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Optimal control problem for the three-sector economic
model of a cluster

Zainel Murzabekov, Shamshi Aipanov and Saltanat Usubalieva

Research Institute for Mathematics and Mechanics, Al-Farabi Kazakh National University, Almaty, Kazakhstan

Abstract. The problem of optimal control for the three-sector economic model of a cluster is considered. Task statement is
to determine the optimal distribution of investment and manpower in moving the system from a given initial state to desired
final state. To solve the optimal control problem with finite-horizon planning, in case of fixed ends of trajectories, with box
constraints, the method of Lagrange multipliers of a special type is used. This approach allows to represent the desired control
in the form of synthesis control, depending on state of the system and current time. The results of numerical calculations for
an instance of three-sector model of the economy show the effectiveness of the proposed method.
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INTRODUCTION

Problems of optimal control for dynamic systems with fixed ends of trajectories are often used in practical applications.
The essence of these problems is to move the system from a given initial state to the desired final state in a finite time
interval, while minimizing control costs. Various mathematical formulations of optimal control problems and their
classification are given in [1, 2]. Optimal control problems can be solved by using Pontryagin’s principle of maximum
[3], Bellman’s dynamic programming method [4] or Krotov’s sufficient optimality conditions [5].

It should be noted that the main feature of the optimal control problem considered in this paper, is that trajectories
of the system must pass through given points at the initial and final moments of time (i. e. left and right ends of
trajectories are fixed). The task is to construct a synthesized control on a finite time interval taking into account the
control value constraints.

This approach is used to solve the problem of optimal distribution of investment and manpower in a three-sector
economic model of a cluster [6, 7]. In contrast to [8], where optimal control problems on an infinite-horizon are set
out, we consider here a fixed time interval. Using mathematical modeling and optimal control theory allows to create
a competitive cluster structure [9–11].

OPTIMAL CONTROL PROBLEM

We consider the control system described by the differential equation of the form

ẋ(t) = A(t)x(t)+B(t)u(t), (t0 ≤ t ≤ T ) (1)

with the given initial and final states
x(t0) = x0, (2)

x(T ) = 0, (3)

and the following box constraints on control

α(t)≤ u(t)≤ β (t), (t0 ≤ t ≤ T ), (4)

where x(t) is n-vector of the object state, u(t) is a m-vector of piecewise continuous controls, A(t), B(t) are matrices
of dimensions (n× n), (n×m), respectively (elements of these matrices are continuous functions), α(t), β (t) are
piecewise continuous m-vector functions. The dynamics of this system is considered in the time interval [t0,T ], where
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t0 and T are known initial and final moments of time. It is assumed that system (1) is completely controllable at time
t0.

Suppose given a quadratic objective functional of type

J(u) =
1
2

T∫
t0

[x′(t)Q(t)x(t)+u′(t)R(t)u(t)]dt, (5)

where Q(t) is a positive semidefinite (n×n)-matrix; R(t) is a positive definite (m×m)-matrix.
Problem. It is required to find the synthesizing control u(t) = u(x(t), t) that satisfies the box constraints (4) and

brings the system (1) from a given initial state (2) to final state (3) (the origin) within the fixed interval of time [t0,T ],
minimizing the functional (5). A method of Lagrange multipliers of special type is used to solve problem (1)-(5), it
allows to represent the optimal control as a sum of feedback and programmed controls [12].

ALGORITHM FOR SOLVING THE PROBLEM

To find the optimal trajectory of the system movement and optimal control for problem (1)-(5) we use the following
algorithm.

1. Integrate the following system of differential equations in the interval [t0,T ]:

K̇(t) =−A′(t)K(t)−K(t)A(t)+K(t)S(t)K(t)−Q(t), K(T ) = KT , (6)

Ẇ (t,T ) = [A(t)−S(t)K(t)]W (t,T )+W (t,T )[A(t)−S(t)K(t)]′−S(t), W (T,T ) = 0, (7)

where KT is an arbitrary positive semidefinite matrix; S(t) = B(t)R−1(t)B′(t). As a result of system (6), (7) integration
the matrices K0 = K(t0) and W0 =W (t0) are determined, and as well the vector

q0 =W−1
0 x0. (8)

2. Integrate the following system of differential equations in the interval [t0,T ]:

K̇(t) =−A′(t)K(t)−K(t)A(t)+K(t)S(t)K(t)−Q(t), K(t0) = K0,

Ẇ (t,T ) = [A(t)−S(t)K(t)]W (t,T )+W (t,T )[A(t)−S(t)K(t)]′−S(t), W (t0,T ) =W0,

ẋ(t) = [A(t)−S(t)K(t)]x(t)+B(t)φ(x(t), t)−S(t)q(t), x(t0) = x0,

q̇(t) =−[A(t)−S(t)K(t)]′−1(t,T )B(t)φ(x(t), t), q(t0) = q0.

(9)

The choice of a vector q0 in the initial condition q(t0) = q0 in form (8) ensures that the terminal condition x(T ) = 0
(3) is satisfied. Solution x(t) obtained from (9) corresponds to the desired optimal trajectory of the system.

