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INTRODUCTION

This thesis discuses the intermolecular multiple quantum coherence (iMQC) phe-

nomenon in nuclear magnetic resonance (NMR). This effect originates from the co-

herent long range dipole-dipole interactions between spins, and is typically studied

with the so-called CRAZED sequence of radio frequency pulses. It is a relatively

new development and has attracted interest due to its unusual spin-spin interaction

basis and its ability to assess structural information at the hundreds of micrometers

distance scale. However, the relationship between the measured signal and the under-

lying structure is non-trivial, as we will explore both numerically and experimentally.

This thesis is composed of six chapters and two appendices. The first two chapters

provide background, on MRI in general and on the CRAZED sequence in particu-

lar. Chapter 3 addresses numerical simulations and contains both an overview of

the literature and new insights and simulated data concerning cylindrical phantoms

and the consequences of employing local vs non-local calculations of the dipolar field

and linear vs non-linear calculations of the signal evolution. Chapters 4 and 5 apply

the experimental and numerical methods discussed earlier to studies of rat sciatic

nerve and mouse liver. Chapter 4 in particular presents new data on the relationship

between the CRAZED signal and the underlying sample micro-structures, and it is

currently under review for publication. Chapter 6 speculates on the future direc-

tions of CRAZED research, while the appendices give the detailed calculations and

computer code utilized in the body of the thesis.
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CHAPTER I

INTRODUCTION TO NMR/MRI

History of subject

The history of NMR/MRI, as a history of every great discovery, has its share of

controversy and priority arguments. I will follow the conventional chronological line

presented in the sources freely available to the public. Some events described here

may have much greater consequences and preconditions than cited but I will keep the

description short and relevant to NMR/MRI only.

In 1938, Isidor Isaac Rabi described and measured nuclear magnetic resonance

in molecular beams [9]. In 1943, Otto Stern got his Nobel Prize in Physics “for his

contribution to the development of the molecular ray method and his discovery of

the magnetic moment of the proton” [10]. In 1944, the Nobel Prize in Physics came

to Isidor Rabi “for his resonance method for recording the magnetic properties of

atomic nuclei” [11]. It is necessary to mention that besides WWII this time stands

out for its remarkable progress in the field of atomic energy, theory of radar, and

many other discoveries in chemistry and natural sciences, which created a necessary

background for rapid development and implementation of NMR. In 1952 Felix Bloch

and Edward Mills Purcell got their Nobel Prize in Physics “for their development of

new methods for nuclear magnetic precision measurements and discoveries in connec-

tion therewith”. The Nobel Prize was an award for independent discovery (published

in 1946) of nuclear magnetic resonance in liquids and in solids. Since then nuclear
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magnetic resonance (NMR) has become widely used to study the molecular structure

of pure materials and the composition of mixtures. In 1971, Raymond Damadian

discussed in Science [12] the way to differentiate tumors and healthy tissue by means

of magnetic resonance, thus making the first introduction of NMR to medicine. In

1973, Magnetic Resonance Imaging was first demonstrated on small test tube samples

by Paul Christian Lauterbur. That is how the idea of spatial encoding by means of

gradients was introduced [13]. In 1975, Richard Ernst proposed magnetic resonance

imaging employing phase and frequency encoding methods using the Fourier trans-

form as the main tool for data interpretation. Now this technique is the basis of

current NMR/MRI [14]. In 1991, Richard R. Ernst got his Nobel Prize in Chemistry,

“for his contributions to the development of the methodology of high resolution nu-

clear magnetic resonance (NMR) spectroscopy”. Recently, in 2003, the Nobel Prize

in Physiology or Medicine, “for their discoveries concerning magnetic resonance imag-

ing”, went to the Paul C. Lauterbur and Sir Peter Mansfield.

We could keep filling the gaps in our short introduction, year by year, month by

month, with detailed description of every remarkable step which has been made. But

let us leave this interesting job, at least for now, to the historians of science.

Basics of NMR/MRI experiment

This section introduces several basic concepts of the NMR/MRI experiment, such

as the dynamics of a magnetic moment in an external field, how “spin excess” leads

to the observable magnetization, and the derivations of the Bloch equation from the

basic equations of motion. All descriptions are based on the book by Haacke [1].
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Fig.1 diagrams the precession of a magnetic moment in an external field. The

angular frequency is

Figure 1: Magnetic moment in an external field B0. Adapted from [1]

~ω0 = γ ~B0, (I.1)

where γ is the gyromagnetic ratio. Water protons have a γ value of roughly 2.68×108

rad/s/Tesla, or γ/(2π) equal 42.6 MHz/Tesla.

The spin excess in high temperature approximation (for complete analytical ex-

pression see Eq.II.37) created by the existence of a preferred direction in space due

to ~B0 is equal to

Spin excess ∼= N
h̄ω0

2kT
, (I.2)

where N is the total number of spins in our sample, h̄ = h/(2π), T is the temperature

in Kelvins, and k is the Boltzmann constant. At the given values of T and B0

equilibrium magnetization M0 created by such a disbalance in spin orientation is
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described by the formula

M0 =
ρ0γ

2h̄2

4kT
B0. (I.3)

The observable signal in NMR/MRI is created by flipping/rotating the magne-

tization into the plane perpendicular to the main B0 field and observing its preces-

sion,which induces signal in the RF coil enclosing the sample (see Fig.2).

Figure 2: Magnetization flip in rotating frame

The energy which was previously introduced to the system by irradiation with

RF (radio frequency) pulse is then dissipated through multiple mechanisms such as

“spin-lattice” and “spin-spin” relaxation, radiation damping and diffusion.

“Spin-lattice” interaction results in signal decay, or relaxation. The energy dis-

sipate through interaction with the lattice oscillations or phonons. Magnetization

previously rotated away from being aligned along B0 field regrows back to the Z axis,
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which is defined to be the direction of the B0 field. The rate of this process is charac-

terized by a time constant T1, called the longitudinal relaxation time (see Haacke p.54

for T1 and T2 values). If all the magnetization has been rotated into the XY plane

(Mz(0)=0) than the process of its recovery is described by the following equation

Mz(t) = M0(1− e−t/T1). (I.4)

The so called “spin-spin” relaxation dephases the spins with a characteristic time

constant T2. It means that even if we observe the signal magnitude decay (which

corresponds to magnetization in the X-Y plane) we may not see corresponding re-

growth of magnetization back along the Z axis. Magnetization stays in XY plane but

due to the lack of coherence between and within individual groups of the spins it is

effectively averaged throughout the sample volume. This process is described by the

following equation

M⊥(TE) = M0(1− e−TR/T1)e−TE/T2 , (I.5)

where TR is the repetition time between experiments. TE (“echo time”) is the be-

tween when the magnetization is rotated into the X-Y plane and when the signal is

acquired. Additional 1800 pulses may be introduced to eliminate (“refocuse”) extra

signal dephasing due to the external field inhomogeneities. This combination of RF

pulses is usually referred to as a “spin echo” pulse sequence and the T ∗2 value in this

case is replaced by T2.

The equation of motion is directly derived from the equation for torque produced
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by the field on the magnetic moment. After several lines of derivations we can write

down the fundamental equation of motion

d~µ

dt
= γ~µ× ~B. (I.6)

Starting with Eq.I.6, and then incorporating the T1 and T2 relaxation effects

discussed above, gives the Bloch equation for magnetization vector ~M

d ~M

dt
= γ ~M × ~Bext +

1

T1

(M0 −Mz) ẑ −
1

T2

~M⊥. (I.7)

For the case when the external magnetic field is a constant vector ~Bext = B0ẑ,

Eq.(I.7) may be written as a system of three differential equations

dMz

dt
=
M0 −Mz

T1

dMx

dt
= ω0My −

Mx

T2

dMx

dt
= −ω0Mx −

Mx

T2

. (I.8)

The solution of this system is

Mx(t) = e−t/T2 (Mx(0) cosω0t+My(0) sinω0t)

My(t) = e−t/T2 (My(0) cosω0t−Mx(0) sinω0t)

Mz(t) = Mz(0)e−t/T1 +M0(1− e−t/T1). (I.9)
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The steady–state solution can be obtained by taking t→∞

Mx(∞) = My(∞) = 0

Mz(∞) = M0. (I.10)

Current state of NMR/MRI and its perspectives

Currently, typical magnetic resonance imaging has resolution limits on the order

of a millimeter unless specifically designed and operated at high and ultrahigh (>3

Tesla) field strength, employing parallel imaging coils, entailing long measurement

times, or having taken other non-conventional measures. It is widely accepted for its

noninvasive nature, speed and specific targeting of the universal medium water.

We discuss some extreme system below that can explore submillimeter structures,

and in the next chapter we will begin our discussion of an alternative method for

gathering structural information at even smaller (down to ∼ 10µm) length scales.

Extreme high field systems

Nowadays the highest magnetic field strengths and gradient values were achieved

in the system of National High Magnetic Field Laboratory operated for the National

Science Foundation by Florida State University, the University of Florida and Los

Alamos National Laboratory (with sites at each of those locations). A 45 T hybrid

magnet in Tallahassee, Florida, is capable of producing 45 T constant B0 in a 32

mm bore. On the short time scale, pulsed magnets can produce fields up to 300

7



T for 6 µs within 10 mm bore. The Pulsed Field Program is located in Northern

New Mexico at Los Alamos National Laboratory. The same site also hosts a proton

Magnetic Resonance Imaging System operated at 900 MHz and with a 100 mm room

temperature bore [15].
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CHAPTER II

CRAZED EXPERIMENT

Multiple spin echoes in solid 3He. First observation and interpretation.

The macroscopic effect of intermolecular multiple quantum coherences (iMQC)

in the form of multiple spin echoes was first correctly interpreted by G. Deville et

al. in [2]. It was 1979 and, as outlined in the introduction, the pulsed gradients

technique had already been introduced to NMR. A solid 3He sample, existing along

with liquid phase at the temperature T =1 to 20 mK, responded to the sequence

of an applied static field gradient two radio-frequency (RF) pulses at times 0 and

τ with a train of echoes evenly spaced at times 2τ , 3τ , 4τ , . . ., nτ (see Fig.3 for

the pulse sequence (marked by arrows on the oscilloscope snapshot), resulting signal

and numerical simulation data are shown on the right). While the echo at 2τ was

expected, the echoes at 3τ , 4τ , . . . could not be explained without adding an additional

non-linear term to the Bloch equations.

We are not going to spend too much time elaborating details of this unique low

temperature solid state NMR experiment. Later on [3] it was shown that the same

type of phenomena can be observed in liquids at room temperature, and we will

discuss the theoretical basis of this effect without having to assume extreme relaxation

and diffusion values such as those in a low temperature solid. The key point is that

introducing a dipole-dipole Hamiltonian into the Bloch equations yields a nonlinear

differential equation that explains the CRAZED experiment. We will discuss solutions
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(a) (b)

Figure 3: (a) Multiple echoes patterns obtained for two values of the time interval τ between the
90◦ radio-frequency pulses. T = 320 mK, the magnetic field H0 = 9250 G and the molar volume
Vm = 23.6cm3. (b) Experimental (top) and calculated (bottom) amplitudes of some multiple echoes.
Reprinted from [2]

for the basic case with and without diffusion and the relationship between this solution

and magnetization helix pitch and a defined dipolar demagnetizing time.

Multiple spin echoes in liquids

In 1990, R. Bowtell et al. published [3] the theory of the multiple spin echoes in

liquids (see Fig.4 for pulse sequence and multiple spin echoes signal), almost right

after it was observed for the first time by W. Dürr et al. and P. Glover et al. and

10



reported at the Annual Meeting Society of Magnetic Resonance in Medicine [16, 17].

Figure 4: (a)Pulse Sequence. (b) Multiple spin echoe evenly spaced with time interval τ . From
Bowtell et al [3]

Our line of discussion will proceed from the explicit inclusion of the dipolar de-

magnetizing field Bd(r) (as well as a diffusion term) into the Bloch equation I.7.

M(r)

dt
= γM(r)× [B(r) + Bd(r)]

−
(
Mz −M0

T1

)
ẑ−

(
Mxx̂ +Myŷ

T2

)
+D∇2M(r), (II.1)

where M(r) is magnetization, B(r) is the applied magnetic field, T1 and T2 are the
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relaxation times, D is the diffusion constant, x̂, ŷ and ẑ are Cartesian unit vectors,

and Bd(r) is given by

Bd(r) =
µ0

4π

∫ d3r′

|r− r′|

[
M(r′)− 3

(
M(r′) · (r− r′)

|r− r′|

)
(r− r′)

]
. (II.2)

This expression is nonlocal and unwieldy in all but a limited number of cases when

the sample has a simple geometry or the gradients are very large.

For a relatively large gradient, Deville et al. [2] has shown that the problem can

be simplified. A large uniform field B0 and a linear gradient G applied along the unit

vector ŝ

B(r) = (B0 +Gs)ẑ (II.3)

will ensure that demagnetizing field Bd now depends only on the local magnetization

and is given by

Bd(s) = µ04
[
Mz(s)ẑ−

1

3
M(s)

]
, (II.4)

where

4 =
1

2
(3(̂s · ẑ)− 1). (II.5)
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The Bloch equation then transforms into

dM(s)

dt
= γ (M(s)× [B0 +Gs+ µ04Mz(s)] ẑ)

−
(
Mz −M0

T1

)
ẑ− Mxx̂ +Myŷ

T2

+D
d2M(s)

ds2
. (II.6)

Einzel et al. [18] have shown one way of solving these equations in the simple case

when T1 and T2 are much greater than τ .

