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ABSTRACT 

The aim of the present work is to develop, substantiate, and study a fundamentally new 

method of derivation of composite electrolytic films making it possible to control their 

composition and structure. We assume that, after the termination of the stirring-up of a 

bath containing the electrolyte-suspension with monodisperse spherical particles of the 

same density, a uniform sedimentation space is established. The upper boundary of this 

field will descend with a velocity depending on the dispersity and density of a powder, 

introduced into the electrolyte, and its viscosity. If one places, a horizontal cathode of 

area S in the bath at a certain depth simultaneously with the termination of stirring-up, 

all of the disperse phase situated in the electrolyte above the cathode will deposit on it. 

We substantiate the possibility of obtaining metal composite films with a prescribed 

composition by the method of cut-off of the sedimentation space over a horizontally 

located cathode. We present a calculation scheme and derive a formula which enables 

us to control the composition of the disperse phase in a composite electrolytic coating 

by the cut-off time. The results obtained open up new possibilities for forming the 

structure and, consequently, the properties of metal composite thin-film systems.  
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INTRODUCTION 

According to modern concepts [1-5], the successful formation of composite electrolytic 

thin-film systems is related to the realization of three main stages: the arrival of particles 

of the disperse phase at the cathode surface, trapping (adhesion, sticking, and 

adsorption) of particles on this surface, and covering of particles by the electrol ytically 

deposited metal. The realization of the first stage presents no substantial difficulties and 

can usually be provided with the help of various methods of stirring-up and mixing of 

the electrolyte-suspension (by agitators, bubbling, ultrasound, etc.) [6-12].  

The second stage encounters much more complex problems. Adhesion, sticking, or 

adsorption are practically uncontrollable because a particle of the disperse phase can be 

washed away by the electrolyte flow, by other particles, or because of the Brownian 

motion. An important specific feature of the third phase consists of the fact that, in some 

cases, the ratio between the surface energies of disperse particles and the metal is far 

from optimum [13-17].  As a result, the particle is “pushed out” by the electrolytically 
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deposited metal. To overcome these difficulties, one usually applies a treatment of the 

reinforcing phase with various solutions. 

According to the traditional technology, one carries out electrolytic deposition on a 

vertical cathode. But the concentration of the disperse phase of the coating is 

nonuniform across its thickness (due to gravity) and is uncontrollable [18-21].  The aim 

of the present work is to develop, substantiate, and study a fundamentally new method 

of derivation of composite electrolytic films making it possible to control their 

composition and structure. 

 

MATERIALS AND METHODS  

We assume that, after the termination of the stirring-up of a bath containing the 

electrolyte-suspension with monodisperse spherical particles of the same density, a 

uniform sedimentation space is established. The upper boundary of this field will 

descend with a velocity depending on the dispersity and density of a powder, introduced 

into the electrolyte, and its viscosity. If one places a horizontal cathode of area S in the 

bath at a certain depth H simultaneously with the termination of stirring-up, all of the 

disperse phase situated in the electrolyte above the cathode will deposit on it (Fig. 1a).  

The number of deposited particles is N = n0 S H, where n0 is the concentration of 

particles of the disperse phase in the sedimentation space over the cathode. At the same 

time, if one places the cathode surface horizontally in the sedimentation space not 

immediately after the termination of stirring-up but after a time t0 (“cut-off time”), the 

volume of the sedimentation space will decrease by S h (Fig. 1b), where h is the depth 

of the descent of its upper boundary for the time t0 . In this case, we have 

 

N = n0 S H – n0 S h = n0 S ( H – h ),                                     (1) 

 

or, by taking h = v t0 (where v is the velocity of sedimenting particles),  

 

N = n0 S (H – v t0).                                                  (2) 

 

  This implies that the number of particles N deposited in the course of sedimentation 

depends on the cut-off time t0 , because all the remaining parameters ( n0, S, H, v ) are 

constant. The case where the particles form several layers is not interesting for our 

purposes because these layers, not cemented by the electrolytically deposited metal (due 

to the low deposition velocity of the metal u as compared with v), do not form a strong 

composite coating. Furthermore, upon multilayer screening of the cathode surface by 

particles of the disperse phase, electrolysis is greatly hampered or is terminated entirely. 

Therefore, in what follows, we consider the case where the particles deposited on the 

surface of the horizontal cathode after the cut-off form a discontinuous monolayer.  

