КАЗАХСКИЙ НАЦИОНАЛЬНЫЙ УНИВЕРСИТЕТ им. аль-Фараби

Факультет физико-технический

Образовательная программа по специальности 5В072300 - Техническая физика

Утверждено

на заседании Ученого совета Физико-технического факультета Протокол № 6 от 27 июня 2014 г.

Декан факультета

А. Е. Давлетов

СИЛЛАБУС

Полупроводниковые приборы

3 курс, р/о, семестр осенний, 3 кредита

Лектор (лекции, семинары, лабораторные работы, СРС):

Мигунова Анастасия Анатольевна, старший преподаватель КФТТиНФ

Телефон: 3773412 (КФТТиНФ), моб. 87054433515

e-mail: anastassiya.migunova@gmail.com

каб. 528, 349

Цель и задачи дисциплины

Цель: Изучить физические процессы в полупроводниковых приборах и принципы работы в электронных схемах.

Задачи: Приобретение базовых знаний по основным типам электронных приборов, использующих в работе различные поверхностные и контактные явления в полупроводниках, эффекты в электромагнитных полях, при различных температурах и уровнях освещенности, функционирующих в цепях постоянного и переменного тока.

Компетенции (результаты обучения): Ознакомление с технологическими методами формирования полупроводниковых кристаллов, областей с разным типом проводимости и уровнем легирования. Умение измерять и рассчитывать параметры полупроводниковых приборов и материалов.

Пререквизиты: «Физика конденсированного состояния», «Полупроводниковые материалы», «Основы нанотехнологий», «Нанотехнологии в материаловедении», «Физические свойства материалов», «Физическое материаловедение», «Технологические процессы производств материалов».

Постреквизиты: Знания и навыки проведения расчетов, полученные в предлагаемой дисциплине, необходимы при подготовке дипломных работ.

СТРУКТУРА И СОДЕРЖАНИЕ ДИСЦИПЛИНЫ

He-		Кол-	Макси-	
де-	Название темы	во	мальный	
ЛЯ		часов	балл	
Модуль 1 - Твердотельная электроника. Барьерные структуры, их характеристики,				
разновидности и методы формирования				
1	Лекция 1. Барьер Шоттки. Энергетическая диаграмма и вольт-	1	0	

амперная характеристика (ВАХ) контакта. Диоды Шоттки		
	4	
Семинар 1. Расчет диодов Шоттки: контактной разности	1	8
потенциалов, ширины области пространственного заряда в		
термодинамическом равновесии и с приложенным прямым и		
обратным напряжением		
Лабораторная работа 1. Выращивание монокристаллов из расплава	2	5
методом направленной кристаллизации (метод Бриджмена-		
Стокбаргера)		
СРСП 1. Диффузионная и диодная теории выпрямления	1	2
2 Лекция 2. Электронно-дырочный (<i>p-n</i>) переход. Параметры	1	0
перехода. Энергетическая диаграмма и ВАХ		
Семинар 2. Расчет <i>p-n</i> перехода: ширины области	1	8
пространственного заряда и контактной разности потенциалов с		
приложенным напряжением обеих полярностей и в		
термодинамическом (ТД) равновесии		
Лабораторная работа 2. Выращивание монокристаллов по методу	2	5
Чохральского		Č
СРСП 2. Прямое и обратное включение p - n перехода. Квазиуровни	1	2
Ферми и компоненты тока. Факторы, влияющие на ВАХ p - n	1	2
перехода		
-	1	0
, <u>1 1 / </u>	-	
Семинар 3. Расчет гетероперехода при ТД равновесии, построение	1	8
зонной диаграммы		
Лабораторная работа 3. Выращивание монокристаллов ZnO	2	5
гидротермальным способом на подложках CuO		
СРСП 3. Выращивание вискеров по ПЖК-механизму	1	2
4 Лекция 4. Диффузионный метод формирования <i>p-n</i> переходов	1	0
Семинар 4. Прямая задача: определение глубины залегания <i>p-n</i>	1	8
перехода и концентрационного профиля при загонке и разгонке		
примеси по заданным параметрам диффузии.		
Лабораторная работа 4. Обратная задача: подобрать время и	2	5
температуру диффузии для требуемого профиля и глубины		
перехода		
СРСП 4. Ионная имплантация	1	2
5 Лекция 5. Физика поверхности полупроводников и МДП-	1	0
структуры		
Семинар 5. Расчет n -канального МДП-транзистора с Al-затвором.	1	8
Определение состояния поверхности, изгиба зон для конкретного		Ü
поверхностного потенциала, плотности пространственного заряда		
и емкости ОПЗ		
Лабораторная работа 5. Определение концентрации примесей и	2	5
параметров р-п переходов из измерений вольт-фарадных	2	3
характеристик		
СРСП 5. Планарная технология. Процессы литографии	1	2
		<u> </u>
Модуль 2 - Полупроводниковые диоды и явления в сильны		0
6 Лекция 6. Диффузионная и барьерная емкости <i>p-n</i> перехода.	1	U
Варикапы. Стабилитроны.	1	Ω
Семинар 6. Определение концентрации примесей и параметров <i>p-n</i>	1	8
переходов из измерений вольт-фарадных характеристик		
Лабораторная работа 6. Измерение BAX стабилитронов КС133A и	2	5
Д818А		
СРСП 6. Явления, происходящие при различных видах пробоя p - n	1	0

