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Nonlinear PDE as Immersions

Zhanat Zhunussova

Abstract Investigating of the nonlinear PDE including their geometric nature is
one of the topical problems. With geometric point of view the nonlinear PDE are
considered as immersions. We consider some aspects of the simplest soliton immer-
sions in multidimensional space in Fokas-Gelfand's sense (Ceyhan et al. in J. Math,
Phys. 41:2551-2270, 2000). In (I + 1)-dimensional case nonlinear PDE are given in
compatibility condition some system of lincar eguations (Lakshmanan and Myrza-
kulov in J. Math. Phys. 39:3765-3771, 1998), In this case there is a surface with

~ immerston function. We find the second quadratic form in Fokas-Gelfand's sense
ssociated 1o one soliton solution of nonlinear Schridinger equation,

Keywords Immersion - Soliton - Surface - Evolution equation

1 Introduction

Over the last twenty years in the field of mathematical physics a large number of
rescarches is devoted to the study of nonlinear equations. Some nonlincar wave
equations can occur in problems of the different physical nature [1, 2]. For exam-
ple, such equations are the well-known Korteweg de Vries eqeation, the nonlinear
Schridinger equation, sin-Gordon equation,

~ Soaliton theory is a powerful apparatus for studying nonlinear equations including
their geometrical nature, With a geometrical point of view soliton systems are con-
sidered as immersion of infinite-dimensional spaces. In other words, the hicrarchy
of soliton equations considered as a system of defining immersion of & manifold
V" in space V™, where n < m, Connection between theory of solitons and theory
of surfaces 15 set by introducing evolution equations that associated with algebra,
The relation (1 4 1)-dimensional soliton equations with the theory of surfaces are
given by the Gauss—Codazzi-Mainardi equation. In this case, the soliton equations
ae considered as some integrable reductions of the Gauss-Codazzi-Mainardi equa-
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190 2. Zhunussova

In this work, we would like to review the simplest aspects of soliton investments
in multi-dimensional space, in Fokas-Gelfand sense [1].

In (1 + 1)-dimensional case nonlinear partial differential equations are given as
a condition of zero curvature Uy = V, 4 [U, V] =0, where [U, V] =UV - VU,
matrix U/ is given, and the matrix V is expressed in terms of elements of the ma-
trix U/, Also the nonlinear partial differential equation is the compatibility condi-
non the system of linear equations ¢, = Ug, ¢ = V¢. In this case there is a
surfacc with immersion function P(x. 1) defined by the formulas 3£ = ¢~ X9,
3£ = ¢~ 'Y¢. Surface defined by P(x.t) identified a surface in three-dimensional
space defined by lhccomdmalcs[llx_, = Pj(x,1), j = 1,2, 3. Frame on the surface
is given by atriple [1] 4 = ¢~ 1x¢, 22 ¢-'v¢,N ¢~ 79, where 7 = Jgd
|X| = TX, X). Here, by definition, (X Y)= —5 r(XY), where X, ¥ are some ma-
trixes, And the first and second quadratic forms of the surface are given by

I = (X, X)dx>+2(X, Y)dxdr + (¥, Y)di*, (1.1)

I = (ﬂ +1X. U], J)ax2 4 z(ﬁ +[X, VI, J)dxd:
ox at

+ (% +[Y. VI, J)drz. (12)

As shown in [II immersion function P can be defined as P = g~ 'dy +
¢ M9 = Z,gl P; f;, where M, is a matrix function, which depends on A, x. 8

Here f; = —30; is basis of the coresponding algebra, o; are Pauli matrices an
[fio fi1= fu. In this case, X, ¥ can be written as X = yoU,\+Mu+[M|.
Y=V, + M +[M,V]

2 Soliton Immersions in (1 4+ 1)-Dimension
Let the matrixes X, Y, J have the form
=(a|1 alz) y:(”” bu) =(t‘n tlz)
ay an]' by bn )’ cn en)’

In this case, the elements of the matrix J are expressed through the clements of
matrix X and Y in accordance with the formulas

5 ___alzbzl — bp2a2 i =02:(bn — b2} + b2 (@22 — ayy)
" xry - = X, Y1l :
i bia(ay — a2) + ay2(b22 — byy) _anbp —baan

X ¥l S S % |
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Then the first fundamental form (1.1) of two-dimensional surface becomes [ =
Edx* +2Fdxdt + Gdr?, where

I
E= —5(af| + 2ay2ay +0§z)'
: (24)
F = -E(tmbu +aabyy + aybia + anb),

|
G = -E(b%' + 2by2b7) +b§z). (2.5)

As an example of & soliton equation that yields such immersion we consider the
nonlinear Schrisdinger equation iy + v, + 28|9* Y =0, where f = +1,  is
complex function. In this case, the matrix I/, V have the form [3]

_ 03 _.{0 ¢
U——ZT-FUO. Uu—l(q 0).