Mz (s, t) = M0

n=∞∑
n=−∞

bn (t) einγGsτ (II.7)

M+ (s, t) = Mx + iMy = M0e
−iγGsτ

n=∞∑
n=−∞

an (t) einγGsτ . (II.8)

The amplitude of the n-th echo is then M0|an (nτ) |. Substitution of these equations

into Bloch equation gives

dan
dt

= −an (t)D (γG)2 (t− nτ)− iµ0γ∆M0

p=∞∑
p=−∞

ap (t) bn−p (t) . (II.9)

Initial conditions for the two-pulse sequence is that at the moment t = 0 only a0, a1,

b0, b1 are nonzero. That is

b1(t) = b1(0) exp (−D∗t/τ)

a1(t) = a1(0) exp

(
−D∗

3

([
t

τ
− 1

]3

+ 1

))
. (II.10)
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for all other orders

an(t) = −iµ0γ4M0 exp

(
−D

∗

3

(
t

τ
− n

)3
)

×
∫ t

0
exp

(
D∗

3

[
t′

τ
− n

])
an−1(t′)b1(t′)dt′, (II.11)

where D∗ = (γG)2Dτ 3. As one can see a2 is proportional to (µ0γ4M0τ), a3 is

proportional to (µ0γ4M0τ)2 and so on, assuming that (µ0γ4M0τ)� 1. The initial

conditions depends on the amplitudes and phases of the RF pulses as well. That is

for the RF pulses [φx1φ
x
2 ]

b1(0) = −sin (φ1) sin (φ2)

2
exp

(
−D

∗

3

)
(II.12)

but for the RF pulses
[
φx1φ

−y
2

]

b1(0) = +i
sin (φ1) sin (φ2)

2
exp

(
−D

∗

3

)
, (II.13)

where φ1 and φ2 are the flip angles and superscripts refer to their phases. In case of

both pulses applied along X axis

M0 |a1(τ)| = M0 exp (−2D∗

3
) sin (φ1)

(
1− cos (φ2)

2

)
. (II.14)

Substitution into Eq.II.11 gives the amplitude of the second echo

M0‖a2(τ)‖ =
1

2
M0βFβ(D∗) sin2 φ1(1− cosφ2) sinφ2, (II.15)
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Figure 5: The function Fβ(D∗). From Bowtell et al.

where

β = µ0γ4M0

[
D(γG)2

]−1/3
(II.16)

and

Fβ(D∗) =
1

2
π

1
2D∗−

1
6 exp (−7D∗/3)erf(D∗1/2). (II.17)

Thus the value of the second echo will be maximized when 2τ = [(γG)2D]−1/3 (see

Fig.5).
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In order to test the validity of our data, we have reproduced the conditions nec-

essary to observe multiple spin echo in liquids, and we have implemented the pulse

sequence displayed in the Fig.4. We measured the ratio of the first two echo heights

as function of gradient strength and compared these results to the ratio of Eq.II.14

and Eq.II.15: ∣∣∣∣∣a2(2τ)

a1(τ)

∣∣∣∣∣ = exp(2D∗/3)βFβ(D∗). (II.18)

Our sample was 10 mm nmr tube, about 15 cm long filled with 1% CuSO4 solution

in disstiled water. Experimental data were acquired on a 7 Tesla 16-cm horizontal bore

Varian Inova (Varian Inc., Palo Alto, CA, USA) scanner system running at 300 MHz

and using a 25 mm diameter and 22 mm long Litz coil from Doty Scientific,Columbia,

SC, USA.

As we can see our data (red dots) and analytical solution (green line) have a

very good match (see Fig.4). This agreement with known theory was one of our

experimental methods before pursuing the novel measurements described in chapters

IV and V.

Quantum mechanical interpretation by Warren.

The “rediscovery” of the multiple spin echoes happened in 1993 with Warren’s et

al. publication in Science [19].

Given the name CRAZED (COSY Revamped by Asymetric Z-Gradient Echo De-

tection), it was set up and described in terms and concepts of 2D NMR spectroscopy

[20]. In [5] Richter and Warren presented a method based on the density matrix
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Figure 6: Variation of the ratio of second and first echo amplitude with D∗ for different values of G.
Red circles are our experimental data. Solid green lines are the analytical expression (see Eq.II.18).
The gradient is applied along Z axis and takes values [5.3 7.9 10.6 17.6 26.4] ×10−3 T m−1 from top
line to the bottom.

formalism and using quantum coherences notation and terminology. In contrast, our

work stayed within the frame of “classical” (Bloch equation with non-linear terms)

description of this experiment, discussed in the previous section. Later by Jeener et

al. [21] both these descriptions were shown to be equivalent.

Multiple quantum coherences

Consider the nucleus characterized by its spin I = 1/2 and magnetic moment µ

connected by the following expression

µ = γI. (II.19)
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The magnetic moment of the nuclei in the lowest energy state is aligned along the

external B0 field. The gyromagnetic ratio γ sign defines the direction of the angular

momentum vector I (for the negative γ it is aligned against the external B0 field).

Now consider two (spin 1/2) nuclei A and X. The energy levels for such a system

are shown on Fig.7(a). If two spins do not interact with each other the system is

called uncoupled (see the left part of the Fig.7(a)) otherwise it is called the coupled

heteronuclear (containing atoms of the different elements) system. Transitions are

between states characterized by the frequencies ν and coupling constant J .

We can describe this system in terms of basis “ket” vectors |+ +〉, | −+〉, |+−〉,

|−−〉, where the first position in the brac“ket” is taken by nucleus A and the second

one by nucleus X. As plotted in figure Fig.7(a) , sign “−” corresponds to the lowest

energy state and is also described by the ↓ notation (the “+” sign and ↑ symbol

correspond to the highest energy state).

All possible transitions between the states are listed on Fig.7(b). Diagonal ele-

ments corresponds to the “populations” of individual states. Off-diagonal elements

connect pairs of different states and called “coherences”. The order of coherence is de-

fined by the nature of the transition, that is how many “flips” are required to connect

the states. Flips have signs and may “cancel” each other. For instance |++〉 → |−+〉

corresponds to the flip in the state of nucleus A only and represents a single quantum

coherence 1QA while | −+〉 → |+−〉 corresponds to the flips of both nuclei in differ-

ent directions and is called a zero quantum coherence ZQAX , although the energy of

transition (as could be seen from Fig.7(a)) is not exactly zero.

In general, at thermal equilibrium, any spin system populated according to the
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(a) (b)

Figure 7: (a) Coupled and uncoupled energy levels (from left to the right) for the system of two (spin
1/2) nuclei A and X. The values of the total magnetic quantum number are given on the left. (b)
The matrix of two-spin system coherences. Pictures adapted with some changes from G. Mateescu
et al. [4]

Boltzmann distribution has a density matrix given by

ρeq =
exp (−H h̄/kT )

tr [exp (−H h̄/kT )]
, (II.20)

where H is hamiltonian, T is the temperature, h̄ is the reduced Planck constant, k

is the Boltzmann constant.

For a single spin 1/2 system, the hamiltonian is expressed through the angular

momentum operator Iz by the following equation

H = ωIz. (II.21)

Using the same “ket” notation for the basis functions (see Fig.7(b)), the angular
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momentum operator for this system can be written as follows

Iz =

 〈+|Iz|+〉 〈+|Iz|−〉
〈−|Iz|+〉 〈−|Iz|−〉

 =
1

2

 +1 0

0 −1

 . (II.22)

Substitution of Eq.II.22 into Eq.II.21 and Eq.II.20 produces the following expression

ρeq =
exp (−H h̄/kT )

tr [exp (−H h̄/kT )]
=

exp ((−h̄ω/kT )Iz)

tr [exp ((−h̄ω/kT )Iz)]
=

 exp (− h̄ω
2kT

) 0

0 exp (+ h̄ω
2kT

)


exp (− h̄ω

2kT
) + exp (+ h̄ω

2kT
)

. (II.23)

Now consider a system of two isolated 1/2 spins, assuming no coupling. Using the

set of basis function defined in Fig.7(b), we can write down the z-component of the

angular momentum matrix representation for an individual spin

IzA =



〈+ + |IzA|+ +〉 • • •

• 〈−+ |IzA| −+〉 • •

• • • •

• • • •



=
1

2



+1 0 0 0

0 −1 0 0

0 0 +1 0

0 0 0 −1


, (II.24)
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and for sum of them as follows

IzA + IzX =
1

2



+1 0 0 0

0 −1 0 0

0 0 +1 0

0 0 0 −1


+

1

2



+1 0 0 0

0 +1 0 0

0 0 −1 0

0 0 0 −1



=



+1 0 0 0

0 0 0 0

0 0 0 0

0 0 0 −1


. (II.25)

For this two spin system all other components (operators) and their combination

may be written as follows

IxA =
1

2



0 +1 0 0

+1 0 0 0

0 0 0 +1

0 0 +1 0


, IyA =

1

2



0 −i 0 0

+i 0 0 0

0 0 0 −i

0 0 +i 0


, (II.26)

(Ix + iIy)A =



0 +1 0 0

0 0 0 0

0 0 0 +1

0 0 0 0


, (II.27)
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IxX =
1

2



0 0 +1 0

0 0 0 +1

+1 0 0 0

0 +1 0 0


, IyX =

1

2



0 0 −i 0

0 0 0 −i

+i 0 0 0

0 +i 0 0


(II.28)

(Ix + iIy)X =



0 0 +1 0

0 0 0 +1

0 0 0 0

0 0 0 0


. (II.29)

These matrices are often referred to as coherences as well. If we take a look at the

product of IxA and IxX its operator will take a form of

IxAIxX =
1

2
· 1

2



0 0 0 1

0 0 1 0

0 1 0 0

1 0 0 0


, (II.30)

which is the mixture of 2-spin zero quantum ZQAX and double quantum 2QAX co-

herences in the basis plotted in Fig.7(b).

The classical description of NMR by the Bloch equations uses the magnetization

vector ∝ µ (see Eq.II.19).
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COSY and CRAZED pulse sequences

The next few paragraphs give a short description of the COSY experiment and

its interpretation, which is of great importance for the further understanding of the

CRAZED pulse sequence.

The correlation spectroscopy (COSY) experiment is a typical 2D experiment. The

basic pulse sequence for this experiment is shown in Fig.8(a). Two π/2 pulses are

spaced t1 time apart and are followed by an evolution time period t2. The resultant

COSY spectrum is a two dimensional Fourier transform of FID values obtained from

changing the values of t1 and t2 respectively (see Fig.8(b)).

If two distinguishable types of spins (spin A and spin B) are J-coupled, the spins

will evolve as follows. After the first π/2 pulse, each spin will be described by a

single-quantum coherences, such as IxA. During the preparation period t1, the scalar

coupling between spins A and B induces evolution to single-quantum coherences like

IyAIzB, which evolve with the resonance frequency of spin A (ωA) . At last, application

of the second π/2 pulse transforms them into the single-quantum IzAIyB coherences.

Evolution now takes place at the resonance frequency of the second spin species ωB

and the spin system evolves into single-quantum, single-spin coherences like IxB.

Fourier transform of the FID values with respect to t1 and t2 yields a two di-

mensional spectrum of the J-coupled spins, ωA in F1 and at ωB in F2 direction

(see Fig.8(b)). The same considerations for type B spins, and the symmetry of the

experiment ensure the appearance of the three other sets of peaks at all possible

combinations of ωA and ωB.

Next imagine a mixture of acetone and benzene tested with the same COSY
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Figure 8: (a) COSY pulse sequence. (b) COSY spectrum of a molecule with two coupled spins.
Note that there are cross peaks between all lines. Reproduced from [5]

experiment. The six equivalent J coupled spins in each benzene ring (see [22]) will

produce no observable splitting, and will be omitted. The Fourier transform of the

FID (1D spectrum) from this mixture contains two lines only and the COSY spectrum

(shown in Fig.9(a)) also contains only two diagonal peaks. As expected there are no

cross peaks (J coupling) between spins belonging to the different liquids.

Now imagine wee add a “double-quantum gradient filter” to the pulse sequence, as

was done in [5] and is illustrated in the Fig.9(b). The action of this filter is as follows.

The first gradient pulse modulates the resonance frequency of the spins along the

applied gradient direction with the spatial frequency γGT (which could be visualized

as a spatial helix of magnetization). Averaging over the whole sample produces no

detectable net magnetization associated with this helix. The second gradient pulse

is twice the size of the first one and applied after the last π/2 pulse. This second

gradient would, at first glance, to dephase any possible signal appear.
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The pulse sequence was named the CRAZED (COSY Revamped by Asymmetric Z-

Gradient Echo Detection) sequence after the filtering effect of two gradients. Lin et al.

[23] have shown that there is a large unexpected signal after this pulse sequence. This

result contradicts the classical high-temperature density matrix approximation point

of view. As shown on Fig.9(b), there is a full set of peaks along the pseudo-diagonal

F1 = −2F2, and these cross peaks indicate a net coupling between the benzene

and acetone protons. Only a breakdown of the density matrix high-temperature

Figure 9: (a) COSY pulse sequence and COSY spectrum of a mixture of acetone and benzene.
COSY spectrum shows no cross peaks between them because there is no intermolecular coupling. (b)
CRAZED pulse sequence and CRAZED spectrum of a same sample. Intermolecular double-quantum
peaks (benzene to acetone spins coupling) are observed supporting the idea of high temperature
approximation breakdown. Reproduced from “Intermolecular Multiple Quantum Coherences in
Liquids” [5].

approximation [24] may serve as an explanation for the signal observed after the

COSY pulse sequence modified by a double quantum filter (see next Eq.II.32). In our
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previously adopted notation, the high temperature approximation, generally used for

the description of all NMR/MRI phenomena, has the following form

ρHT0 =
exp ((−h̄ω/kT )

∑
i Izi)

tr [exp (−H /kT )]
≈ 1− (h̄ω/kT )

∑
i Izi

tr [exp (−H /kT )]
. (II.31)

Instead, the Taylor expansion with at least the first three terms should be used

ρ0 =
exp ((−h̄ω/kT )

∑
i Izi)

tr [exp (−H /kT )]

≈
1− (h̄ω/kT )

∑
i Izi + (h̄ω/kT )2∑

i

∑
j IziIzj − . . .+ . . .

tr [exp (−H /kT )]
. (II.32)

The first term on the right after the unity matrix is a linear “high-field” approximation

and the second quadratic term is the next Taylor expansion term and it is the one

which is responsible for an observable signal after the double quantum filter (see [5]

for a more complete analytical description).

The main practical inference from the results of this experiment is that we can

see the dipole coupled spins belonging to different molecules. If the spatial separation

between these spins has a structure imprint on it, then the signal should inherit it as

well, which leads us to numerous possible structure studies and applications at the

scale previously unavailable for conventional NMR/MRI methods.

CRAZED experiment from the classical point of view

In this section we will revisit the analysis of the CRAZED experiment diagrammed

in Fig.9(b). In the last section we analyzed the experiment using quantum mechanical
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evolution of product operators. In this section, we will perform a “classical” analysis

of the magnetization evolution using the modified Bloch equations.

The exact form of the dipolar interaction (see [25]) is given by

Bd(r) =
µ0

4π

∫
d3r′

1

|r− r′|3

[
M (r′)− 3 〈M (r′) , r− r′〉

|r− r′|

]
, (II.33)

The secular part, which is the only one left after Zeeman averaging, is

Bd(r) =
µ0

4π

∫
d3r′

1− 3 cos2 θrr′

2|r− r′|3
× [3Mz(r

′)ẑ−M(r′)]. (II.34)

Remember that the Bloch equation without relaxation and diffusion terms is given

by

dM (r, t)

dt
= γM (r, t)× [B0ẑ + Bd (r, t)], (II.35)

where the constant magnetic field B0ẑ is augmented by the dipolar field Bd (r, t).