	перехода		
7	Лекция 7. Туннельные диоды. Объяснение принципа работы с	1	0
	помощью зонных диаграмм и ВАХ	1	U
	Семинар 7. Расчет туннельного диода	1	7
	СРСП 7. Эффект Зинера	1	3
	1 Рубежный контроль	0	100
		2	100
	Промежуточный экзамен	Z	100
8	Помиля О Пиоми Голиго	1	0
0	Лекция 8. Диоды Ганна	1	0
	Семинар 8. Расчет диодов Ганна на основе GaN и GaAs	1	7
	Лабораторная работа 8. Определение температурной зависимости	2	4
	проводимости халькогенидных пленок	1	
0	СРСП 8. Лавинно-пролетные диоды	1	2
9	Лекция 9. Эффект Холла	1	0
	Семинар 9. Расчет транспортных характеристик, концентрации и	1	7
	удельного сопротивления эпитаксиальных высоколегированных		
	пленок		
	Лабораторная работа 9. Определение параметров	2	4
	полупроводниковых материалов на установке измерения		
	характеристик эффекта Холла - Hall effect measurement system		
	НМS-3000 по методу Ван-дер-Пау		
	СРСП 9. Датчики магнитного поля (датчики Холла).	1	2
	Полупроводниковые датчики деформации (тензодатчики)		
	Модуль 3 - Приборы с двумя и более переходами		
10	Лекция 10. Биполярные транзисторы. Основные характеристики.	1	0
Ì	Схемы с общей базой, общим эмиттером и общим коллектором		
	Семинар 10. Расчет малосигнальных параметров 2Т312Б	1	7
	Лабораторная работа 10. Определение оптических характеристик	2	4
	аморфного кремния по спектрам пропускания, измеренным на		
	спектрофотометре Lambda 35 (PerkinElmer, США)		
	СРСП 10. Режимы включения и дифференциальные параметры БТ	1	2
11	Лекция 11. Полевые транзисторы. Униполярная проводимость.	1	0
	Схемы включения полевых транзисторов		
	Семинар 11. Решение задач на определение параметров полевых	1	7
	транзисторов и ПЗС-матриц		
	Лабораторная работа 11. Изучение фотопроводимости	2	4
	полупроводников и определение времени жизни		
	фотогенерированных носителей заряда		
	СРСП 11. Тиристоры	1	2
	Модуль 4 - Оптоэлектронные приборы		
12	Лекция 12. Твердотельные лазеры, основные характеристики	1	0
	лазеров (длина волны, длительность импульсов, расходимость		
	пучка, поляризация, мощность излучения, добротность, КПД,		
	способы накачки, собственные частоты резонаторов). Схемы		
	энергетических уровней рубинового лазера		
	Семинар 12. Расчет параметров рубинового, Ti:Sa, Nd:YAG-	1	7
	лазеров		
	Лабораторная работа 12. Фотолюминесценция и	2	4
	электролюминесценция полупроводников: измерения на		
	флуоресцентном спектрофотометре Cary Eclypse (Agilent		
	Technologies, США), определение ширины запрещенной зоны CdS		
	-экрана, пористого кремния, светодиодов типа АЛ102 красного и		
	-экрана, пористого кремния, светодиодов типа АЛ102 красного и		

