened potentials of strongly coupled semiclassical plasma. Physics of Plasmas. 2002.-Vol. 9.- P.3758-3761

^[2] Kremp D., Schalges M., Kraeft W.-D. Quantum Statistics of Nonideal Plasmas, Berlin, Springer, 2005. - 326 p.

^[3] K.N. Dzhumagulova, G.L. Gabdullina, E.O. Shalenov. Dynamic interaction potential and the scattering cross sections of the semiclassical plasma particles. *Physics of Plasmas.* - 2013. -Vol. 20. - P. 042702.

^[4] Ramazanov T.S., Dzhumagulova K.N. and Omarbakiyeva Y.A. Effective polarization interaction potential "charge-atom" for partially ionized dense plasma. Physics of Plasmas. 2005. - Vol.12.- P.092702.