Eq.II.34, is a nonlocal function of magnetization distribution and makes Eq. II.35

essentially nonlinear.

Follow the pulse sequence in Fig.9 the magnetization right after θy RF pulse in

general is

Mz = M0 cos θ

M+ ≡Mx + iMy = M0 − sin θ. (II.36)

The classical expression for the excess magnetization M0 per unit volume produced
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by the difference between the number of spins with I = 1/2 aligned up and down

along the preferred direction is given by (previously, see Eq.I.2, high temperature

approximation has been used)

M0 =
(

1

2
γh̄
)
Nα −Nβ

V
= −1

2

N

V
γh̄ tanh

(
h̄ω0

2kT

)
= −1

4

N

V
γh̄=, (II.37)

where = = 2 tanh
(
h̄ω0

2kT

)
. Sign convention used in the previous expressions assumes

that positive gyromagnetic ratio gives M0 > 0 and = < 0.

Making straightforward substitution into differential Eq.II.35 and solving it we’ll

get

M+ (t) = M0 sin θ exp (i4ωt) exp

(
iγMzt

3

2

µ0

4π

∫
d3r′

1− 3 cos2 θrr′

2|r− r′|3

)
=

= M0 sinθ exp (i4ωt) exp

(
−iNγ

2h̄=
4V

3

2

µ0

4π

∫
d3r′

1− 3 cos2 θrr′

2|r− r′|3

)
=

= M0 sin θ exp (i4ωt) exp

−i=t cos θ
3

2

∑
j

Dij

 , (II.38)

where Dij is

Dij =
µ0

4π

γ2h̄

4

1− 3 cos2 θij
r3
ij

= 188.7

[
1− 3 cos2 θij

r3
ij

]
rad · · · s−1 (II.39)

for 1H and rij in nm and explicit summation over the spins replaced the integral for

the purpose of results comparison which will be done later.s Eq.II.38 says that the

zero frequency gets additional shift of =t cos θ 3
2

∑
j Dij. In order to get a good visual

explanation of the nature of the extra picks in 2D COSY experiment let us right down
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magnetization for this experiment right after the second π/2 pulse

M(t2 = 0) = ŷM0 sin (4ωt1)− ẑM0 cos (4ωt1) , (II.40)

which has the same form as Eq.II.38 if we’ll make θ = π +4ωt1.

Substitution into Eq. II.38 gives us

M+ (t1, t2) = iM0 sin (4ωt1)× exp [i (4ωt2 + ξi cos (4ωt1))] , (II.41)

where ξi = =t21.5
∑
j Dij.

As we can see from exponential term, frequency shift during t2 is modulated by

the cos (4ωt1) function producing after Fourier transform multiple peaks.

Under the strong linear gradient assumption [2] the nonlocal expression for the

demagnetizing field in Eq. II.34 transformed into

Bd(s) = µ04s [Mz (s) ẑ −M (s) /3] = (4s/γτdM0) [Mz (s) ẑ −M (s) /3] . (II.42)

Direct substitution to the Bloch equation gives us

dM (s)

t
= γ [M (s)×B0 (s)] + γ [M (s)×Bd (s)] =

= γ [M (s)×B0 (s)] + γ [M (s)× µ04s [Mz (s) ẑ −M (s) /3]]

= γ [M (s)×B0 (s)] + γ [M (s)× µ04sMz (s) ẑ] . (II.43)
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For the n-quantum CRAZED sequence

Mz = −M0 cos [4ω (t1 + T ) + γGTz]

M+ = iM0 sin [4ω (t1 + T ) + γGTz] . (II.44)

Second gradient and the following evolution in t2 keeps the Mz constant and changes

the transverse magnetization as follows

M+ = ei4ω(nT+t2) einγGTz exp {iγµ0Mz4s (nT + t2)} iM0

× sin [4ω (t1 + T ) + γGTz] . (II.45)

Change of variables t1 + T → t1, nT + t2 → t2 plus Bessel function expansion and we

can rewrite Eq.II.45

M+ = ei4ωt2einγGTziM0 sin (4ωt1 + γGTz)

×
∞∑

m=−∞
imJm (−t24s/τd) e

im4ωt1+imγGTz

= ei4ωt2
M0

2

∞∑
m=−∞

imJm (−t24s/τd)

×
[
ei(m+1)4ωt1+i(n+m+1)γ GTz − ei(m−1)4ωt1+i(n+m−1)γ GTz

]
. (II.46)

Strong gradient assumption now means that γGTz winds the magnetization in several

turns, thus averaging over the sample makes the signal disappearing unlessm = −n±1
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and Eq.II.46 reduces to the next one

M+ (t1, t2) =

i−1−nei4ωt2e−in4ωt1
M0

2

[
J−n−1

(
−t24s

τd

)
+ J−n+1

(
−t24s

τd

)]

= i−1−nei4ωt2e−in4ωt1M0n

(
τd
t24s

)
× J−n

(
−t24s

τd

)

= in−1ei4ωt2e−in4ωt1M0n

(
τd
t24s

)
× Jn

(
−t24s

τd

)
. (II.47)

CRAZED structure studies

Warren: “. . . We have discovered a significant omission in the decades-old theo-

retical understanding of NMR, and have corrected this omission to reveal new physics

and a new imaging method.”[26].

Simple structure studies

The first viable structure application was reported in Science [19]. In this study

the presence of biomolecules in water solution was detected through intermolecular

quantum coherences and interpreted using a density matrix formalism. It was shown

that the CRAZED method can detect the signal originating primarily from pairs of

spins separated by about one turn of the magnetization helix. The distance can be

adjusted to any value from ∼1 µm up to hundreds of micrometers by varying the

gradient strength and length. It was proposed that the intensity of a two-quantum

peak between water and dilute molecule inside a cell or vesicle could directly measure

31



the radial distribution function of the water concentration, and this might correlate

with local structural abnormalities. A somewhat similar approach has been published

by Bowtell one year earlier in 1992 (see [27]).

Despite the fact that analytical solutions containing structure sensitive parameters

like magnetization density, helix pitch size or diffusion, existed quite for awhile it took

more than ten years to put them together in a reasonable NMR/MRI modality . The

quest for robust CRAZED based structure sensitive application is still on. In this

section we want to give a short review of the main steps which have been taking in

this direction. I’ll keep the right to talk about publication which I think relevant to

the CRAZED structure applications, omitting the others not less interesting ones.

The first tabulated set of structure scales as an explicit function of correlation

distances was obtained for the pair of nested cylinders containing different liquids

in 1995. The fact of interaction of one type of the spins with another across the

walls of the tube was proved through 2D spectroscopy [28] methods. An interesting

fact is that this approach have been reported as an imaging, although one can easily

understand it as a result of everlasting pressure for the results.

Similar publication of the next year 1996 came from the group of Bowtell [29]

with major difference in numerical simulation method based on Enzel series decom-

position. The most unique side of this paper is that Fourier spectrum of modulated

magnetization and both Fourier images of the structure and dipolar demagnetizing

field were put into correspondence in K-space allowing to predict many observable

properties of the signal. Again their sample was constructed from coaxial tubes filled

with acetone and water. Unlike the 2D studies of Warren only correlation distance
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value has been changed through the process of varying modulation gradients.

In order to speed up the acquisition process burdened with multiple averages

and/or phase cycling scheme iMQC sequences have been fitted into echo planar imag-

ing [30]. Many functional MRI iMQC applications have been reported as well (see

for example [31]).

Non imaging applications of the periodic structures were prevailing in the first

years, such as one by Charles-Edwards et al. [32] have studied a system of glass

beads and glass tubes in a water container. Robyr and Bowtell et al. [33] have studied

the signal from randomly packed polystyrene microspheres as a function of imposed

correlation distance. Double gradient filter have been used unlike the continuous

background gradients of the first years. More references can be found in Chapter 5

with respect to our primary biology samples studies.

Shocking abundance of the studies where samples were studied varying dc (cor-

relation distance) values and fitted to the imaging sequence have followed.In 2002

Louis-Serge Bouchard et al. [34] have imaged plastic bottle filled with plastic straws

of various size. Many interesting problems such as interference with imaging gradi-

ent have been considered. Bowtell et al. [6] as well as Alessandri and Capuani [35]

have studied plastic holders filled with glass beads later they tried to use the same

approach in trabecular bone studies and have been joined by Chih-Liang [36], Louis-

S. Bouchard [37] and many others. Number of the CRAZED brain applications is

uncountable as well (see for example Zhong [38] and Rizi [39]). Author do not like

to make this work look like endless review of the papers were only small variation

of samples, timing schemes and numerical interpretations have been introduced and
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will stop here.

There is a subtle division into CRAZED spectroscopy and imaging applications.

The last one merely represent a visualization of spectroscopy methods throughout

the volume of the sample under consideration by means of different imaging pulse

sequences with only hope to see “unique” or “new” contrast which is in many cases

just an imaging artifact.

In order to check the “CRAZED” origin of the image there is a test which almost

became a standard. That is a “3 cos2(θgradient) − 1” test when the gradients placed

along Z, Y and X axis consecutively (assuming that B0 field is pointed along Z axis).

If we subtract the sum of two images intensities when the CRAZED gradients are

placed along X and Y axis respectively from the image when the gradients are placed

along Z axis we should get a zero intensity image if the origin of the signal is iDQC.

Another approach which stands alone from all other CRAZED applications is a

diffraction approach. This one also able to produce analytical results matching the

reality but so far without any major practical applications [40].

Paterson autocorrelation function

The most appealing and natural applications of the iMQC phenomena is an at-

tempt to solve a backward reconstruction problem for the unknown geometry based

on the DDF measurements. So far it has been done with inconsistent success for the

simplest form of the uniform arrays of microbjects [41] and Warren’s group has en-

coded through the correlation gradient strength and direction the macroscopic sample

geometry [42]. Then the integral equation for the total signal intensity was solved
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numerically by a simulated annealing algorithm to recover indicator function of the

fluid phase. Group of P.Robyr and R.Bowtell has studied the analytical relationship

Figure 10: One slice of the data intended for reconstruction of the Patterson function of the long
cylinder.

between the CRAZED signal and Patterson function of the sample [43] producing

some general results of an interim value for the tubes filled with glass beads of dif-

ferent size. Patterson function (see Eq.II.48) is closely related to the sample’s auto-

correlation function and may serve as a good descriptor of the structure if properly

reconstructed form the FID signal.

PM(r) =
i4D

γµ0π3/2W (r : D, t)

2r

3(r̂̂z)2 − 1

∫ ∞
∞

d3kmSr(km) exp (ikm · r), (II.48)
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were r is the radius vector, D is the coefficient of diffusion, km is the wave vector of

the modulation imposed on the transverse magnetization by the first gradient pulse

(see Fig.9(b)), t is the time counted from the middle of the second gradient and W

is given by the following expression

W (r;D, t) =
∫ r/

√
8Dt

0

(
1− 24Dtx2

r2

)
e−x

2

dx−
√
π

2
. (II.49)

We set up two experiments with the purpose to test practical aspect of this sample

shape reconstruction technique. The signal from the long 10 mm nmr tube filled with

CuSO4 dopped water have been measured (see Fig.10) and the same type of the data

was acquired for the nerve sample prepared in a way described in Chapter 5 (see

Fig.11).

One common feature for both experiments is an extremely long acquisition time,

on the order of tens of hours to sample the whole k-space for backward reconstruction.

We have abandoned this type of measurement as an unpractical. You can see nice

3D evolution of the “3 cos2(θgradient) − 1” dependence as a function of the gradient

strength, which will be studied in chapter V.

CRAZED imaging

As we mentioned before the imaging application have been produced by fitting

the basic spectroscopy sequence into the gradient echo imaging. We have repeated

on our 7 Tesla Varian small imaging system experiment as described in [6].

The cross section images of 1 cm nmr tube exhibit expected behavior of the spin
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Figure 11: Nerve sample Patterson function studies.

ensemble as a response to the changed CRAZED gradient strength. The bigger the

correlation distance the less number of pair of spins contribute to the signal of interest

within the limited volume of the sample.

Additional phase cycling schemes alleviate the problem of undesirable coherence

pathways and interference of the crazed gradients with the basic imaging gradients.

The problem of very long time acquisition still persists. EPI imaging with CRAZED

gradients have been tried as well without major success and motivation mainly be-

cause the robust applications even for the regular iMQC sequence have not been
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Figure 12: CRAZED imaging. Imposed correlation distance dc values printed at the top of each
image. Image intensity distribution as a function of distance from the center is plotted below. For
more details see Bowtell et al. [6].

developed yet.
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CHAPTER III

NUMERICAL SIMULATIONS

Bloch equation. Linear and nonlinear terms.

Currently, within CRAZED studies, there are two major approaches to the analyt-

ical description and subsequent numerical simulation of the dipolar field contribution,

provided by Warren and Enzel/Deville/Bowtell, although one may argue that the dif-

ferences are limited those differences between a Fourier integral and a Fourier series.

In the context of my thesis, the chapter “Numerical Simulations” is limited to the

solution of the first order differential equation, the modified Bloch equation, by the

Runge–Kutta method [44], or, where it is sufficient, just by the first order term in the

Taylor expansion in accordance with the linear approximation. As has been shown

previously in [2] when the gradient is sufficiently large, the dipolar field Bd takes the

local form in Fourier space, the integral Eq.II.2 is then simply a convolution integral,

and our results should be consistent with this.

The Bd field by itself is not of much value unless we introduce it into the Bloch

equation, which is an empirical vector equation representing a combination of two

relaxation terms with the basic equation of motion of magnetization [1]. If this

mathematical model properly incorporates the dipolar field Bd, we may expect the

credible reproduction of the free induction decay (FID) in the presence of the real
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dipolar field and some other, perhaps new, properties of the signal.

∂M (r, t)

∂t
= γM (r)×

{[
∆ω

γ
ẑ +G (̂s · r) ŝ

]
+ Br (r) + Bd (r)

}

−Mx (r) x̂ +My (r) ŷ

T2 (r)
+
M0 (r) +Mz (r) ẑ

T1 (r)
−D∇2M (r, t) . (III.1)

Eq.(III.1) is a partial differential equation. All three components together repre-

sent a set of nonlinear coupled equations. The nonlinearity comes from the ~Br and

~Bd dependence on ~M , as will be discussed below. The time of integration is deter-

mined by how far we want to follow magnetization evolution. The first term in the

curved brackets on the right side represents the effect of chemical shift and applied

gradients G. Then we have the non-linear radiation damping and dipolar field terms.

The effects of diffusion and relaxation complete the picture. Here and further on in

the text we will follow the approach developed by Tilman Enss and Sangdoo Ahn

and Warren S. Warren in [7].