зеленого свечения		
СРСП 12. Лазерное усиление и генерация (инжекция носителей	1	2
заряда, порог инверсии, понятие положительной обратной связи,	1	_
образование «фотонной лавины»)		
13 Лекция 13. Фотодетекторы: фоторезисторы, фотодиоды,	1	0
фототранзисторы. Оптопары		
Семинар 13. Расчет фоторезистора и лавинного фотодиода	1	7
Лабораторная работа 13. Изучение оптического поглощения	2	4
полупроводников. Расчет ширины запрещенной зоны по спектрам		
пропускания и отражения, измеренных на спектрофотометре UV		
3600 (Shimadzu, Япония)		
СРСП 13. Оптические характеристики светоизлучающих диодов	1	2
(СИД): мощность, внутренний и внешний квантовый выход, КПД,		
спектр излучения, индикатрисы рассеяния		
14 Лекция 14. Фотовольтаика. Солнечные элементы. Принцип работы.	1	0
Основные характеристики. Энергетические диаграммы и ВАХ		
фотоэлементов		
Семинар 14. Расчет параметров СЭ по ВАХ: определение	1	7
напряжения холостого хода и тока короткого замыкания,		
коэффициента заполнения ВАХ, КПД, последовательного и		
шунтирующего сопротивлений		
Лабораторная работа 14. Изучение спектральных характеристик	2	4
фотоприемников (солнечных элементов)		
СРСП 14. Понятия спектральной характеристики СЭ,	1	2
коэффициента собирания, монохроматической токовой		
чувствительности, внутреннего и внешнего квантового выхода СЭ		
Контрольная работа	1	9
2 Рубежный контроль	0	100
Экзамен	2	100
ВСЕГО		100

Итоговая оценка по дисциплине = $\frac{PK1 + PK2}{2} \cdot 0.6 + 0.1MT + 0.3ИK$

Здесь РК1, РК2 – оценки рубежного контроля (сумма оценок текущего контроля), МТ – оценка за Midterm Exam; ИК – оценка итогового контроля (экзамен во время сессии). Итоговая оценка по дисциплине рассчитывается и округляется в системе «Универ» автоматически.

На одной неделе допускается выставление не более 50 баллов по одной дисциплине.

СПИСОК ЛИТЕРАТУРЫ

Основная:

- 1 Гуртов В.А. Твердотельная электроника. М.: Техносфера. 2005. 408 с.
- 2 Шалимова К. В. Физика полупроводников. М.: Энергоатомиздат. 1985. 392 с.
- 3 Пасынков В.В., Чиркин Л.К. Полупроводниковые приборы. СПб: Лань. 2002. 480 с.
- 4 Зи С. Физика полупроводниковых приборов. М.: Мир. 1984. 912 с.
- 5 Гаман В.И. Физика полупроводниковых приборов. Уч. пособие. Томск: Издат-во НТЛ, $2000.-426~\mathrm{c}.$
- 6 Викулин И.М., Стафеев В.И. Физика полупроводниковых приборов. М.: Советское радио, 1980. 296 с.
- 7 Степаненко И. П. Основы микроэлектроники. М. 2001. 488 с.
- 8 Шарупич Л. С., Тугов Н. М. Оптоэлектроника. М.: Энергоатомиздат. 1984. 256 с.

- 9 Зеегер К. Физика полупроводников. М.: Мир. 1977. 615 с.
- 10 Зиненко В.И., Сорокин Б.П., Турчин П.П. Основы физики твердого тела. М.: Физматлит. 2000. 332 с.
- 11 Ефимов И. Е., Козырь И.Я. Основы микроэлектроники. 2008. 384 с.
- 12 Старосельский В.И. Физика полупроводниковых приборов микроэлектроники. –
- 13 Верещагин И.К., Кокин В.А. и др. Физика твердого тела. М.: Вш. шк. 2001. 237 с.
- 14 Займан Д. Принципы теории твердого тела. М.: Мир. 1974. 468 с.
- 15 Бонч-Бруевич В.Л., Калашников С.Г. Физика полупроводников. М.: Наука. 1977. –
- 16 Горбачев В.В., Спицына Л.Г. Физика полупроводников и металлов. «Металлургия», $1982. 336 \, \mathrm{c}$.