3 (2.6)

A it (0 N f 0 @
V—Tog-nlqla; lk(q 0)-%-(_?‘ o)

- The theorem is held,

- Theorem 2.1 Second quadratic form in the sense of Fokas—Gelfand corresponding
to solitan solution q of nonlinear Schréidinger equation has the Sform

Il = Ldx® + 2Mdxdt + Nde*, 2.7
‘where

L= —%{a",c" +a12c021 + Q212012 + G22022
= Ailai012 = apye))
+iglancn +anci = ajen —ajpes)
tiglaaien +aycn —aney ~anci}. (2.8)

|
» -;{a“"“ T 1202 + @012 + Gy cn

+i(a% + 2lg1*)(@nerz — apesy)
+{gs +digiayery + ayaezz — ayeyy —axenn)
+ @ — Mgiancy + azien — ayen - aney)), (2.9)

|
N= —f‘b' e+ by + bacyz + bayen

+ (A% 4 21g1%) b3y c12 ~ b1acas)
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+ (gr + 2ig)(by1c12 + br2caa — bracyy — baaer2)
+ (§x = #i@)birea + bnea — bajers — buean), (2.10)

Proof By direct substitution of the matrix (2.1), (2.6) 10 (1.2) we obtain (2.7), (2.8)=
(2.10). Theorem is proved. (5}

3 One-Soliton Solution of the Nonlinear Schridinger Equation
Corresponding to the Surface

We consider the partial case of immersion at yy = 1, My = 0, For this casewcluﬁ;
il B S o
xaul-i—i(" -')' Y_V‘\—_'(q 1)'

J = ( 0 —:'%) .
7w
and P = ¢~ ' ¢ To calculate the explicit expressions for the functions of immers

P we consider the one-soliton solution of the nonlinear Schridinger equation,
has the form

3.0

explifgo + 5 + 1—-,,—-'!"'2" - %) e
chi¥(x — vt — xo)] '

qix.1)=0Q
where we put & = %5 _ () is constant.

Theorem 3.1 (Main Theorem) One-soliton solution of the nonlinear Schriidm
equation corresponds 1o the swiface in the sense of Fokas-Gelfand with the corre-
sponding coefficients of the first and second quadratic form

E= QX +v?)
(A=t ch:’[!(x ~ vt —xq))’
B v(u? +v3)Q?
2(h — i) ch?(§(x — vt — x0)}’
B (u? +v7) @
A0 =2 eh? (S0 — vt —x0)}
o u(u? +v*)
4% — AP ch? ($(x — vr —xp)]

(3.

(3. _'




Nomlinear PDE as Immersions
= uv(u2+ v?)
8(A = A1 )2 ch*{§(x — vt - xp))

o uin® + %)
©A6(A = 3y )2eh (S (x — vf — xp))

where L) is constant.
Proof The solution of the lincar system we find in the foem
W =¢e—(“i“‘+ ‘9"01’),

Taking into account (3.6), apply (2.6) we have

Y ] B Am, Loy
) [ e e MR

- %.W]*-Uoﬂ'.

We take

A rd 5 5 l o -
*’I-W. MA-(:‘ d-). 1—(0 l). l,-oonsl.
We substitute (3.8) 10 (3.7)
UpA 1 - A} ;s
Yeubh A=A '2?"’"“"‘2:‘(1-1;)"’3"‘"'
On the other side of (3.8) follows
A,
e
From (3.9) and (3.10) we have
Ay UoA 1 1 ~
A—x T T wlo Al gy o A)

- ~ ’i. - l
= U, —Llo3. A, = —los, Al
A, oA+2‘l03 Al, U leos A}

[aj.j]=03j —.103=2(_OE g)

293

(3.5)

(3.6)

(3.7)

(3.8)

(3.9)

(3.10)

(3.1

(3.12)

(3.13)
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Then substituting (3.13) into (3.28), we have

_1f0 b
U°"f(—c‘ o)‘

Substituting (3.13) 10 (3.12), we have

(& &)-1(% %)+3(% o)

From (2.6) and (3.14) we have

ié—'b
0 Gg\_1(0 b =T b=—3
‘(q 0) (.., 0) = = I '

Thus we have !‘ound a matrix A :mphcnly. with components (3.15). From (3.15),
(3.16) follows & = --k M=a= --ﬁ — &]. Using (3.2) we obtain

— "
a= 5 lz(x—-m xo)l+——A

From (3.15) follows 5, == 7b£ =a‘ - }(—é)q‘ :a - 1 Iqqu.U‘m 11 "".
‘we obtain '
210/°

a= -——lhl (x—vl—xo)]—-zl—-
i 2

From (3.17), (3.18) follows
2 i 2 ;
Q1 i o 2101 iu

iu 2° i g
v W\ 208 - R TR
(2 "')‘ EHETOT R 2|Q|5(2 ')‘

From (3.15), (3.16) follows

s ik ., < =) idy
d=—-)~ = d= - As =T e .
3 1 (—q) ! 7 1
Using (3.2) we have
- iu  fu X
d--—z-lhl-z-(.t-vt-xo)l-{»(--l,)
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We denote ¢ =c13‘£f-. From (3.21), (3.22) follows

v .\ 200P AR

(2 “')"" W "=2|Q|2(2 e
2IQ|2 = _‘_‘i = ‘”le _“2 = |Ql2 _“_2 :
T T e o=

Taking into account ¢, (3.23). we obtain (3.18) in the form
a=-%ml§(x-m-x.,)} -c. (3.24)