Function φ(t) in the process of integration is calculated by the formula

φ(x(t), t) = R−1(t)[λ1(x(t), t)−λ2(x(t), t)],

where
λ1(x(t), t) = R(t)max{0;α(t)−ω(x(t), t)}, λ2(x(t), t) = R(t)max{0;ω(x(t), t)−β (t)}
ω(x(t), t) =−R−1B′(t)[K(t)x(t)+q(t)].

Finally, the optimal control u(t) is defined as u(x(t), t) = ω(x(t), t)+φ(x(t), t).
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THREE-SECTOR ECONOMIC MODEL OF A CLUSTER

As an example, consider the optimal control problem for the three-sector economy model consisting of material sector
(i = 0), capital generating sector (i = 1), and consumer sector (i = 2). It is assumed that in each sector produced
its aggregate product: material sector–objects of labor (fuel, electricity, raw and other materials), capital generating
sector–means of labor (machines, equipment and industrial buildings, etc.); consumer sector–consumer goods.

Let the amount of production output in each i-th sector is described by the Cobb–Douglas functions [6]

Xi = Fi(Ki,Li) = AiK
αi
i L1−αi

i , (i = 0, 1, 2), (10)

where Xi is a production output, Ki is an investment capital, Li is a number of employees, αi is an elasticity coefficient
of funds, (1−αi) is an elasticity coefficient of labour.

The dynamics of fixed assets can be described by the following differential equations

K̇i =−µiKi + Ii, Ki(0) = K0
i , (i = 0, 1, 2), (11)

where µi is a proportion of withdrawn fixed assets, Ii is an investment.
We have the following balance equations:

X1 = I0 + I1 + I2,
L = L0 +L1 +L2,

X0 = β0X0 +β1X1 +β2X2,
(12)

where L = L0eνt is a labour resources, ν is an annual growth rate of employees; βi is a direct material costs per output
unit of i-th sector (i = 0, 1, 2).

We will use the following notation: si = Ii/X1 is share of sectors in investment resource distribution, θi = Li/L is
share of sectors in workforce distribution, ki = Ki/Li is sectors’ capital-labour ratio, fi(ki) = Xi/Li = Aik

αi
i is labour

productivity of i-th sector, xi =Xi/L= θi fi(ki), λi = µi+ν , (i= 0, 1, 2). Using this notation, the three-sector economic
model of a cluster (10-(12) can be described as the system of six differential and algebraic equations [13]:

k̇i = −λiki +(si/θi)x1, ki(0) = ki(0) = k0
i , λi > 0, (i = 0, 1, 2), (13)

xi = θiAik
αi
i , Ai > 0, 0 < αi < 1, (i = 0, 1, 2),

and plus three balance equations

s0 + s1 + s2 = 1, s0 ≥ 0, s1 ≥ 0, s2 ≥ 0,

θ0 +θ1 +θ2 = 1, θ0 ≥ 0, θ1 ≥ 0, θ2 ≥ 0,

(1−β0)x0 = β1x1 +β2x2, β0 ≥ 0, β1 ≥ 0. β2 ≥ 0.

(14)

The system’s state is described by the vector (k0,k1,k2), and (s0,s1,s2,θ0,θ1,θ2) is a control vector. The initial state of
the system is (k0

0,k
0
1,k

0
2), where k0

i is a capital-labour ratio of i-th sector at t = 0. We’ll consider the problem of moving
the system into the state (k∗0,k

∗
1,k

∗
2) within the time interval [0,T ]. As a desired final state we choose the steady state

of the system, which can be determined by equating to zero the right sides of differential equations (13):

k∗1 =
( s1A1

λ1

) 1
1−α1 , k∗0 =

s0θ1A1(k∗1)
α1

λ0θ0
, k∗2 =

s2θ1A1(k∗1)
α1

λ2θ2
. (15)

The values of capital-labor ratios k∗i , (i= 0, 1, 2) in the steady state (15) depend on controls (s0,s1,s2,θ0,θ1,θ2), which
optimal values (s∗0,s

∗
1,s

∗
2,θ ∗

0 ,θ ∗
1 ,θ ∗

2 ) can be determined by solving a nonlinear programming problem to maximize a
specific consumption (x2 → max) [12]. It should be noted that balanced growth of all three sectors is provided in the
equilibrium state of system (15), where the production output will increase with the equal annual growth rate ν .