Дополнительная:

- 1 Пичугин И.Г., Таиров Ю.М. Технология полупроводниковых приборов. М.: ВШ. 1984. 288 с.
- 2 Курносов А. И., Юдин В. В. Технология производства полупроводниковых приборов и интегральных микросхем. М.: ВШ. 1986. 368 с.
- 3 Епифанов Г. И. Физика твердого тела. М.: ВШ. 1977. 288 с.
- 4 Овечкин Ю. А. Микроэлектроника. М.: Радио и связь. 1982. 288 с.
- 5 Родерик Э. Х. Контакты металл-полупроводник. М.: Радио и связь. 1982. 208 с.
- 6 Хакен Х. Квантовая теория твердого тела. М.: Наука. 1980. 344 с.
- 7 Давыдов А. С. Теория твердого тела. M.: Hayка. 1976. 637 с.
- 8 Петухов В.М. Полупроводниковые приборы. Транзисторы. –
- 9 Гитцевич, А. А. Зайцев, В. В. и др. Полупроводниковые приборы. Диоды выпрямительные. Стабилитроны. Тиристор. –
- 10 Гитцевич, А. А. Зайцев, В. В. и др. Полупроводниковые приборы. Диоды высокочастотные. Диоды импульсные. Оптоэлектронные приборы.
- 11 Горюнов Н. Н. Полупроводниковые приборы: Транзисторы. М.: Энергоатомиздат. 1985. с.
- 12 Николаевский И. Ф., Игумнов Д. В. Параметры и предельные режимы работы транзисторов. М.: Советское радио. 1971. 384 с.

АКАДЕМИЧЕСКАЯ ПОЛИТИКА КУРСА

Все виды работ необходимо выполнять и защищать в указанные сроки. Студенты, не сдавшие очередное задание или получившие за его выполнение менее 50% баллов, имеют возможность отработать указанное задание по дополнительному графику. Студенты, пропустившие лабораторные занятия по уважительной причине, отрабатывают их в дополнительное время в присутствии лаборанта, после допуска преподавателя. Студенты, не выполнившие все виды работ, к экзамену не допускаются. Кроме того, при оценке учитывается активность и посещаемость студентов во время занятий.

Будьте толерантны, уважайте чужое мнение. Возражения формулируйте в корректной форме. Плагиат и другие формы нечестной работы недопустимы. Недопустимы подсказывание и списывание во время сдачи СРС, промежуточного контроля и финального экзамена, копирование решенных задач другими лицами, сдача экзамена за другого студента. Студент, уличенный в фальсификации любой информации курса, несанкционированном доступе в Интранет, пользовании шпаргалками, получит итоговую оценку «F».

За консультациями по выполнению самостоятельных работ (СРС), их сдачей и защитой, а также за дополнительной информацией по пройденному материалу и всеми

другими возникающими вопросами по читаемому курсу обращайтесь к преподавателю в период его офис-часов.

Оценка по буквенной системе	Цифровой эквивалент баллов	%-ное содержание	Оценка по традиционной системе
A	4,0	95-100	Отлично
A-	3,67	90-94	0
B+	3,33	85-89	Хорошо
В	3,0	80-84	†
B-	2,67	75-79	
C+	2,33	70-74	Удовлетворительно
С	2,0	65-69	1
C-	1,67	60-64	1
D+	1,33	55-59	1
D-	1,0	50-54	1
F	0	0-49	Неудовлетворительно
I	-	-	«Дисциплина не завершена»
(Incomplete)			(не учитывается при вычислении <i>GPA</i>)
P	-	-	«Зачтено»
(Pass)			(не учитывается при вычислении GPA)
NP	-	-	«Не зачтено»
(No Pass)			(не учитывается при вычислении <i>GPA</i>)
W	=	=	«Отказ от дисциплины»
(Withdrawal)			(не учитывается при вычислении <i>GPA</i>)
AW			Снятие с дисциплины по академическим
(Academic Withdrawal)			причинам
			(не учитывается при вычислении <i>GPA</i>)
AU	-	-	«Дисциплина прослушана»
(Audit)			(не учитывается при вычислении GPA)
Атт.		30-60	Аттестован
		50-100	
Не атт.		0-29	Не аттестован
		0-49	_
R (Retake)	=	=	Повторное изучение дисциплины

Рассмотрено на заседании кафедры протокол № 36 от 10.06.14.

Зав. кафедрой, профессор

О. Ю. Приходько

Лектор

А. А. Мигунова