Al-Farabi Kazakh National University, Kazakhstan Research Institute of Mathematics and Mechanics, Kazakhstan
 Institute of Computational Mathematics and Mathematical Geophysics SB RAS, Russia
 Novosibirsk State University, Russia Shanghai University of Finance and Economics, China Tianjin University of Finance and Economics, China Chinese Mathematical Society
 hold an
 International Conference

 INVERSE PROBLEMS IN

 INVERSE PROBLEMS IN

 FINANCE, Economics AND LIFE

 FINANCE, Economics AND LIFE SCIENCES

 SCIENCES}

Almaty, Kazakhstan, December 26-28, 2017.

Content

ON THE DIRECT AND INVERSE PROBLEM OF THE THEORY OF FILTRATION ON SPECIFICATION OF TECHNOLOGICAL INDICATORS

Mukhambetzhanov S.T. ${ }^{1}$, Abdiakhmetova Z.M. ${ }^{2}$, Shazhdekeeva N.K. ${ }^{1}$

${ }^{1}$ Atyrau State University named after Kh.Dosmukhamedov; ${ }^{2}$ al Farabi Kazakh National University, Almaty
${ }^{2}$ zukhra.abdiakhmetova@gmail.com
The work is devoted to the investigation of the problem of pressure refinement in the areas of power supply and unloading and identification of technological indicators in the near-well zone of the formation. Concentration of transfer of individual components can be described by the equation of convective diffusion

$$
\begin{equation*}
m S_{r} \frac{\partial C_{r}}{\partial t}+\stackrel{\rho}{v_{r}} \nabla C_{r}-D_{r} \nabla^{2} C_{r}=0 \tag{1}
\end{equation*}
$$

D_{r} - coefficient of dispersion, calculated by the formula

$$
\begin{equation*}
D_{r}=D_{0}\left[\frac{1}{F^{*} m}+0.5 \frac{\vec{U}_{r} d_{p} \sigma}{m D_{0}}\right]^{n} ; \stackrel{\rho}{U_{r}}=-\frac{K_{r}(x, y)}{\mu_{r}} \nabla P_{r} \tag{2}
\end{equation*}
$$

The filtration of a multicomponent mixture is described by a system of equations

$$
\begin{gather*}
\operatorname{div} \rho_{r} h \stackrel{\rho}{U}_{r}+m h S_{r} \frac{\partial \rho_{r}}{\partial t}+q_{r}=0 \tag{3}\\
\operatorname{div} \rho_{r} h C_{i} h \stackrel{\rho}{U_{r}}+m h S_{r} \frac{\partial \rho_{r} C_{i}}{\partial t}+q_{r} C_{i}=0 ; i=1, n ; \rho_{r}=\rho_{0} \frac{\rho_{r} T_{0}}{\rho_{0} T_{z}} \tag{4}\\
\sum_{i=1}^{n} C_{i}=1 \tag{5}
\end{gather*}
$$

The initial conditions are

$$
\begin{equation*}
T=T_{0} ; p_{r}=p_{0}(x, y, t) ; C_{i}=C_{i 0}(x, y, t) ; i=i, n-1 \tag{6}
\end{equation*}
$$

The boundary conditions are as follows

$$
\begin{equation*}
F(x, y)=0 ; f\left(p_{r} \frac{\partial P_{r}}{\partial n}, x, y, t\right)=0 ; C_{i}=C_{i r}(x, y, t)=0 ; i=1, n-1 \tag{7}
\end{equation*}
$$

The direct problem of convective diffusion consists in finding functions P_{r} and C_{i}, satisfying equations (4) - (5), the initial conditions, the boundary conditions. The functions $q_{r}(x, y, t)$, $k_{r}(x, y), m(x, y)$ and $h(x, y)$ are assumed to be given. The inverse problem for convective diffusion can be in determining the parameters $k_{r}, \mathrm{~m}$ and h satisfying equations (4) - (11) if the data are known $P_{r}(x, y, t)$ and $C_{i}(x, y, t)$ in a certain part of the filtration area at certain points in time. Numerical experiments with real data were carried out.