The chemical shift, the effect of applied gradients, and relaxation terms are local

in space. They involve the local combination of instantaneous magnetization values

at each point with relaxation constants and the gyromagnetic ratio. There are still

several nonlocal terms left to compute: diffusion, radiation damping and dipolar field.

Radiation damping has the form:

~Br (~r) =
〈My〉
γM0τr

x̂ +
〈Mx〉
γM0τr

ŷ, (III.2)

where τr = 1
γµ0M0(ηQ/2)

, and η is the filling factor and Q is the probe quality factor.
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Radiation damping is nonlocal because it involves the average magnetization 〈M⊥〉 of

the sample. But if the B1 field is uniform throughout the sample, then the radiation

damping effect may be treated as the same in every point of the sample. Thus for

each step in time we need to calculate Br only once.

The next term, not so straightforward for our computations, is the dipolar field Bd.

As we can see from the expression for the secular part of the DDF field,

~Bd (~r) =
µ0

4π

∫
d3r′

1− 3cos2θrr′

2|~r − ~r′′|3
×
[
3Mz (~r′) ẑ − ~M (~r′)

]
(III.3)

it depends on the magnetization values at each point of the sample, which makes it

time dependent as well.

Apart from a few special cases, this integral should be calculated directly. Deville

et al. [2] have shown that in real space this integral is a convolution product (nice

derivation using spherical harmonics is given in recent L.-S Boucahrd et al. paper

[42])

~Bd

(
~k
)

=
µ0

6

[
3
(
k̂ · ẑ

)2
− 1

] {
3Mz

(
~k
)
ẑ − ~M

(
~k
)}
, (III.4)

where

~Bd

(
~k
)

=
∫
d3exp

(
i~k · ~r

)
~Bd (~r) (III.5)

~M
(
~k
)

=
∫
d3exp

(
i~k · ~r

)
~M (~r). (III.6)

For the fully modulated magnetization profile, represented by a single Fourier
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component, Eq.(III.4) may be written as follows

~Bd (s) = µ0∆s

[
Mz (s) ẑ− 1

3
~M (s)

]
, (III.7)

where ∆s =
[
3 (̂s · ẑ)2 − 1

]
/2 and k = |k|̂s. It is necessary to mention at this point

singularity at k=0 for Eq.(III.4), which will be properly treated later.

Thus, instead of the computationally extensive integral Eq.(III.3), we do a fast

Fourier transform to get an ~M
(
~k
)
. Then we multiply this three dimensional matrix

at every point in Fourier space by the factor

µ0

6

[
3
(
k̂ · ẑ

)2
− 1

]


−1 0 0

0 −1 0

0 0 2


. (III.8)

After backward transformation we will get ~Bd (~r).

In the same way, the differential operator for diffusion D∇2 can be reduced to

the −Dk2 in Fourier space. A flow chart for the method described can be found in

Fig.13.

This method has existed for quite a while with many successful applications and

we have used it as well for our specific set of phantoms and biological samples. Having

the predicting power of a good mathematical model has helped us to highlight specific

properties of the geometry under study and has given insight about the next steps

necessary to undertake. For the purposes of our calculations, the Matlab, R2006b(73)

software package has been used. The computer was running under RedHat Enterprise
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Figure 13: Calculation of the modified Bloch equation. Reproduced from [7].

Linux-WS v4 OS and has Dual Intel(R) XEON(TM) CPU 2.20GHz with 3.5GB RAM

and 80GB ATA HD.

Phantom Generation

For the purpose of our simulations, a set of simple phantoms has been created.

Spheres, single individual tubes, and groups of fibers, packed or spaced at a certain

distance, have been generated using analytical formulas of these objects. A single

sample generated in such a way has been used as a “seed” for a sequence of “snap-

shots,” 3D matrices corresponding to the object sequentially placed at the different

angles (see Fig.14). That is, we decided to generate these matrices not analytically
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but through the application of rotational operators to the seed matrix. See Eq.III.9

Qx (φ) =



1 0 0

0 cosφ −sinφ

0 sinφ cosφ


, Qz (θ) =



cosθ −sinθ 0

sinθ cosθ 0

0 0 1


. (III.9)

It is advantageous in a way that the sample may not always have simple geometry

and/or possess the analytical description of its shape. Thus, later on, we may use

arbitrary shapes supplied from any 3D data acquisition and reconstruction scheme.

(a) Seed (b) Rotated Sample

Figure 14: Using initial orientation of the sample along Y axis as a “seed” (a) rotated magnetization
distribution (b) has been generated using Eq.III.9

Instantaneous RF pulses and gradients

A Double Quantum Coherence version of the CRAZED sequence has been simu-

lated with a four part phase cycling scheme, (see Fig.15). A Matlab subroutine for
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Figure 15: Intermolecular double-quantum coherence pulse sequence with 4 part phase cycling on
the first pulse and receiver. All pulses are adiabatic.

the instantaneous RF pulse has been written in such a way that it describes the appli-

cation of the real RF pulses in an infinitesimally short period of time, (see Appendix

A). It means that each point and each component of the 3D matrix representation of

magnetization undergoes instantaneous transformation, resulting in a flip of the total

magnetization vector on the arbitrary angle.

Instantaneous gradients have been introduced in the same way, that is the phase

shift associated with the presence of the gradient has been instantaneously applied

to the discretized magnetization values at each point of space, (see Appendix A).

Phase cycling implementation

The phase cycling procedure (see Appendix A) has been implemented with strict

random access memory limitations in mind. Just the single matrix of 256×256×256

values of magnetization at each point in space takes 128 Mb of memory. We have cre-

ated on the hard drive three arrays of magnetization values which have been uploaded

and then augmented by the current value magnetization for this particular time step
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within the current phase step and then saved back to the hard drive. This procedure

substitutes slow, but nearly unlimited, hard drive space for the more limited random

access memory.

DDF calculations in Fourier space and by direct integration

In this section, we will calculate the single z component of dipolar field Bd using

Eq.III.3 and Eq.III.4 considered in the previous section.

We need to create a simulation volume sized N×N×N voxels and center within

it a uniformly magnetized cube twice as small (that is N/2 × N/2 × N/2, see the

code in Appendix A for details) with a single nonzero component Mz=1. We want

to see how calculation time for the component(s) of dipolar field Bd will depend on

the method we use and the value of N. The code does not assume calculation time

dependence on the size of the cube, and only one z component of the dipolar field

Bdz was calculated. Calculations of all three will take roughly three times as much

memory and time unless duly optimized to the symmetry of the problem.

The singularity at ~k = 0 in Eq.III.4 presents a complication in making a quanti-

tative comparison of Direct integration versus Fourier space calculations. When our

calculations take place in Fourier space, the ~Bd(~k = 0) is explicitly set equal to zero,

which removes the contribution from average value of the calculated magnetization in

real space, but has the advantage of avoiding the singularity in Eq.III.4. Other values

for ~Bd(~k = 0) were explored, but without any serious advantages and this strategy

has been abandoned. From this point on, the Fourier Transform will called FFT,

after its implementation in Matlab as a Fast Fourier Transform.
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Table 1: Sample information and performance data for computer systems used for comparison

Linux Workstation MAC/PC
processor : 0 OS Name :Microsoft Windows XP Professional
vendor id : AuthenticAMD OS Version :5.1.2600 Service Pack 2 Build 2600
cpu family : 15 OS Manufacturer :Microsoft Corporation
model : 4 OS Configuration :Member Workstation
model name : AMD Athlon(tm) 64 Processor 3400+ OS Build Type :Multiprocessor Free
stepping : 8 Product ID :76487-OEM-0040055-81049
cpu MHz : 2200.169 System Manufacturer:Apple Computer, Inc.
cache size : 1024 KB System Model :MacPro1,1
fpu : yes System type :X86-based PC
fpu exception : yes Processor(s) :4 Processor(s) Installed.
cpuid level : 1 [01]: x86 Family 6 Model 15
wp : yes Stepping 6 GenuineIntel 2659 Mhz
flags : fpu vme de pse tsc msr pae mce cx8 [02]: x86 Family 6 Model 15

cx8 apic sep mtrr pge mca cmov pat Stepping 6 GenuineIntel 2660 Mhz
pse36 clflush mmx fxsr sse sse2 [03]: x86 Family 6 Model 15
syscall nx mmxext lm 3dnowext 3dnow Stepping 6 GenuineIntel 2660 Mhz

bogomips : 4407.38 [04]: x86 Family 6 Model 15
TLB size : 1088 4K pages Stepping 6 GenuineIntel 2660 Mhz
clflush size : 64 BIOS Version :APPLE - 5c
cache alignment: 64 Total Phys Mem :2,042 MB
address sizes : 40 bits physical, 48 bits virtual Avail. Phys Mem :1,407 MB

Virt Mem: Max Size :2,048 MB
Virt Mem: Avail :2,008 MB
Virt Mem: In Use :40 MB

In our study we have used two computer systems: a Linux Workstation running

Red Hat Enterprise Linux OS and a Mac/PC machine running Windows XP Pro. Per-

formance and information pages for both of these systems are generated and printed

in Table.1.

Fig.16 plots the data from this “contest” between direct integration (Eq.III.3) and

Fourier space calculations (Eq.III.4). As one may expect, the time necessary for the

calculation of a single component grows as a power of 3 and 6 for the Fourier Space

and Direct Integration method respectively. One may see it as a direct consequence

of the code’s nested loops structure reflecting our simulated physical reality.

Fig.17 compares the results of calculating ~Bd(~k = 0) directly and through Fourier

space. The differences are quite small and happen predominately close to the edges
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Figure 16: Time comparison for Direct and Fourier calculations

of the simulated space. This difference is due to the inherent repetition in real space

that is implicitly assumed when calculating ~Bd(~k = 0) via FFT. One way to compare

two sets of the data is to calculate the value of Ψ, simular to the standard deviation

value (see Eq.III.10).

Ψ =

√√√√∑V

(
Bd

Fourier −Bd
Direct

)2

N3
, (III.10)

which is plotted as a function of the number of voxels on Fig.18. The key result is

that average deviation between the two methods is ∼ 10−3 times smaller than the

equilibrium Mz value of 1, i.e. that calculating Bd in Fourier space adds only a small

systematic error.
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Figure 17: Direct and Fourier calculations for cubical sample

Dependence on memory fragmentation and other factors have not being explicitly

accounted for. One may consider the differences which originate from the exclusion of

the k0 component from Fourier method calculations. This question will be addressed

in the next section.

Contribution of the ~k = 0 component to the dipolar field calculations

The singularity in Eq.III.4 has the following form

lim
kx,ky ,kz→0

3

 kz√
k2
x + k2

y + k2
z

2

− 1

 (III.11)
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Figure 18: Ψ =

√∑
V

(Bd
F ourier−Bd

Direct)2

N3 value as a function of N. Left raw represent the data
when k0 component was set to zero. Right raw represent the data when nonzero k0 component was
intentionally removed from the original magnetization distribution.

and accounts for the exclusion of k0 component from our calculations. The value of

Eq.III.11 depends on how kx, ky, kz approach zero.

From an explicit expression of one dimensional Fourier transform (see Eq.III.12).

FFT [x (n)] = X (k) =
N∑
n=1

x (n) exp (−j · 2π (k − 1) (n− 1) /N) ,

1 ≤ k ≤ N, (III.12)

one can see that the ~k = 0 (~k = 1 in our one dimensional calculation based on Matlab

conventions) component, which is the first term of the sum to the right, is just an
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average value of the function taken over the simulation grid (see Eq.III.13).

x (n) =
1

N
X (k = 1) +

1

N

N∑
k=2

X (k) exp (j · 2π (k − 1) (n− 1) /N) ,

1 ≤ n ≤ N. (III.13)

Thus, if the original magnetization distribution does not have any average value or it

has been subtracted (see Eq.III.14).

x (n)− 1

N

N∑
n=1

x (n) = x (n)− 〈x (n)〉 =

1

N

N∑
k=2

X (k) exp (j · 2π (k − 1) (n− 1) /N) , 1 ≤ n ≤ N.

x (n)− 〈x (n)〉 = IFFT

(
X (k)

∣∣∣∣
k0=0

)
(III.14)

Eq.III.4 will have exact numerical equivalent.

These considerations are the basis for Warren’s treatment of the k0 component

referred to in [7] and studied previously in detail in [45].

There is a question of what to do with the fictitious magnetization profile which

was created by subtraction of the average value of magnetization everywhere over the

simulation volume. The answer, found by numerical simulations, in most cases, is

nothing.

This results becomes clear by visualizing the effect of the dipolar field in Fourier

space. Fig.19 plots the 3D matrix of the dipolar weighting coefficients. As one might

expect from our previous considerations (see Eqs.III.12-III.14) the ~k = 0 contribution

to the calculated DDF value needs to be computed by a different method than all other
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Figure 19: Dipolar Coefficient

Fourier components. Specifically, we will calculate the ~k = 0 component contribution

in r-space, thus avoiding the singularity noted in Eq.III.4 and Eq.III.11, i.e. we will

use:

~Bd (~r)k=0 =
µ0

4π

∫
d3r′

1− 3cos2θrr′

2|~r − ~r′′|3
×
[
3〈Mz (~r′)〉ẑ − 〈 ~M (~r′)〉

]
, (III.15)

in which the triangle brackets correspond to the average values of magnetization

components over the simulation volume, in accordance with Eqs.III.12-III.14. We

will then add this contribution to the ~Bd(~r) calculated via Eq.III.4.

We have implemented this procedure numerically in Appendix B (see the quoted

part of the ddf.m function). It is computationally equivalent to the calculation of

the DDF field by the direct method (see Eq.III.3). The key result is that including

the contribution to ~Bb(~r) from the ~k = 0 component of ~M(~k) makes extremely little

difference. Its contribution small and becomes negligible as soon as magnetization is

significantly modulated and the ~k = 0 component value naturally goes to zero.
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Typical data from numerical simulations. Fitting the Bessel function

Fig.20 represents a typical snapshot of our simulation program interface. The

basic layout of our output GUI changes on a regular basis depending on the goal of

a particular simulation. Here is a list of the elements with explanations given in the

order of their appearance:

1. “Number of voxels = 128” corresponds to the size of our simulation grid, which

is 128 by 128 by 128 in this case.

2. “Sample Radius = 32 voxels” is the radius of the phantom if it is spherical

(disc) or half the length of its side if it is cubical.

3. “R1 = 0s−1” and “R2 = 0s−1” are the relaxation rates.

4. “τdipol” is a dipolar time τdipolar = 1/ (γµ0M0).

5. “τdamp” is the radiation damping time τdamping = τdipolar/ (ηQ/2).

