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ical Features of the Soliton Solution

It is well known, that integrable equations are solvable by the inverse
fing method (Ablowitz and Clarkson in Solitons, Non-linear Evolution Equa-
Inverse Scattering, 1992). Investigating of the integrable spin equations
"l). (2 + 1) dimensions are topical both from the mathematical and physi-
s of view (Lakshmanan and Myrzakulov in J, Math, Phys. 39:3765-3771,
dner et al. in Phys. Rev. Lett, 19(19):1095-1097, 1967). Integrable equa-
it different Kinds of physically interesting solutions as solitons, vortices,
jons etc, We consider an integrable spin M-I equation (Myrzakulov and Vi-
gkshmi in Phys. Lett, A 233:391-396, 1997), There is & comresponding Lax
gsentation. And the equation allows an infinite number of integrals of motion,
pastruct a surface corresponding to soliton solution of the equation. Further,
gae some geometrical features of the surface.

§s Surface - Soliton - Noalinear equation

ponsader the connection between the surface and the soliton equation M-1 which
e form |2},

sl =(stv +us)l- (l.l)
uy = (8. (S¢ x Sy)), (1.2)

7§ is spin vector, ST+ 82+ 87 = 1, x is vector product, « is a scalar function,
u!y the spin \-euor S and vector r, according to [2]

S=r,. (1.3)

massova (00)
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gringer International Publishing Switzerland 2015 671
} tyushev, M.V, Ruzhansky (eds.), Current Trends in Analysis and Its Applications,
hMammoci. DO! 10.1007/978-3-319-12877-0_73



672 Z. Zhunus
Then (1.1), (1.2) take the form
Py = (Fx X Fyy + Ul )y,
Uy = —(Fe (Fex X Fry)).
If we integrate (1.4) by x, then it takes the form
F =P X Py + UFy,

Taking into account Gauss-Weingarten equation and £ = r> = | the sys
fined as

MF M
n=lu+— r,———r,+l’2u//ln.
¢ ( JA) G i

Iy =Jl-‘(Lr32 —Mﬂzl).

where
g 2BF, —BE:—FE,
r“ = 2A '
2 EGx - FEI
fa==—73 |

A = EG ~ F*. M-1 equation 1s integrable equation and has soliton solutions,

2 Construction of Surface Corresponding to Soliton Solut

Here we present the one-soliton solution of (1.1), (1.2) [2].

-

2y
,’2 + EZ

Si(x.y.0)=1— sech®(x14),

2
S (x.y.0)= ’?z—gs—z[l& — nth(xx)] sech(x1x),

X1= s +ixu. M =n+ik,
my=mig(p) +imyp). m(y.1)=m;(p),
IR =nx+mgp)+cip. p=y+ikgt,
xuu=Ex+my(p)+cy. c=In2n/a7).
mig(p) =Re[mi(p)].  mi(p) =1m[m(p)],

which we use in the following theorem.
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Theorem 2.1 (Main Theorem) One-soliton solution (2.1)-(2.7) of the spin system
M-I can be represented as componenss of the vector vy, where

2n

o= 0 +€2)C'1X)R +cy, (2.8)
rn= —zf—mlz(shXIn)-Frz. (2.9)
,'2 +§2
2n
r3=x-— mﬂlxu + 3, (2.10)

1, €2, €3 are constants. Solution of the form (2.8)-(2.10) corresponds to the surface
with the following coefficients of the first and second fundamental forms

E=1, G iy @11
o T+ E0chipg' '
2nmi gy 4n Em gy ‘
= - . L= - 4 2.12
(% + E)ch pix JE? +EN) chdy g (319
4 - m? 4 3
S L' N SO ... - TR ¢
VB +E3ch* x5 JE* +E2 ch yix
Proof From (1.3) we have
(Sl'szv SJ)=(rﬁI'rZK~rJJ)o (2'34)
1€
P =8, rae =83, r3y= 8. (2.15)
Hence
ry= f Sidx + ¢y, (2.16)
r2 =/52d1+€‘2. 2.17)
" =fS,ul.t + €3, (2.18)
where ¢y, €2, €3 are constants of integration. Note
S+=31+sz=r:. (2.19)
then
r*=rn+in =f$+dx +ct, (2.20)
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where ¢* is constant of integration. Substituting (2.1) in (2.18), we have