 
RESULTS AND DISCUSSION 

We can characterize the discontinuity of such a monolayer of deposited particles on the 

cathode after the cut-off by the continuity factor 0 ≤ k ≤ 1 describing the cathode 

surface covered by a monolayer of particles. Consequently, we can characterize a 

composite electrolytic film with a certain content of disperse particles by the factor k 
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depending on the cut-off time t0. We can determine this time proceeding from the 

following considerations. If  is the averaged cross-section area of the disperse particles 

(σ =  R
2
 if the particle is a sphere of radius R), we have 

  

Nσ = k S,                                                            (3) 

 

where N is the number of particles deposited on the surface of the horizontal cathode 

after the cut-off in the time t0 . Using Eq. (1), we can write  

 

n0 σ S ( H – v t0 ) = k S,                                          (4) 

whence 

 

𝑡0 =
𝑛0𝜎𝐻 − 𝑘

𝑛0𝜎𝑣
. 

 

(5) 

 

Hence, to obtain a zero concentration of particles k = 0, we must make the cut-off after 

a time 

𝑡m =
𝐻

𝑣
. 

 

(6) 

 

 

In this case, only the deposition of metal occurs on the cathode. Each metal is 

characterized by a certain velocity of electrolytic deposition u depending on the 

conditions of electrolysis. One can take these data from reference books or determine 

them experimentally. In order to obtain a high-quality composite electrolytic film, the 

next layer of disperse particles must deposit on the previous one, which is overgrown by 

metal. Otherwise, the coating will not be strong because only the metal can bind 

particles of the disperse phase into a single composition.  

Starting from the velocity of electrolytic deposition of the metal u and the mean 

diameter of particles of the disperse phase  d = √4𝜋/𝜎 (for the sake of simplicity, we 

assume that they are spherical), we can determine the time necessary for overgrowing a 

deposited monolayer of particles: 

 

𝑡1 =
𝑑

𝑢
. 

 

(7) 

  

 

To obtain a composite electrolytic film with a statistically uniform distribution of 

particles across its thickness (Fig. 2a), we must take the overgrowth time t1 to be equal 

to the period of stirring-up of the suspension T minus the stirring-up time t2 , i.e., t1 = T 

– t2. Hence, we obtain 

 

𝑇0 = 𝑡2 + 𝑡1 = 𝑡2 −
𝑑

u
. 

 

(8) 
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Fig. 1. Diagram illustrating a cut-off of the sedimentation space over the cathode 

simultaneously with the termination of stirring-up (a) and after a certain time t0 (b). 

 

 

 

 
Fig. 2. Scheme of variants of a quasiuniform distribution of disperse particles in a 

composite electrolytic film: (a) quasiuniformly over the whole volume of a composite 

electrolytic film, (b) layerwise 
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This formula enables us to calculate the minimal admissible value of the stirring-up 

period for the given particle sizes and velocity u. If T > t2 + t1 , the composite 

electrolytic film will be layered (Fig. 2b). In this case, it is possible to change the 

distance between layers according to the experimenter’s wish. 

If the given thickness of a metal layer is equal to L, the time of its production is  

 

t = L / u.    (9) 

 

 

Using different ratios between the stirring-up periods, we can obtain various alternations 

of compositions. For example, in the case of double alternation 

 

 

   

 (10) 

 

we can create a composition consisting of two layers of the disperse phase divided by a 

metal layer of thickness L (Fig. 2b). If necessary, we can deposit a composite 

electrolytic film with a variable concentration of the disperse phase across its thickness, 

e.g., with an increase or, vice versa, a decrease in the content of disperse particles while 

approaching the coating surface (Fig. 3a, b). We see from (2) that, to obtain such 

coatings, it is necessary to calculate the cut-off time for the required particle distribution 

in the composite electrolytic film 

 

 

 

Fig. 3. Scheme of variants of the distribution of the disperse phase across the thickness 

of a composite electrolytic film with an increasing (a) and a decreasing (b) particle 

concentration. 
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CONCLUSIONS 

The developed mathematical model makes possible to obtain  given distribution 

of  disperse phase in electrolytic coating. Thus, we can by method of “cutting off” the 

sedimentation space above  horizontal cathode regulate  coating structure, and, 

consequently, functional properties. 

 To obtain special functional properties, a subsequent thermal exposure is 

recommended. High temperature will promote formation of layers with a heterogeneous 

structure. The alternation of structured and pure metal layers provides possibility of 

wide range functional properties obtaining.  

Thus, it is easy to predict the deposition of a composite electrolytic film by the 

method of cut-off of the sedimentation space over the cathode by means of simple 

calculations. They enable one to obtain a wide variety of compositions only in the case 

of a  quasiuniform distribution of disperse particles over the whole volume with 

electrolytic deposition or over the layer along the surface under deposition. 
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