6. “K-space = n” filter refers to filtering in the Fourier space to reduce Gibss

ringing.

The next column continues to give general descriptions of the numerical experiment

set up.

1. “Voxel size = 0.15625 mm” is the size in real units of measurements ascribed

to the simulation volume; that is, we put the 128×128×128 simulation volume

in correspondence with a 2×2×2 cm cube in the real space, which resulted in

20 mm /128 pts = 0.15625 mm voxel size (see the next two items).
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2. “Sample size =5 mm” is the phantom size.

3. “Volume size= 20×20×20 mm3” is the size of the smallest discrete element in

the simulation grid.

4. “RF pulses =[90 90] degrees” are the flip angles of the α and β pulses.

5. “RF phases =[90 90] degrees” are the phases of RF pulses.

6. “First inst grad = [0.011 0.011 0.125] cycles/voxel” refers to the first gradient

orthogonal component along each major axis [x y z]. The units of measurement

reflect the effect this gradient produces on the magnetization. This gradient

winds the magnetization to a certain number of cycles per voxel.

7. “First inst grad = [0.0002 0.0002 0.0019] Gauss/cm*s” The next line shows the

same gradient in terms of (Gauss per cm) × second. Because our gradients are

treated as instantaneous, the units are modified to incorporate s multiplier.

8. “Correlation distance dc=[7.1023 7.1023 0.625] mm” is calculated in accordance

to the formula dc = π/(γGT ) and given in this case in mm.

The last column is of general interest and gives the shape of our sample (“cube”),

value of B0 field (7 Tesla), time integration step “dt =0.05 s” (in case we have more

than one) and “calculation time =72.92 minutes” which is the time required for the

program to run from the very beginning until the last piece of data has been displayed.

Approximately 250 ms after we began to sample the signal, it started to deviate

from the Bessel function. That is the time when the nonlocal nature of the dipolar
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Figure 20: Snapshot of the simulation program interface for the cubical sample 64 by 64 by 64 points
under basic conditions. No relaxation processes, radiation damping is neglected

field manifests itself. This simulation program calculates ~Bd(~r) using the Fourier

space method discussed in the previous sections. In the limit of high G, we expect

a local relation (Eq.III.7), which leads to a Bessel function growth in time. Clearly,

this result is not the case for our general simulations.

So far the majority of publications have been content with the linear part of mag-

netization evolution under the dipolar field. From the point of view of the numerical

simulations it looks quite reasonable. Within the linear regime only the initial slope

of the time evolution of the signal (〈My〉 in Fig.20) is relevant. This is all we need

for the experiment described in chapters IV and V. Unless we need to follow the

magnetization evolution for a time period on the order of τdipolar or longer, there is
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no need to perform computationally extensive simulations, with the more than one

time step (see section “DDF calculations in Fourier space and by direct integration”.

For water at room temperature and a B0 field of 7 Tesla, τdipolar = (γµ0M0)−1 ≈ 70

ms, see Fig.20).

We have also tested experimentally that as long as we stay within the linear regime

or, more precisely, within the time period when the DQC signal grows and reaches its

maximum, all properties of the signal we have mentioned previously in relation to the

numerical simulation stay the same. It should be mentioned that the maximum in

DQC signal observed experimentally does not necessarily correspond to the 2.2 τdipolar

maximum dictated by the analytical expression. Typically this echo amplitude has

been modified and shifted to much earlier times by T1 and T2 relaxation processes

plus diffusion and radiation damping.

When the signal decay due to T2/T1 relaxations and/or diffusion damping is long

enough (compare to τdipolar) oscillatory behavior of the signal, as illustrated in Fig.20.

In the literature, this regime is called nonlinear. Use of term “non-linear” may be

confusing. There are two ways in which the CRAZED experiment is nonlinear: 1) the

signal is non-linear in time, though often, as in chapters IV and V, we only calculate

the linear regime. 2) The Bloch equation is non-linear in ~M . We are currently

discussing the first case. At the beginning of this chapters, we discussed the second

case.

There actually is a subtle connection between these two uses of the term “non-

linear”. In chapter IV and V we will use magnetization at time t = 0 to determine

d ~M
dt

, and we will also approximate the signal as proportional to d ~M
dt

. In this sense, we
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get rid of both non-linearities. That is, if you only use the linear term in the time

evolution, you lose at least some of the unusual effects of d ~M
dt

being non-linear in ~M .

The nonlinear regime was studied in a recent paper of Marques et al. [46]. It

should be mentioned that this study uses different type of simulations which is limited

the accurate regime of the solution of the system of differential equations.

Take a look at the output of our numerical simulations in Fig.20. The linear

regime was expected to be and was observed up to ≈ 300 ms (the maximum of the

signal happens to be at 2.2τdipolar). The red dotted line represents the predicted

Bessel function behavior and the solid blue line represents our numerical simulations.

The linear regime is maintained if t2/τdipolar � 1 which makes Jm (t2/τdipolar) ∝

(t2/τdipolar)
m. In this case Jn−1 term dominates and the signal varies as (t2/τdipolar)

n−1

which is exactly what we see in our simulations. After ≈ 300 ms these approximate

relationships are not valid anymore.

It is possible to make the first maximum in simulations happens closer to the first

maximum of the predicted Bessel function by using a finer grid size (and a bigger

number of voxels) which will allow us to simulate stronger gradients. That will make

linear dependence (somewhat different from the term “linear regime” if referring to the

evolution from the initial unperturbed state of magnetization) between magnetization

M and induced dipolar field Bd valid for a longer period of time.

We have enough elements to efficiently reproduce an evolution of magnetization

under the Bloch equation. In order to validate this statement we can explicitly make

the linear approximation regime (Bd ∼M) valid throughout the whole time course of

magnetization evolution (see Fig.21). Numerically, it is done by making a matrix of
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Figure 21: Magnetization evolution under Bloch equation. Strong gradient assumption was simu-
lated by making the matrix of dipolar coefficients in the K-space equal to 1.

dipolar weighting coefficients explicitly equal to the unit matrix. Physically, it means

that Bd ∼ αM for any moment in time, not only at the initial stage (see Fig.21).

The closest match between the simulations and the predicted Bessel function-like

behavior we were able to achieve was when the number of voxels=265 and CRAZED

gradients were strong enough to wind the magnetization helix more than 10 times

across the sample. It does not mean that our data is wrong; as explained above, we

just can not numerically simulate long nonlinear behavior directly. Another analytical

method will be described in the last section of this chapter.
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Figure 22: Magnetization evolution under Bloch equation. Phase cycling procedure for the double
quantum coherence signal selection is implemented.

The contribution from the zero component is minimal, which has been tested by

making deltak = I, where I stands for the unit matrix, and deltak(ctr,ctr,ctr) = 0,

where ctr refers to the index of the zero frequency component in K-space, only the

slightest deviation from the Bessel function - like behavior was observed.

Phase cycling procedure was implemented to eliminate the effects of the finite

sample size and to most closely reproduce the real multiple pulse, multiple pulse

phases sequences.

59



(a)

(b) (c)

Figure 23: Holder with sample in the magnet reference frame.

Simple phantom simulation data

Numerical simulations have been set to closely reproduce our real experiment and

described as follows. Two types of experiments have been made (see Chapter 4 for

more details) which are the sample rotation in ZY plane (from Z to Y axis, see

Fig.23(b) and rotation in Y X plane (from Y to X axis, see Fig.23(c). For all type of

rotations the CRAZED gradients were kept along Z, Y , and X axis consecutively.

Fig.23(b) and (c) have two parts. The first part corresponds to the raw data,

that is iDQC signal as a function of sample orientation for three different gradient

orientations GZ , GY , GX (see the picture’s legend). The second part of each picture

represents the raw data processed with the following algorithm. The Z − Y sample
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Figure 24: Sample Holder

rotation data presented as ‖GZ‖ − ‖GY ‖ − ‖GZ‖ and the Y − X sample rotation

data presented as ‖GXR‖ − ‖GY R‖, where ‖Gi‖ is the magnitude of the signal

when the gradient is in the direction i and ‖GXR‖ and ‖GY R‖ are normalized

in the way described in [47], that is GXR = 4‖GX‖/(‖GX‖ + ‖GY ‖ + ‖GZ‖) and

GY R = 4‖GY ‖/(‖GX‖+‖GY ‖+‖GZ‖). The thick lines are the result of simulations,

while the three data set are plotted as thinner lines. Four complete sets of these data

are given in Figs.27, 28, 29, 30 at the end of this chapter.

Fig.23(a) displays a basic part of the sample holder, the probe. Through the

system of gears and chains it allows us to arbitrarily position the sample (painted

blue) in the magnet bore. In the picture the sample is shown oriented along the

Y axis, perpendicular to the major axis of the magnet. On Fig.24 we can see an
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Figure 25: Z to Y and Y to X simulations data as a function of dc measured in the units of the
sample width (2R).

Figure 26: Phantom numerical simulations data plotted with the metrics suggested by Bouchards et
al. as a function of imposed correlation distance dc measured in the units of the sample width (2R).

assembled sample holder with the probe head (low right corner), two perpendicular

planes rotation knobs and dials (low left corner) and a general view with RF coil

mount plate (top).
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Figs.25 and 26 is another representation of the numerical simulation data for

different sample orientations (given in degrees on the right side of each plot). Fig.25

gives simulation data for Z − Y (top) and Y −X (bottom) rotations as a function of

correlation distance dc in the units of the sample width (2R), for the three gradient

directions GX , GY and GZ and 10 different sample orientations (from 0◦ to 90◦

degrees) measured from Z (top raw of the pictures) and Y (bottom raw of the pictures)

axis respectively. Fig.26 plots the same correlation distance dc dependencies only

now for the Bouchard et al. metrics ‖GZ‖ − ‖GY ‖ − ‖GZ‖ and ‖GXR‖ and ‖GY R‖

described earlier.

Determining the CRAZED signal as dc goes to zero

In the linear approximation, the signal ~S is given by

Si ∝
dMi

dt
∝
(
~M × ~B

)
i

=
V∑
rl

[Mj(rl)Bk(rl)−Mk(rl)Bj(rl)] , (III.16)

where i, j, k refer to the vector components x,y,z and cyclic permutations and the

sum includes all discrete elements covering the sample [47].

In the limit dc → 0, ~Bd takes the following form in real space [2]

~Bd(s) = µ04s

[
Mz(s)ẑ−

1

3
~M(s)

]
, (III.17)

with 4s = 1
2

[
3 (ŝ · ẑ)2 − 1

]
/2 and ŝ is the unit vector along the gradient direction.
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Since ~M × ~M = 0, Eq.(III.16) reduces to

Sx = µ04s

V∑
rl

My(rl)Mz(rl)

Sy = −µ04s

V∑
rl

Mx(rl)Mz(rl). (III.18)

After the 90φ1 RF pulse:

Mx = −M0 sin (φ1)

My = +M0 cos (φ1)

Mz = 0. (III.19)

After first +GT gradient

Mx = −M0 sin (φ1) cos (ks) +M0 cos (φ1) sin (ks)

My = +M0 cos (φ1) cos (ks) +M0 sin (φ1) sin (ks), (III.20)

where k = γGT .

Ignoring relaxation and chemical shift, after the 1200 RF pulse:

Mx = [−M0 sin (φ1) cos (ks) +M0 cos (φ1) sin (ks)]

My = [+M0 cos (φ1) cos (ks) +M0 sin (φ1) sin (ks)]
(
−1

2

)
Mz = [+M0 cos (φ1) cos (ks) +M0 sin (φ1) sin (ks)]

(
−
√

3

2

)
. (III.21)
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After another +2GT gradient:

Mx = M0 [− sin (φ1) cos (ks) + cos (φ1) sin (ks)] cos (2ks)

+
(
−1

2

)
M0 [cos (φ1) cos (ks) + sin (φ1) sin (ks)] sin (2ks)

My =
(
−1

2

)
M0 [cos (φ1) cos (ks) + sin (φ1) sin (ks)] cos (2ks)

−M0 [− sin (φ1) cos (ks) + cos (φ1) sin (ks)] sin (2ks)

Mz =
(
−
√

3
2

)
M0 [cos (φ1) cos (ks) + sin (φ1) sin (ks)] (III.22)

For further calculations, we only need to keep those terms that reduce to
∑

cos (0) =

∑
1 =volume= V . Terms like

∑
cos (nks) are averaged to 0 in the limit dc → 0 (and

km →∞).

We will need the following trigonometric identities

sin (u) sin (v) =
1

2
[cos (u− v)− cos (u+ v)]

cos (u) cos (v) =
1

2
[cos (u− v) + cos (u+ v)]

sin (u) cos (v) =
1

2
[sin (u+ v) + sin (u− v)]

cos (u) sin (v) =
1

2
[sin (u+ v)− sin (u− v)] . (III.23)

The following combinations will produce zero and nonzero terms

cos (2ks) cos (ks) cos (ks) = cos (2ks)
1

2
[cos (0) + cos (2ks)]→

65



1

2
· 1

2
[cos (0) + cos (4ks)]→ 1

4

cos (2ks) cos (ks) sin (ks) = cos (2ks)
1

2
[sin (2ks) + sin (0)]→

1

2
· 1

2
[sin (4ks) + sin(0)]→ 0

cos (2ks) sin (ks) sin (ks) = cos (2ks)
1

2
[cos (0)− cos (2ks)]→

−1

2
· 1

2
[cos (0) + cos (4ks)]→ −1

4

sin (2ks) sin (ks) sin (ks) = sin (2ks)
1

2
[cos (0)− cos (2ks)]→

−1

2
· 1

2
[sin (4ks) + sin (0)]→ 0

sin (2ks) sin (ks) cos (ks) = sin (2ks)
1

2
[sin (2ks) + sin (0)]→

1

2
· 1

2
[cos (0)− cos (4ks)]→ 1

4

sin (2ks) cos (ks) cos (ks) = sin (2ks)
1

2
[cos (0) + cos (2ks)]→

1

2
· 1

2
[sin (4ks) + sin(0)]→ 0. (III.24)

Thus, substituting Eq.III.22 to Eq.III.18, we end up with

Sx = −
√

3

2
M2

0µ04sV

[ (
−1

2

)(
1

4

)
cos2 (φ1) +

(
−1

2

)(
−1

4

)
sin2 (φ1)

−
(

1

4

) (
− sin2 (φ1)

)
−
(

1

4

)
cos2 (φ1)

]
=

=
3
√

3

16
M2

0µ04s cos (2φ1)V (III.25)

and
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Sy = +

√
3

2
M2

0µ04sV

[ (
1

4

)(
−1

2

)
sin (2φ1) +

(
−1

4

)(
1

2

)
sin (2φ1)

+
(
−1

2

)(
1

4

)(
1

2

)
sin (2φ1) +

(
−1

2

)(
1

4

)(
1

2

)
sin (2φ1)

]
=

= −3
√

3

16
M2

0µ04s sin (2φ1)V. (III.26)

Finally, after applying phase cycling procedure, see Table 2

Table 2: Sx and Sy values after application of the 4 part phase cycling scheme.