2
ry= f&xdx tey= /[l - ;%{—gsechz(xm)]dx te

2n
= X - et § [ %
. B (nir) +¢3

where ¢] = ¢3 + €. ¢3 = ¢}, then

ry=x th(xi1r) + c3.

s B
(n* + xi?)
Substituting (2.2) into (2.20) we have
rt=r+in =/$’"dx+c+
e)
- / ,,2_:52 [1& = neh(xip)fsech(xipddx + ¢

+c" +et+c",

= _‘__IZik’ arcig(shxig) + —5-—52"
o +E AR n*+&<chyir
We denote ¢y =c¢”, e =¢* + ", then

rt= 29
(i +§3)chyr

- )
N = h .
3 B\ T o (’,2+$2m‘8(3 XIR)+ 2

1.¢. we have obtained

T+ Ech g

T + ¢y, r2=',2—2_f81-arclg(shxu) +C3.

Thus, (2.22), (2.25) give us (2.8)-(2.10). y.
We proceed to prove the second part of the theorem., From (2.22) and (2.25) we
have

TN 2n’shyie o ek
(n* + E)ch*x1p (n* +E3)chy g
S . 2p? - nshyipmigy
‘ (n* +&%)ch* x1n TP +E)ch R
—— 2Em gy . s 2nm gy _
T+ EDch gy o (n* +E3)ch* x 18y
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Then we can calculate

E=r§=r12‘+r§, +r§‘

___4n'shxig dn’¢?
TP HEN cht g | (P +EDchiqp
4;;2 41)"

o4 =1. (2.29)
(0 +E5ch e (n* +ED)2ch*y

Similarly, using (2.25) and (2.28) we abtain

1=

am?
, T TR 2,
e 2T L =], 2.30
G 'Jv Ty +r2_v + 3y (’72+§2)¢'h2XIR ( ‘
2nm gy
—— o y 231
(Fy.1y) Fleliy =+ Fel2y + ricrs, ("2 +£2)Ch2XIR ( )

Formulas (2.29)-(2.31) give us the first three equations (2, 11)-(2.13). Using (2.29)-
(2.31) we compute

amip, (P sh xig +E7ch* x1)
(n* + E2Pch* xip

We calculate the components of the vector n

A=EG~-F*= (2.32)

n= B S0 08 o NSy "lj“(ﬂl'ﬂz' ni), (2.33)

2Em gy

|
ny = (raxr3y — s - (2.34)
B Z R e TP B STy
Similarly, for the components
| nshxiamgy
ny = F3xlly = Fixliy) = — —= — (2.35)
7 b Al a7 T
|
ny = ﬁ('urzy —rriy) =0, (2.36)
Now, from (2.26). (2.28) we have
2P chyir(ch®xip = 25h*y12) 27 (1 = sh*y1r)
22 - . 2.37
s (n? + E)ch x1p (n* + E1ch? g1 1 el
20%Eshyix
= - 2 pAL
S T+ Echign e
WP L. (2.39)

TP+ Ehchixig
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Thus, using (2.34)(2.39) we can compute

_ Ay'shyg
T Eehi g

Taking into account, that ny = (),

r3

p— An’8miny :
VAR +E) ek 15 "
Similarly, we calculate
 artemy,
VAR + £kt 3
i’ s

VAP + 8 kg

The formulas (2.4]1)+2.43) give us the last three equations (2.11)-(2.13). Using.
(2.11)-(2.13), for example, the Gaussian curvature can be calculated

LN - M?
K= —
=k ( demigy  dnémri, 1608 m},, )
T ANVAM? + £ gy g VA +EDichi g | AU +E5chixin)
| 16'1‘$2Mfg,, 16n*2mi 5, -
= Z(A(r;2+§7)‘ch3x|k N A(nz-}-ez)‘chsxm) ol Al

We see that for the surface Gaussian curvature is equal to zero. Theorem is proved. 2

3 Conclusion

Based on the results of work [2], where Gauss-Codazzi-Mainardi equation consid-
ered in multidimensional space, we have studied equation M-I and built the surf C
corresponding to soliton solution. Thus, this work fully reveals the meaning of the
geometnic approach (2] in (2 + 1)-dimensions.
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