23rd Europhysics Conference on Atomic and Molecular Physics of Ionized Gases

Proceedings

July 12-16, 2016 Bratislava, Slovakia

1. Atomic and molecular processes in plasmas

GL3	Nadia Balucani	The reactions of atomic oxygen with alkenes and alkynes: primary products, branching ratios and role of intersystem crossing
GL5	Jaime de Urquijo	Progress in the validation/derivation of cross sections for ions and electrons in pure gases and gas mixtures of atmospheric and bioplasmas
TL6	Radek Plašil	Experimental study of recombination of H_3^+ , H_2D^+ , HD_2^+ and D_3^+ ions in low temperature afterglow plasma in He/Ar/H ₂ /D ₂ gas mixture
HT5	Igor Adamovich	Electron density measurements in nanosecond pulse discharges near liquid water surface
WII	Jean-Paul Booth	Vibrational excitation in O_2 and Cl_2 inductively-coupled plasmas and DC discharges
WII	Roberto Celiberto	Electron-impact processes in aerospace and fusion plasmas
WII	Marián Danko	Electron induced emission of Balmer lines and Fulcher α bands of H_2
WII	Stephan Denifl	Dissociative electron attachment to molecules and clusters: current knowledge and future challenges
WII	Nigel Mason	Electron driven processes in plasmas; What we know and what we need to explore
P01-01-01	Michal Ďurian	Evolution of the continuum radiation spectra of H_2 and D_2 with electron energy
P01-01-02	Michal Lacko	Electron induced dissociation of 2,4,6-trichloroanisole
P01-01-03	Michal Lacko	Dicyclohexyl phthalate fragmentation by electron impact
P01-01-04	Juraj Országh	Electron impact excitation of nitrous oxide
P01-01-05	Peter Papp	Electron ionisation and electron attachment dissociation of iron pentacarbonyl clusters
P01-01-06	Anita Ribar	Electron attachment to doped neon clusters
P01-01-07	Michal Stano	Study of 2,4,6-trichloroanisole by ultraviolet photoelectron spectroscopy
P02-01-01	Ioan F. Schneider	Resonant electron-molecular cation collisions in ionized gases: further mechanisms, new state-to-state cross sections and rates
P02-01-02	Giorgio Dilecce	Rate constants of quenching and vibrational relaxation in the OH(A ² Σ^+ , v=0,1) manifold with various colliders
P02-01-03	Ridha Horchani	Few-body physics with ultracold potassium rubidium mixtures
P02-01-04	Hsiang Shun Chou	Relativistic many-body calculations of the transition rates for the Zn-like ions
P03-01-01	Nickolay Aleksandrov	Recombination of hydrocarbon ions with electrons in high-voltage nanosecond discharge afterglow
P03-01-02	Seisembayeva Madina	Electron capture process in the dense semiclassical hydrogen plasma
P03-01-03	Daniil Marinov	Highly vibrationally excited O ₂ molecules in low pressure oxygen plasmas: 1. Broad-band absorption spectroscopy.
P03-01-04	Stéphane Pasquiers	Dissociation kinetics of acetone in a sub-atmospheric pressure nitrogen plasma
P03-01-05	Susumu Suzuki	Measurement of collisional quenching rate coefficient of $N_2(A^3\Sigma^{\scriptscriptstyle 4}{}_u)$ by H_2O
P03-01-06	Martina Zámečníková	Formation of LiHe ⁺ by radiative association of metastable He(2 ³ P) with Li ⁺ involving triplet- π symmetry
P03-01-07	Anatoly Zavilopulo	Positive ions formation during dissociation of PTCDA molecule by electron impact

ELECTRON CAPTURE PROCESS IN THE DENSE SEMICLASSICAL HYDROGEN PLASMA

S.M. Seisembayeva^{(*)1}, K.N. Dzhumagulova¹, T.S. Ramazanov¹

¹ IETP, Department of Physics, al-Farabi Kazakh National University, al-Farbi 71, 050040 Almaty, Kazakhstan ^(*)smm93.93@mail.ru

In this work the collisions of the electron with hydrogen atom and proton were investigated on the basis of the effective interaction potentials taking into account screening and diffraction effects. The capture radii were determined. The time of the capture was determined as the time when electron moves within capture radius. The cross sections of the electron capture were estimated.

One of the elementary processes in the plasmas is the electron capture process, at the electron collisions with atoms or ions. Collision processes determine almost all properties of the plasma: its composition, thermodynamics, transport properties, electromagnetic properties, etc. Therefore correct and reliable research in this field at the level of the elementary processes is particularly important.

In this work the processes of electron capture by the atom or proton were investigated. Interaction between impacting electron and proton was considered on the basis of the effective interaction potential, which was presented in work [1]. Effective potential, which discribes the interaction of the electron with atom, was proposed in work [2]. These effective potentials take into account quantum-mechanical effects of diffraction at short distance and screening effects at large distance, also have finite values at the distances close to zero.

In this work results of calculation of the electron capture radius and interaction time of the electron with hydrogen atom and proton were presented. To determine the radius, time and probability of the electron capture Bohr-Lindhard method was applied. Using the electron capture probability, capture cross sections were calculated by the formula [3]:

$$\sigma_{cap} = 2\pi \int db b P_{cap}(b) , \qquad (2)$$

here $P_{cap}(b)$ is the electron capture probability. Also capture cross sections were investigated for different values of coupling and dense parameters. The capture cross sections of interaction of the electron with hydrogen atom and proton were compared.

References

[1] T.S. Ramazanov, K.N. Dzhumagulova, Effective screened potentials of strongly coupled semiclassical plasma, *Phys. Plasm.* **9** (2002) 3758-3761

[2] T.S. Ramazanov, K.N. Dzhumagulova, Y.A. Omarbakiyeva, Effective polarization interaction potential "charge-atom" for partially ionized dense plasma, *Phys. Plasm.* **12** (2005) 092702

[3] D.-H. Ki, Y.-D. Jung, Formation of negative hydrogen ion: Polarization electron capture and nonthermal shielding, *Jour. Chem. Phys.* **137** (2012) 094310