φ1 acq Sx,
3
√

3
16
M2

0µ04
∑V

rl
1 Sy, − 3

√
3

16
M2

0µ04
∑V

rl
1

0 0 1 0
90 180 1 0
180 0 1 0
270 180 1 0∑

= 4 0

Sx =
3
√

3

4
M2

0µ04sV, Sy = 0. (III.27)
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Figure 27: Z to Y. Set 1
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Figure 28: Z to Y. Set 2
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Figure 29: Y to X. Set 1
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Figure 30: Y to X. Set 2
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CHAPTER IV

RAT SCIATIC NERVE CRAZED STUDIES

Introduction

We measured the CRAZED signal from ex vivo rat sciatic nerve while varying the

sample orientation and the gradient induced correlation distance, and we compared

these results to a doped water cylindrical sample of the same size but lacking any

internal structure. The results for the doped water sample are in good agreement

with numerical simulations of the dipole-dipole interactions in a uniform cylinder for

correlation distances ranging from 4 mm to 32 µm. These results indicate that the

relation between the measured signal and the induced correlation distance is highly

dependent on the sample and gradient orientation, thereby limiting the interpretabil-

ity of CRAZED measurements that vary only the correlation distance. The results

for the sciatic nerve are more difficult to interpret, but have characteristics indicative

of cylinders at both the ten and hundreds of micrometers distance scales, reflecting

both axon and the tibial/peroneal fascicle structures that compose the nerve. These

results support the view that CRAZED methods are able to probe a range of distance

scales not available in other magnetic resonance methods.

Conventional magnetic resonance imaging is typically limited to resolutions of

100’s of micrometers in small animals and to millimeters in humans. Diffusion and

diffusion tensor measurements [48] provide information on subvoxel structures (aver-

aged over the voxel dimensions) on the roughly 10 µm distance scale; hence its wide
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utilization in studies of axons. While diffusion tensor studies have been used to track

large (∼50 µm) cell orientations in muscle fibers [49], it is the parallel subvoxel struc-

tures on the µm scale that inhibit the water diffusion. No single conventional magnetic

resonance method probes both the micrometer and millimeter distance scales or an

intermediate scale (∼ 50–300 µm) between diffusion measures and direct imaging [50].

The CRAZED (COSY revamped with asymmetric z-gradient echo detection) [19]

pulse sequence, based on the long range dipole-dipole interactions [2], has a structural

sensitivity determined by the applied gradients. Specifically, the correlation distance

dc = π/γGT dictates the distance scale of the signal sensitivity to magnetization

variations, where G is the applied gradient amplitude with duration T (see Fig.31).

As such, the CRAZED signal provides a means for probing the intermediate scale as

well as providing a single consistent method for probing structures at all scales. The

relationship between dc, magnetization variations, and the measured signal, however,

is not trivial.

Numerous attempts have been made to establish this relationship numerically,

analytically, and experimentally. The principle of tuning experiment sensitivity to

the distance scale was proposed by Warren et al. [19] for solutions of proteins. The

signal was shown to originate predominantly from spins separated by one-half turn

of the magnetization helix. Richter et al. examined the sensitivity to the strength of

imposed magnetization modulation/helix pitch and its direction, and the existence of

resolution limits imposed by diffusion for parallel cylinders of varying content [28]. P.

Robyr and R. Bowtell [29] developed a Fourier-space formalism to explain experimen-

tal data from coaxial cylinders. Follow-up studies of the same group include modeling
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the signal dependence on the size of randomly packed polystyrene microspheres and

the imposed magnetization modulation at the tens of micrometers scale [33], and

directly imaging the signal variation as a function of the distance from the center of

a cylinder [6]. Tuning the correlation distance while imaging arrays of hollow cylin-

ders and straws, L.-S. Bouchard et al. reported DDF specific contrast variations for

complex structures when dc was on the order of the gap between these cylinders [34].

S.M. Brown et al. extracted the average bubble size distribution of the oil fraction

in a water/oil emulsion [51], and S. Capuani et al. examined pore size in trabecular

bone and travertine [52, 53]. Biological specimens studied with CRAZED include

trabecular bone [36, 37],human brain [38, 39, 54], tendons [55] and cartilages like pig

[56, 57] and mouse tails [58], earthworms and grapes pumped with nanoparticles [59].

Recently, Bouchard and Warren [47] demonstrated that the CRAZED signal of a

cylindrical sample has a dependence on the sample orientation, suggesting a method

for non-invasive mapping of fiber orientation in materials and biological tissues. How-

ever, they were not able to determine the axis orientation absolutely, but only relative

to a known initial condition, by measuring the CRAZED signal along three perpendic-

ular gradient directions before and after a sample rotation. Also, while they demon-

strated a clear dependence of the signal on the correlation distance relative to the

sample size, the exact nature of this dependence is unclear. In this work, we address

these issues of CRAZED signal dependence on sample orientation and the gradient

induced correlation distance in sciatic nerve and cylindrical phantoms with the goal

of determining what size information can be gained from the CRAZED signal.
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Figure 31: CRAZED pulse sequence

Methods

We have focused on peripheral sciatic nerve as a test case due to its relatively sim-

ple geometry, ignoring that its microstructures (though not its macrostructures) may

be best measured via diffusion methods. Rat sciatic nerve is composed of cylindrical

structures at the micrometer (axons), 100s of micrometers (fasciculi), and millimeter

(nerve) distance scales. The nerve originates as one unit from the lumber spinal re-

gions L4-L6, splits into the tibial and peroneal fascicles separated by a septum, then

more distally at the point of our dissection, the tibial and peroneal fascicles are two

bundles extending together as the sciatic nerve, approximately 0.4 mm in diameter,

before they completely separate [60, 61].

Samples

Two sample types were measured: 1) a plastic tube 5.94±0.10 mm long and

1.25±0.10 mm in diameter filled with an aqueous CuSO4 doped (1 g/L) water and 2)

rat sciatic nerve prepared as described below.

A total of five male and five female Sprague Dawley rats weighing from 300 to 450

grams were used for this study. Immediately after animal sacrifice, the two sciatic
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nerves from the right and left leg were excised. Any residue of connective tissue was

removed, taking care to avoid damaging the nerve. Two or three pieces, depending on

the nerve condition and size, each trimmed to 8.0 mm length, were placed one on the

top of another in a special sample holder and covered with perfluoropolyether vac-

uum oil (Fomblin 06/6, Solvay Solexis, Thorofare, NJ). Slight pressure applied after

wrapping it with the polyethylene film (Great Value TM, Wal-Mart Inc, Bentonville,

AR, USA) gives it proper compact cylindrical shape (1.8 mm wide) and preserved

it from drying. This fluorinated oil is biologically and chemically inert, produces no

NMR signal, and used in our case to avoid drying. Finally this sample was inserted

within a 5 mm diameter fiberglass tube and placed in a custom made sample holder

capable of sample positioning at arbitrary position and plane within the coil fixed in

the magnet (see Fig.24).

All procedures were performed in accordance with AVMA Guidelines on Euthana-

sia and endorsed by the Vanderbilt University Institutional Animal Care and Use

Committee.

CRAZED gradient values G = [0.0489 0.1632 0.5441 1.8139 6.0595 20.0000] G/cm

were chosen on a logarithmic scale. These gradients of length T = 6 ms each corre-

spond to correlation distances dc = [4002 1199 359.7 107.9 32.30 9.786] µm.

The double quantum period has the same duration t1 = 17 ms for both samples,

while t2 takes values of 65.5 and 20.6 ms for the water and nerve sample respectively.

The acquisition window is centered around the double quantum echo and TR = 5 s.
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Data Acquisition

Experimental data were acquired on a 7 Tesla 16-cm horizontal bore Varian Inova

(Varian Inc., Palo Alto, CA, USA) scanner system running at 300 MHz and using a

25 mm diameter and 22 mm long Litz coil from Doty Scientific,Columbia, SC, USA.

A spectroscopic CRAZED sequence with a double quantum filter was implemented

with four part phase cycling of the first pulse and receiver (see Fig. 31). After the

first 90◦ pulse, magnetization is flipped into the Y X plane and is spatially modulated

along the gradient G direction during time T . The 120◦ pulse rotates part of this

modulation back along the Z axis. After application of the second CRAZED gradient,

twice as long as the first one, the dipolar field refocuses the magnetization during the

acquisition time . Two 180◦ pulses are used to refocus magnetic field inhomogeneity.

All pulses used in the sequence were adiabatic BIR-4. The first pulse and the acqui-

sition were cycled with with phases 0, 90, 180, 270 and 0, 180, 0, 180, respectively,

in order to select for double quantum coherences during t1.

Both the water and nerve samples were rotated over a 90◦ arc in 10◦ steps (con-

trolled by a custom made device). Rotation within a single plane takes on the order of

2.5 hours. At every step, sample positioning was confirmed via gradient echo imaging.

Histology and electron microscopy were performed to assess the underlying struc-

tures of the sciatic nerve and to determine the extent of degeneration during the

CRAZED measurements. Sciatic nerve excised from the left leg was immediately fixed

in 4% glutaraldehyde in 0.05M PBS overnight. Nerve from the right leg was alowed

to sit for 3 hours in the magnet, in the sample holder, and then fixed in the same

manner. Samples were transferred to 1% OsO4 in PBS plus 1.5% K3Fe(CN)63H2O
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for 3 hours, washed in PBS, then stained en bloc with 1% uranyl acetate . After serial

EtOH dehydrations, samples were passed through propylene oxide before transition

to araldite resin in a vacuum oven. Ultra thin (60-70 nm) cross sections of sciatic

nerves were examined on a Phillips CM10 TEM equipped with an AMT 2 mega-pixel

camera. Thick sections (∼100 nm) were stained with toluidine blue and light pho-

tomicrographs were obtained on an Olympus microscope with a DP70 camera. All

measurements were performed at the room temperature of 20◦C.

Numerical Simulations

The water sample was simulated by a uniform cylinder 76 pts long and 16 pts

wide with the Mz component set equal to one. The size of the simulation volume was

256 pts×256 pts×256 pts. Treating these dimensions as corresponding to a 2 cm×2

cm×2 cm cube in the real space we’ll end up with the phantom 1.25 mm wide and

5.94 mm long, which matches the measured water sample.

The dipolar field was calculated via the methods of Enss et al. [7] and ignoring

the zero spatial frequency component. Relaxation, diffusion, and field inhomogeneity

were ignored, and a linear approximation to the signal was made. The method is

well described elsewhere [47, 42] and is based on a discrete form of the DDF signal

of the form of Si =
∑
Mj (r)Bk (r)−Mk (r)Bj (r). Where i, j and k represent

cyclic variations of x,y,z and summation is made over the all sample elements on

the simulation grid. These approximations allow a simplified pulse sequence without

refocusing pulses and with each segment performed instantaneously: (π/2 − GT −

2π/3−2GT−acquisition). A four part phase cycling scheme φπ/2=[ 0 , π/2 , π , 3π/2 ]
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and φacq=[ 0 , π , 0 , π ] was implemented.

The minimum dc is determined by the finite simulation grid spacing. We main-

tained ≥8 points per helix cycle, well above the low limit of 4 points per helix cycle

in [7]. In addition, the signal when dc = 0 was calculated analytically (as outlined in

the appendix) to be Sx = 3
√

3
4
M2

0µ04sV .

Two types of rotations were made in full accordance with the experiment: one in

the ZY plane, in 10 degree steps from along the Z axis (θgrad = 0◦) to the Y axis

(θgrad = 90◦), and one in the Y X plane, starting aligned along the Y axis (φgrad = 0◦)

to along the X axis (φgrad = 90◦).

All simulations were performed using MATLAB R©R2006b(73) (MathWorks, Nat-

ick, MA, USA) software package, running under RedHat Enterprise Linux-WS v4 OS

(Red Hat, Inc, NC, USA) on a Dual Intel R©XEONTM, CPU 2.20 GHz with 3.5 Gb

RAM and 80 Gb ATA HD of the local storage.

Results

Fig.32 illustrates the histology results. The electron micrograph of a sciatic nerve

cross section in Fig.32a reveals the underlying ∼10 µm axon structure, while Fig.32b

demonstrates that these structures are preserved during the 3 hour measurements.

Pressure to the nerve from excision, handling, and placement into the sample holder

can on occasion lead to regional compression artifacts [62], specifically changes in

myelin shape while still preserving the roughly 10 µm fiber size (data not shown).

Also, after 3 hours postexcision, axons and myelinating Schwann cells undergo degen-

eration; however, as illustrated in Fig.32b, all fibers remain intact, and the inevitable
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Figure 32: Histology of rat sciatic nerve cross sections. (a), (b) Electron micrographs reveal the
10 µm structures corresponding to myelinated axons. There is no discernible difference in fiber
structures between (a) sciatic nerve fixed immediately upon dissection or (b) fixed after 3 hours post-
excision. (c) Light microscopy of toluidene blue stained sciatic nerve show the peroneal (smaller)
and tibial (larger) fascicles that make up the sciatic nerve.

changes to the myelin ultrastructure and degradation of proteins and mitochondria

do not appear to effect our measurements. Both types of changes occur on a scale

smaller than our minimal dc=10µm. Fig. 2c. reveals the ∼ 400 µm structure of

tibial and peroneal fascicles, which make up the sciatic nerve. The CRAZED results

described below also indicate cylindrical structures on the ∼10 and ∼400 µm scale.

Fig.33 plots a typical result for the water sample data and simulations. The first

two columns correspond to Z−Y sample rotation data and simulations, respectively.

The third and forth columns correspond to Y −X sample rotation data and simula-

tions, respectively. Each row corresponds to a different induced correlation distance.

The dc = 0 and ∞ cases could not be experimentally measured due to finite gradient

strength and single quantum contamination, respectively. The results at 10 µm have

little signal due to severe diffusion damping [63] and are not shown.