Thus. the matrix A for one-soliton solution (3.2) of the nonlincar Schridinger
equation takes the form

i @),
=3 thiF(x —v —x)} - ¢ -0~ ‘;T;tztc~m>l =

. 2.8
aupli(cb+ﬁ'+Lx—“jJ £ ih{$(x —vr = xo)l + ¢

SR = ey =agd}

A (3.25)

Nowwemke¢=l--u—_‘:-l-)g.mrcl| 1s constants, then from (3.1) we have

g - A ) A z
p=i= (155 )it e
On the other hand, we obtain
3 3 ( 1
i —ipy —&m-;ﬁ.)
PENTP P~a-=( . @2
2.1 Z,ZE R S Y 1

From (3.26), (3.27) by (3.22) we have Py = afi’.'ﬁ Now with the help of (3.24)
we find Py explicitly for solution of the nonlinear Schridinger equation

41017, wth{¥(x — vr - xg))

- . = 3.28
wid— ) (A= a ) )

Pi=

Ly o -—6 s .+5 p :\‘_6 24
From (3.26), (3.27) we have Py = 555 Thus P = f5t, Pr= 2505, A=
. . From (3.26), (3.2) using the known formulas

— =t ¢ -
shc=(( zc ; cht=¢+; ;
- (3.29)
e . el —et
oosg_—-z-—. s"‘t = T‘



296 Z. Zhunussova

where £ = (g + 4 + “5%0 _ ) we obtain the explicit values of Py, P, Py
matrix P

20sin(po + % + #5250 — )

P = — z
(= A1) ch(¥(x = v = x0)
114 ch(§ . o) 330
P:_zams(tpo+-"§+“""'r—‘})

(A — i|)2chl§(x —vt = xp))

B 4|Q%¢) _ uth{§(x = vr — xq))

- Z - 331
ulh —ny)? (h— A1) s

Now we can calculate the coefficients on the first quadratic form i.e.
E=pPL+ P +PL. (3.32)

For this, we compute Py, Py, Pi,. Now the first derivatives are raised separately
to the 2nd power and substitute into (3,32), then

T (A=A )teh e — vt —xp))

Similarly, according to the formulac F = Py, Py, + Py, Py + Py Py, G = Pl +
Pi + P} we obtain the values
g v(u? + 1) Q?
2(k - i;)‘chz(stx - vt = X))
> Q*(w® + )’
T il)‘chztg(x - vt = xp)]

(3.33)

Now, using (3.30), (3.31) we calculate coefficients of the second form L, M, N. For
this, we have to calculate

aat=tt.  fAuEG=F3. (3.34)
vA

Directly substituting the values of (3,30)-(3.31) to (3,34) we calculate the com-
ponents vecior n. Here we present the caleulation

w(u? + v?)Qsinlpo + ¥ + ﬁiﬂr -3
VA=)t eh g x —vi—xp))

(335)

n =

o “2(u2+v2)Qms(%+_v{_ + (u? —u? - i)
T AVAG— R eh’(B(x — vr - xp))

\ (3.36)
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Qu(u® +v?)sh(§(x — vt = x¢))

= - . (3.37)
: VAR =3 ch’ {3 (x — vt — xp))
We calculate with the help of (3.33)
4 232
A EG-F”-’:{ QYW + v')'u } 3.38
( ) A~ z,)s&h‘(g(x - vt — xp)) s

Now we find Picy, Prer. Pice. Then we can find L, By the similar way we
calculate M, N, Now, using (3.38), (3.34) Gaussian and mean curvature K and H
can be caleulated

K:#(I—vz)(l-)’q)‘, H-—(u--u =), (3.39)

Now, from (2.4), (2.5) using (3.1) for the case yy, M| = 0 we have coefficients of
the first fundamental form corresponding 10 (3.2) as E= 1. F = —%. G =% +
§4. Respectively, from (2.8)-(2.10) using (3.1), we have coefficients of the second
quadratic form. Now we can calculate A = EG ~ F? = }jq. Theorem is proved. [J

4 Conclusion

Thus, we have examined the soliton immersion in (1 + | )-dimension and obtained
the comresponding formulae. As an example of such immersion we consider (14 1)-
dimensional nonlincar Schrodinger equation, It is found integrable surface corre-
- sponding 10 the one-soliton solution of the nonlinear Schridinger equation given by
the first and second quadratic forms with coefficients (3.3}-(3.5). We have calcu-
lated the Gaussian and mean curvature of found surface. We see, that the geomet-
1k equation describing the n-curvilinear coordinate systems in flat Euclidean and
pseudo-Euchidean space allow some integrable reductions. In addition, we have as-
- sumed that immersion 3- and 4-dimensional manifolds arbitrarily embedded in R
dmit integrable cases.
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