Using three balance ratios (14), we reduce the task to a problem with three controls denoted as (s1,ν2,θ1). Let’s
write the system of differential equations (13) using deviations from the steady state of the system

ẏi = fi(y,u), yi(0) = y0
i , (i = 1, 2, 3), (16)
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where y1 = k0 − k∗0, y2 = k1 − k∗1, y3 = k2 − k∗2, u1 = s1 − s∗1, u2 = ν2 −ν∗
2 , u3 = θ1 −θ ∗

1 , and

f1(y,u) = −λ0(y1 + k∗1)+
(u2 +ν∗

2 )(1−u1 − s∗1)A1(y2 + k∗1)
α1 [(1−β0)A0(y1 + k∗0)

α0 +β2A2(y3 + k∗2)
α2 ]

β1A1(y2 + k∗1)
α1 +β2

[
(u3 +θ ∗

1 )
−1 −1

]
A2(y3 + k∗2)

α2
,

f2(y,u) = −λ1(y2 + k∗1)+(u1 + s∗1)A1(y2 + k∗1)
α1 ,

f3(y,u) = −λ2(y3 + k∗2)+
(1−u2 −ν∗

2 )(1−u1 − s∗1)A1(y2 + k∗1)
α1 [(1−β0)A0(y1 + k∗0)

α0 +β2A2(y3 + k∗2)
α2 ]

(1−β0)
[
(u3 +θ ∗

1 )
−1 −1

]
A0(y1 + k∗0)

α0 −β1A1(y2 + k∗1)
α1

.

Here y = (y1,y2,y3)
′ means the object’s state vector, u = (u1,u2,u3)

′ is a control vector. Linearizing the system (16),
we obtain the vector differential equation of the form

ẏ(t) = Ay(t)+Bu(t), y(0) = y0, (0 ≤ t ≤ T ), (17)

where the elements of matrices A =∥ ai j ∥3×3 and B =∥ bi j ∥3×3 are defined by the formulas

ai j =
∂ fi(y,u)

∂y j
, ai j =

∂ fi(y,u)
∂u j

, (i, j = 1, 2, 3)

at y = (0,0,0)′ and u = (0,0,0)′.
The initial and final states of the system are given as

y(0) = y0, y(T ) = 0. (18)

Note that the desired final state of the system is a steady state y(T ) = 0, where the specific consumption is maximal.
The control vector components satisfy to box constraints of the following form

−s∗1 ≤ u1 ≤ 1− s∗1, −ν∗
2 ≤ u2 ≤ 1−ν∗

2 , −θ ∗
1 ≤ u3 ≤ 1−θ ∗

1 (19)

which are obtained from the original constraints: 0 ≤ s1 ≤ 1, 0 ≤ ν2 ≤ 1, 0 ≤ θ1 ≤ 1.
Let’s consider the following optimal control problem: find a control that brings system (17) from a given initial state

y(0) = y0 to the steady state y(T ) = 0 within the finite time interval [0,T ], minimizing the objective functional

J(u) =
1
2

T∫
0

[y′(t)Qy(t)+u′(t)Ru(t)]dt, (20)

where Q and R are positive semidefinite and positive definite (3×3)-matrices, respectively.
We consider the linear-quadratic problem (LQ-problem) for the system with fixed ends of trajectories: y(0) = y0,

y(T ) = 0, i.e. the optimal trajectory must pass through these two points. In addition, there are box constraints (19)
on the control values. Note that the proposed method of solving the LQ-problem (17)-(20) allows to find the optimal
control in the form of synthesizing control u = u(y, t), that depends on the state of system y and the current time t.

As a result of solving the nonlinear programming problem in order to maximize the spesific consumption, the
following values of controls were obtained:

s∗0 = 0.2763, s∗1 = 0.4476, s∗2 = 0.2761, θ ∗
0 = 0.3944, θ ∗

1 = 0.2562, θ ∗
2 = 0.3494,

and the capital-labor ratios were calculated using the formulas (15)

k∗0 = 966.44, k∗1 = 2410.15, k∗2 = 1090.12.

Further calculations were carried to find a numerical solution of optimal control problem (17)-(20) with initial
conditions y1(0) = −80, y2(0) = −560, y3(0) = −70 and planning horizon T = 10. The results of numerical
calculations are shown in Figures. 1, 2.

As it is seen in Figure 1, the found control brings the system to the steady state y(T ) = 0 at the final time moment
T . The control belongs to the boundary of domain U defined by the inequalities (19) during time interval [0, t1] and
locates inside of U in time interval (t1,T ] (see Figure 2), where t1 ≈ 0.68.
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FIGURE 1. Graph of the optimal trajectories

FIGURE 2. Graph of the optimal control

CONCLUSIONS

This work considers the three-sector economic model of a cluster, which can be described by a system of differential
and algebraic equations, and balance ratios. The problem of finding the optimal control, which moves the system from
a given initial state to desired final state within the fixed time interval. As the final state of the system is selected the
steady state, where the labor productivity in the second sector (commodities sector) is maximal.

The peculiarities of the problem are: it is solved for the finite time interval; the left and right ends of trajectories are
fixed; there are constraints on the control values; the synthesizing control depending on the state of the object and the
current time is searched. The problem is solved using the Lagrange multipliers of special type. That allows to represent
the required optimal control as sum of control with feedback and programming control . A numerical example shows
that the obtained control brings the system to the steady state with good enough accuracy; the values obtained in the
numerical calculations are: y1(T )≈ 0.475 ·10−3, y2(T )≈ 0.112 ·10−3, y3(T )≈−0.159 ·10−3.
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