Fig.34 plots the results for the water sample data and simulations again, but with

the Z − Y sample rotation data presented as ‖GZ‖ − ‖GY ‖ − ‖GZ‖ and the Y −X

sample rotation data presented as ‖GXR‖ − ‖GY R‖, where ‖Gi‖ is the magnitude
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Figure 33: Water sample data and simulations of Z − Y and Y − X sample rotations, with the
applied gradient in three directions (GX , GY , GZ) and with correlation distance values dc=[0 32 110
360 1200 4000 ∞] µm. The polar angle represents the sample orientation in the Z − Y or Y − X
planes. Each row represents a different dc. The three dots represent missing data due to limited
gradient strength (dc = 0) and single quantum contamination (dc =∞) or missing simulations due
to the finite grid resolution (dc = 32 and 110 µm). Note the strong agreement between simulations
and the data for this unstructured sample. Note also that as dc → ∞, the signal depends only on
the sample orientation, and as dc → 0 the signal depends only on the applied gradient direction.
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of the signal when the gradient is in the direction i and ‖GXR‖ and ‖GY R‖ are

normalized in the way described in [47], that is GXR = 4‖GX‖/(‖GX‖ + ‖GY ‖ +

‖GZ‖) and GY R = 4‖GY ‖/(‖GX‖+ ‖GY ‖+ ‖GZ‖). The thick lines are the result of

simulations, while the three data set are plotted as thinner lines.

Fig.35 plots the results for the peripheral nerve measurements. The first two

columns correspond to Z−Y sample rotation data plotted for each gradient direction

and the calculated ‖GZ‖ − ‖GX‖ − ‖GY ‖, respectively. The third and forth columns

correspond to Y −X sample rotation data plotted for each gradient direction and the

calculated ‖GXR‖ − ‖GY R‖, respectively.

Discussion and Conclusions

Water sample

Fig. 33 plots the water sample data and cylinder simulations. There are several

notable results.

There is strong agreement between the measured data and the simulations. This

result supports the approach of Enss et al. [7] in simulating the CRAZED signal,

even when ignoring relaxation and diffusion effects and taking a linear approximation

to the signal. Note that at shorter correlation distances (e.g. 30 µm), diffusion

effects damp the signal in this unstructured sample (At dc = 10µm, there is very

little remaining signal, and we have therefore not included results at this distance in

Fig.33).

The relation between the measured signal and the induced correlation distance
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Figure 34: Cylinder simulations (thick lines) and water sample data (thin lines) dependence on
sample orientation. The difference signal ‖GZ‖ − ‖GX‖ − ‖GY ‖ approximates 3 cos2 θsample − 1
for Z − Y rotations at correlation distances less than or equal to the cylinder diameter (1250 µm).
Likewise, ‖GXR‖−‖GY R‖ approximates 2 cos2 φsample−1 for Y −X rotations in the same regime.
Note also that ‖GXR‖ − ‖GY R‖ flips sign when dc is near the cylinder diameter (1250 µm).

is highly dependent on the sample and gradient orientation. This dependence on

the gradient direction and sample orientation greatly limits the interpretbility of

CRAZED measurements that only vary the correlation distance [34, 36, 59, 32], such
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Figure 35: Nerve sample. Correlation distance values dc=[9.8 32 110 360 1200 4000]µm. The first
two columns are Z − Y nerve sample rotations, with column 1 plotting the data directly, and the
column 2 plotting ‖GZ‖−‖GX‖−‖GY ‖. Columns 3 and 4 are corresponding Y −X sample rotations.
Note the 3 cos2 θsample − 1 (for column 2) and 2 cos2 φsample − 1 (for column 4) signal dependence
at small dc values, and the sign flip in ‖GXR‖ − ‖GY R‖ at dc = 360 µm

as those outlined in the introduction.

As dc → ∞, the signal depends only on the sample orientation. With the gradi-

ent magnitude equal to zero, there can obviously be no dependence on the gradient
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Figure 36: Nerve data (A and C) and water simulations (B and D) as a function of dc (in units
of the corresponding sample diameters), with gradients in the Z direction. Each line represents a
different sample orientation. The key points are that 1) the sample orientation affects the signals’
dc dependence, and 2) that the overall shape of the dc dependence is indicative of the gross sample
size and not the underlying microstructure.

orientation. The 3 cos2 θsample− 1 dependence on the sample orientation is due to the

dominance of spin interactions along the cylinder axis in the signal averaged over the

sample.

As dc → 0 the signal depends only on the applied gradient direction, and varies

like 3 cos2 θgrad − 1. As the gradient induced oscillation length shrinks, all sample

structures become (relatively) large and the sample appears homogeneous. Sample

orientation then does not matter.

Fig. 34 plots the results for the water sample data and simulations again, but

presented in terms of signal differences. Bouchard et al. [47] investigated sample ori-

entation using ‖GZ‖ − ‖GX‖ − ‖GY ‖ for Z − Y rotations and ‖GXR‖ − ‖GY R‖ for
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Figure 37: Nerve sample Z to Y rotation data for dc = 9.8 and 360 µm. For comparison a numerical
simulation of a homogeneous cylinder of diameter 1250 µm and dc = 1250 µm is plotted as well. The
similar shapes in all three cases indicates cylindrical structures in nerve with diameters of roughly
10 µm and 360 µm. Fig.35 indicates that this distinctive angular dependence occurs only at these
two correlation distances.

Y −X rotations, and they found corresponding 3 cos2 θsample−1 and 2 cos2 φsample−1

sample orientation dependences, respectively. Fig. 34 shows that these correspon-

dences only hold, roughly, for dc ≤ the cylinder diameter. Additional points of interest

include that ‖GZ‖ − ‖GX‖ − ‖GY ‖ goes to zero at dc = 0 and |3 cos2 θsample − 1| at

dc = ∞ (the first of which is an exception rule to the dc ≤diameter rule), and that

‖GXR‖ − ‖GY R‖ goes to zero at both dc = 0 and dc = ∞. (These results are not

shown, but are clear from Fig.33).

Nerve sample

A central goal of CRAZED studies is to provide information on the sample struc-

ture. However the optimum acquisition parameters (dc and gradient direction) and

data analysis method are still not determined. One option is a full acquisition in the

correlation space, gathering data at every gradient strength and direction [29]. This

method suffers from exceedingly long acquisition times and possible complications
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due to diffusion damping. An alternative generalized numerical fitting method for

simple geometries was demonstrated by Bouchard and Warren [42], but it requires a

priori knowledge of the scale (though not shape) of the underlying structure.

One popular alternative is a simple 1D acquisition [34, 36, 59, 32], where only the

correlation distance dc is varied and not the gradient or sample orientation. However,

the clear signal dependence on the sample orientation, evident in Fig.33 , complicates

this approach. Nonetheless, some sample structure information can be gleaned from

the general trend. Figs. 36b and 36d plot the simulated CRAZED signal as a function

of dc for sample rotations in the Z−Y and Y −X planes, respectively, and gradients

in the Z direction. Each line represents a different sample orientation. While the

signal has a clear dependence on θsample, in all cases the signal decays (very roughly)

exponentially and with a decay constant on the order of one cylinder diameter. Figs.

36a and 36c give corresponding results for nerve. Again, the signal varies roughly

exponentially with dc and with a decay constant on the order of sample diameter. In

this case, the sample is a 1.8 mm inner diameter hollow plastic filled with two sciatic

nerve segments, so this gross signal variation gives an indication of the total nerve

sample size, but not of the nerve substructures.

Our results suggest several possible analyses of the crazed data that reveal the

underlying sample micro-anatomy, with all such methods indicating cylindrical struc-

tures in nerve with diameter of roughly 10 µm (axons) and/or 360 µm (tibial and

peroneal fascicles). The most convincing results are from Fig.35 and are reproduced

in Fig.37.

Fig.35 shows that the nerve sample data is a complex function of sample ori-
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entation, gradient direction, and correlation distance dc. When dc=10 µm and 360

µm, however, Fig.37 illustrates how this data matches a simulation of a cylinder of

diameter dc. The shape of this functional dependency on the sample orientation and

gradient direction is unique to these two correlation distances in nerve, as is clear

from Fig.35. (The corresponding water data and simulations in Fig.33 show that this

same rough functional shape occurs in this structureless phantom only when dc ≈the

sample diameter of 1250 µm.) More subtle indicators of cylindrical structures in

nerve include the 3 cos2 θsample− 1 dependence of ‖GZ‖−‖GY ‖−‖GX‖ at dc=10 µm

(but not at larger dc) and the sign flip in ‖GXR‖ − ‖GY R‖ at dc = 360 µm, both

illustrated in Fig.35. Both of these signal dependences occur in simulations near dc

= cylinder diameter, as shown in Fig.4.

While the indication of cylindrical structures at 10 µm is not surprising, and could

have been better examined via diffusion measurements, the indication of a cylindrical

structures near 360 µm likely reflect the tibial and peroneal fascicles (see Fig.32),

which are not easily examined via other magnetic resonance methods. While these

analyses requires sample rotation and therefore may not be well suited to in vivo

studies, they do provide a strong indication of CRAZED’s ability to reveal structures

at otherwise unattainable distance scales.
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CHAPTER V

FIBROTIC MURINE LIVER STUDIES.

Introduction

“Fibrosis is the formation or development of excess fibrous connective tissue in

an organ or tissue as a reparative or reactive process, as opposed to a formation of

fibrous tissue as a normal constituent of an organ or tissue” [64].

Today only a liver biopsy is an ultimate foolproof method for assessing hepatic

fibrosis. It is known as an invasive and potentially harmful for the patient procedure.

Magnetic resonance imaging is about to address this problem more closely (see for

example [65, 66]) and our next test data. Crazed imaging, with its unique potentials

is a promising method to detect the structural inhomogeneities accompanying liver

fibrosis.

Methods

This part of the thesis project was intended to be a continuation of a different study

where the same mouse liver sample was previously used for mechanical properties

testing. This testing sought to determine the elastic modulus of normal and fibrotic

murine livers [67]. In order to develop fibrosis, a group of mice received intraperitoneal

injections of carbon tetrachloride (Sigma Chemical, St. Louis, MO, USA) mixed with

olive oil (Sigma Chemical, St. Louis, MO, USA) in a 1:4 ratio, respectively, on a

weekly basis. Each dose of CCl4 was introduced in a 1 ml/kg injection. We had
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(a) (b) (c)

Figure 38: Stages of a liver fibrosis. Results from alpha-SMA staining with (a) normal, (b) mild
fibrosis, and (c) more severe fibrosis. Reproduced with permission of Dr. Lyschik

in our possession a small part of the liver lobe embedded in polyacrylamide gel as a

leftover from mechanical shift and compression testing. All these previous procedures

take on the order of couple of hours.

Liver structure

The liver cell, or hepatocyte (Gr. hepar, liver, + kytos, cell), represents the basic

structural component of the liver. These epithelial cells form a series of interconnected

plates. When stacked together, these plates constitute the next structural level of

organization, the liver lobule. The last one is formed of a polygonal (single honeycomb

cell like) mass of tissue about 0.7 x 2 mm in size for humans [8] and more than twice

as small in mice (see Fig.38) , with portal spaces at the periphery and a vein, called

the central or centrolobular vein, in the center. Portal spaces, regions created between

adjacent lobules, contain connective tissue, bile ducts, lymphatics, nerves, and blood

vessels. The initial target for our studies are the structures on the order of 10 µm

and, as one can see, they are represented by the central vein and corner spaces formed

by connective fiber tissues enclosing hepatic lobules (see Fig.39).
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Figure 39: Liver structure. Hexagonal cylinder in the center is the liver lobule. It is surrounded by
the portal space. Arteries (red), veins (blue), and bile ducts (green) are filling the portal spaces.
Structures like nerves, connective tissue, and lymphatic vessels are not shown. Reproduced from [8].

Later stages of fibrosis offer another bigger scale structure as a target for detection,

the hepatic lobule by itself enclosed by a swollen and degenerated fiber tissue (see

Fig.38c). Central veins stay mainly intact for the shown type of fibrosis, but now the

whole lobule is highlighted by the fibrotic tissue, which is expected to contribute to

correlation distances spectrum as well. That sounds like a good back-up plan due to

existing gradient strength limitations, diffusion damping and other reasons which are

placing correlation distance of 10 µm at or well below resolution limits of our method.

Beginning this project we were not going to image the cell structure of the liver

even if we were able to. Also there was made no systematic attempt to measure
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(a) (b) (c)

Figure 40: Gradient echo scout images of a liver sample 4.5×4.1 mm.(a) Sagital slice. (b) Axial
slice. (c) Combined view of (a) and (b)

dynamics of T1 and T2 properties as a function of time for our leftover samples.

Fibrotic structure of the liver is well known to stay intact for a time period well

beyond several hours, which was confirmed by our visual examination. Thus we

settled with our method refinement leaving most of the quantitative test procedures

as a goal for the future studies.

Data acquisition

The liver sample used for measurements was prepared by applying an open end

of 5 mm nmr tube (Wilmad-Labglass, Buena, NJ, USA) against the liver sample.

Naturally sharp and with the wall thickness less then 0.5 mm this tube represents a

suitable cutting tool when used on the part of the mouse liver lobe we have extracted

from the gel. As a result we end up with a cylindrical sample with a radius equal

to the inner radius of the tube and a height on the order of sample thickness at the

place of application (in general it was on the order of the inner tube diameter as well)

(see Fig.40).
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The liver sample was placed in the bore of the magnet (7 Tesla 16-cm horizon-

tal bore Varian Inova (Varian Inc., Palo Alto, CA, USA) scanner system running at

300 MHz and using a 25 mm diameter and 22 mm long Litz coil from Doty Scien-

tific,Columbia, SC, USA) with the major axis of nmr tube aligned along the Z axis.

For our measurements the same pulse sequence and phase cycling scheme was used,

as described previously in Chapter 4. 2D experiment was set in such a way that the

crazed gradient consecutively takes the values [1.0 3.0 5.0 7.0 9.0 11.0 13.0 15.0 17.0

19.0] G/cm and its direction is changed in steps of 5◦ from being aligned along the

Z axis (θgradient = 0◦) to being aligned along the Y axis θgradient = 90◦. Duration

of the first CRAZED gradient (“tgrad DG”) was chosen to be 2 ms. This procedure

produced a 10 by 19 data matrix of double quantum echoes amplitudes.

When the induced magnetization helix is twisted strongly enough (much smaller

than any sample structure) we expect to see 3 cos2 θgradient − 1 dependence on the

CRAZED gradient orientation. When the corresponding correlation distance reaches

the next (larger) level of structure size we expect to see deviations from this functional

dependency on θgradient, as in our previous nerve data and numerical simulations.

In order to ensure full recovery of the magnetization and preclude the possibility

of stimulated echoes, TR (repetition time) was set to 20 s. With 4 part phase cycling

done twice (signal to noise ratio at the θgradient angles close to 90◦ was still very low)

this made the overall time of measurement about 8 hours, again posing the question

of the practical applicability for this type of the measurement. Though significant

decreases in the measurement time are likely possible with appropriate optimization.
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(a)

(b)

(c)

Figure 41: Liver sample.(a) Experimental data. (b) Numerical simulations. (c) 3 cos2−1 law
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Numerical simulations

Our basic CRAZED numerical simulations were run for this study. The phantom

was represented by uniform cylinder 192 pt high an 192 pt wide which is translated

into 4×4 mm real values. The purpose was to generate the reference data when the

induced correlation distance will be on the order of sample diameter (see Fig.42(b)).

Pulse sequence, its phase cycling scheme and other numerical procedures were

implemented in the say way as described in Chapter 4, subsection “Numerical simu-

lations” only now the sample stayed fixed in the magnet and the CRAZED gradients

were rotated from Z axis backward along the Y axis in 5◦ steps. All simulations were

performed using MATLAB R©R2006b(73) (MathWorks, Natick, MA, USA) software

package, running under RedHat Enterprise Linux-WS v4 OS (Red Hat, Inc, NC,

USA) on a Dual Intel R©XEONTM, CPU 2.20 GHz with 3.5 Gb RAM and 80 Gb ATA

HD of the local storage.

Results

Results from these measurements are given in Figs.40, 41 and 42.

Figs.41 (a) and (b) show the two gradient echo images from the “scout” protocol

implemented on 7 Tesla Varian small imaging system. The typical sample size was

4.0±0.5 mm wide and 4.0±0.5 mm long (on the figure it is 4.5×4.1 mm). Although not

seen on the MR image this sample was shown to have a fibrosis stage corresponding

to the Fig.38(b) (mild fibrosis).

Fig.41 shows the typical data comparison scheme we were using in our experi-

ment. Part (a) represents the raw data. For the display purpose 10×19 matrix was

95



interpolated twice with respect to the gradient values and twice with respect to the

angle values which made it 37×73. Part (b) of the same figure shows numerical sim-

ulations for the uniform cylinder which has the same size as our liver sample but

do not possess any substructure. These simulations stop at he gradient value of 7

G/cm because we are not able to simulate gradients stronger to sample a smaller

distance scale. Numerical simulation data was interpolated as well to match the new

37×73 resolution of the experimental data. Part (c) is a three dimensional plot of the

“3 cos2−1” function constant with respect to the gradient variations along X axis of

the plot and given for the angles values ranged from 0◦ to 90◦.

In order to minimize sensitivity of the data to diffusion damping and other pa-

rameters changing with the gradient strength but not related to the double quantum

signal angular dependence, we need to normalize our data with respect to the first

point in DQC=f(θgradient) dependence. At this point CRAZED gradient is aligned

along the Z axis and θgradient=0 (see Fig.42). This should be done for each value of

the gradient.

Thus Fig.42 represents the same set of the data as on Fig.41 only each line along

Y axis is normalized with respect to the first point, which was assigned a value of 2,

the value which “3 cos2 θgradient − 1” function should take if θgradient=0.

Discussion and conclusions

Fig.41(a)-(b) and Fig.42(a)-(b) display several common features of the DDF field;

such as zero signal at θgradient=54.7◦ (“the magic angle”), typical gradient strength

dependence along the X axis of the plots, as well as weighted α (3 cos2(θgradient)− 1)
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(a)

(b)

(c)

Figure 42: Liver sample. Normalized data.(a) Experimental data. (b) Numerical simulations. (c)
3 cos2(θgradient)− 1 law
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gradient direction dependence along the Y axis of the plots. Good match of Fig.41(a)

with simulations on Fig.41(b) for the low gradient values proves one more time the

reliability of our numerical simulations. Fig.41(c) plotted as a reference and shows

that the closest match with the 3 cos2(θgradient)−1 dependence for the regular type of

normalization (maximum signal in the data set was set equal to 2) is observed around

G = 7.0 G/cm which corresponds to the dc=0.09 mm which happens to be on the

order of the lobule size (see Fig.40).

In order to further develop our approach we have normalized the data according

to the procedure described in the results (with respect to the first point in θgradient)

dependence (see Fig.42). One more time we can see that the point in 7 G/cm (dc =0.09

mm) have the closest match with 3 cos2(θgradient)− 1 dependence.

We have abstained from the further studies due to the luck of biological samples

and complex structured numerical model leaving it as a project for a future studies.

The first obstacle is a matter of finding proper collaboration group while the last one

is a matter of time and motivation, when an extra efforts should be invested into

increasing the simulation grid size as well as the speed of calculations.
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CHAPTER VI

CONCLUSIONS AND FUTURE STUDIES.

Conclusions and Future Studies

iMQC, despite its deceptive simplicity and less than optimal signal-to-noise ratio,

is potentially a very powerful method. The coherent cumulative contribution of the

signals from all the microscopic structure elements to the macroscopically-observed

effect is amazing. At this time, all the classical ways of enhancing the signal (including

phase cycling, multiple averaging and acquisition technique refinement) have been

tested almost to their full extent without a major breakthrough. Nevertheless, the

iMQC method is still viable and waiting for its time to come.

In this thesis, we have offered a full-scale simulation program for all the experi-

mental CRAZED applications which have been done by our group. Full accounting

for all the interaction mechanisms and collective effects in the numerical simulations

give them immense predictive power.

Our implementation has many unique features like flexibility and expandability.

Its block structure allows us to easily add different terms and interaction mecha-

nisms, as well as arbitrary pulse components, to the simulations. We have already

implemented and tested instantaneous and continuous versions of the RF pulses and

gradients. The linear approximation for the dipolar field calculation used everywhere

throughout this thesis is easily extended to the nonlinear regimes with times much

longer than τdipolar. Our temporary limitation on the simulation grid size may be
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easily bypassed by using algorithms for parallel computation as well as simple matrix

fragmentation at all levels of the code.

We discovered new effects which have been observed numerically and experimen-

tally by studying the complex structured samples. Two major biological tissues of

interest were studied (see chapters IV and V). Rat sciatic nerve projects have shown

encouraging results in sensitivity to the different length of scale in biological samples

and may be linked to myelin and other neurodegenerative diseases of great impor-

tance. Methods used and tested for mice liver studies are applicable for any nested

complex structures and may be useful to further facilitate the quest for high resolution

MR.

Planned full-scale high-resolution numerical simulations will offer insight into sub-

tle effects buried deep under field inhomogeneities, relaxation processes, diffusion,

radiation damping and hardware imperfections. Right now it is still difficult to make

sure that alterations to the magnetization helix are introduced by the real disconti-

nuities in the spin distribution and not by experiment imperfections.

Ambiguous sensitivity to T1, T2 distributions raises the question of interaction with

other types of contrast available for MR. So far, only part of the phase information

about helix formation has been used. Our study will continue in this direction as

well.
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APPENDIX A

DDF CALCULATIONS IN FOURIER SPACE AND DIRECTLY

1 % Perform DDF calculations for Mz~=0 (Mx, My=0) through Fourier Space and Directly

2 % and store the data file with time necessary for both calculations

3

4 clear all; close all;

5

6 % Data input

7

8 % Range of voxels number to simulate. From n till N.

9 n=5;N=555;

10

11 % Calculation time for different methods

12

13 t=zeros(3,N-n+1);

14 % t(1,N) <= number of voxels

15 % t(2,N) <= time for the Fourier Space Calculations

16 % t(3,N) <= time for the Direct Calculations

17

18 counter=1;

19

20 for voxels=n:N

21

22 t(1,counter)=voxels;

23

24 % display current configuration

25

26 voxels

27 radius =floor(voxels/4); % To make sure that the radius will not exceed 1/4th of voxels number

28 ctr = floor(voxels/2 +1); % Center of the phantom

29

30 % preallocation of magnetization and other matrices

31 mr3_initial = zeros([voxels voxels voxels]); % Magnetization Distribution

32 deltak = zeros([voxels voxels voxels]); % Matrix of Dipolar Weighting Coefficients

33 % for Fourier Method

34 non_local_sum = zeros([voxels voxels voxels]); % Non Local Sum for Direct Calculations

35 Bd_0 = zeros([voxels voxels voxels]);

36

37 % Object definition

38 shape=’cube’;

39 condition=’(r1-ctr)^2 <= radius^2 & (r2-ctr)^2 <= radius^2 & (r3-ctr)^2 <= radius^2’;

40

41 %shape=’cylinder’;

42 %condition=’(r1-ctr)^2 + (r2-ctr)^2 <= radius^2 & (r3-ctr)^2’;

43

44 %shape=’sphere’;

45 %condition=’(r1-ctr)^2 + (r2-ctr)^2 + (r3-ctr)^2 <= radius^2’;

46

47 %shape=’disc’;

48 %condition=’(r1-ctr)^2 + (r2-ctr)^2 <= radius^2 & r3 == ctr’;

49

50 % Filling the value of initial magnetization with unit values

51 for r1=1:voxels

52 for r2=1:voxels

53 for r3=1:voxels

54 if eval(condition)

55 mr3_initial(r1,r2,r3) = 1.0;

56 end

57 end

58 end
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59 end

60

61 % Calculations through Fourier space, ignoring k=0 component

62 tic

63 zero_freq = floor(voxels/2 +1);

64 for k1=1:voxels;

65 for k2=1:voxels;

66 for k3=1:voxels

67 if k1==zero_freq && k2==zero_freq && k3==zero_freq

68 deltak(k1,k2,k3) = 0.0;

69 else

70 deltak(k1,k2,k3) = (3*((k3-zero_freq)^2 / ...

71 ((k1-zero_freq)^2 + (k2-zero_freq)^2 + (k3-zero_freq)^2)) - 1)/2;

72 end

73 end

74 end

75 end

76 br3_fourier=real(2/3.*ifftn(ifftshift(deltak.*fftshift(fftn(mr3_initial)))));

77 t(2,counter)=toc;

78

79 % Direct calculations

80 tic

81 for r1=1:voxels

82 for r2=1:voxels

83 for r3=1:voxels

84 for rp1=1:voxels

85 for rp2=1:voxels

86 for rp3=1:voxels

87 if rp1 == r1 && rp2 == r2 && rp3 == r3

88 non_local_sum(r1,r2,r3)=non_local_sum(r1,r2,r3);

89 else

90 non_local_sum(r1,r2,r3)= non_local_sum(r1,r2,r3)...

91 +(1-3*((r3-rp3)^2/((r1-rp1)^2 + (r2-rp2)^2 + (r3-rp3)^2))) / ...

92 (2*((r1-rp1)^2 + (r2-rp2)^2 + (r3-rp3)^2)^1.5).* ...

93 2*mr3_initial(rp1,rp2,rp3);

94 end

95 end

96 end

97 end

98 end

99 end

100 end

101 br3_direct = 1/(4*pi)*non_local_sum;

102 t(3,counter)=toc;

103

104 save(strcat(’Direct_And_Fourier_’,num2str(voxels)), ’br3_direct’, ’br3_fourier’ , ’voxels’, ...

105 ’shape’, ’radius’, ’ctr’);

106 save t t

107 counter=counter+1;

108 end
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APPENDIX B

THE MATLAB CODE IMPLEMENTATION OF THE CRAZED EXPERIMENT
NUMERICAL SIMULATIONS

1 % June 07, 2008. Y to X Nerve Slice Rotations. Bunch D=238, Bunch L=30 , 256x256x256

2 clear all; close all;

3 tic

4 cd /home/kussaias/MatlabCode/m2008_JUN07_Axons/YtoX

5

6 % 10 degree step in rotations

7 A_ngle=linspace(0,90,10)*pi/180;

8

9 % Fundamental constants

10 g = 267.522*10^6; % [rad/s/T]

11 mu0 = 4*pi*1e-7; % [NA^-2]

12 D = 2*10^(-9); % [m^2/s]

13

14 % B0, Radiation damping, Dipolar Time

15 tesla =7.0; % [T]

16 w0=tesla*g/(2*pi); % [1/s/T]

17 delta_w=0.0; % [1/s]

18 filling_factor=1.0;

19 Q=7;

20 M0=0.00318*tesla; % [A*m-1] For the water at room temperature

21 tau_dipolar=1/(mu0*g*M0); % tau_dipolar=1/[Gamma*mu0*M0] seconds

22 tau_damping=tau_dipolar/(filling_factor*Q/2); % tau_damping=1/[Gamma*mu0*M0*(filling_factor*Q/2)] [s]

23 tau_damping=1e8;

24

25 % Time and step of integration

26 % Redundant in this reduced case

27 dt = 5e-02; % [s]

28

29 % Simulation volume parameters

30 shape=’Nerve_Slice’;

31 A_long=’Y’;

32 % Could be find in the data file and will be overwritten

33 voxels = 256; % Number of voxels in the cube

34 ctr = floor(voxels/2 +1); % Center of the cell

35 R=238/2; % Radius of the bundle in voxels

36 r=1; % Radius of individual nerve d=3pts ~ 10um

37 half_length=30/2; % Half length of the fiber

38

39 voxel_size=1.8e-3/(238)/5; % [m/voxel] ~Fascicle diameter/Number of

40 % voxels we assign to it

41

42 % R1, R2, chemical shift, and diffusion as a functions of position

43 R1_copy=.0; R2_copy=.0;

44 %R1 = R1_copy*mr_density; % [Hz]

45 R1=R1_copy; % array-->scalar to save memory

46 %R2 = R2_copy*mr_density; % [Hz]

47 R2=R1_copy; % array-->scalar to save memory

48 clear R1_copy R2_copy

49

50 % Gradient strength. As in Experiment

51 G_radient=[0.04893 0.16310 0.54367 1.83489 5.87165 19.57217]... % [Gauss/cm]

52 *1e-4/1e-2; % [T/m]

53

54 % Gradient duration. As in Experiment

55 T=6.0... % [ms]

56 *1e-3; % [s]
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57

58 % Correlation distances

59 % [ i.e. How much space takes 1/2 of the full cycle ]

60 d_c=pi./(g*G_radient*T); % [m]

61 display(d_c)

62 % [ How many voxels takes 1 full cycle ]

63 one_cycle_size=2.0*d_c/voxel_size; % [voxel]

64 % d_c in pts

65 display(d_c/voxel_size); % [voxel]

66

67 % Apply Gauss filtering ’y’/’n’

68 smoothing= ’n’;

69 if smoothing==’y’

70

71 zero_freq = floor(voxels/2 +1);

72 variance=.7*voxels/(16*sqrt(log(2)));

73

74 filter_name = strcat(’Filter_’,...

75 num2str(voxels),’voxels_’,...

76 num2str(ctr),’ctr_’,...

77 num2str(round(variance*100)),’var’);

78

79 file_exists = which([filter_name ’.mat’]);

80 if isempty(file_exists)

81 gauss_filter=zeros([voxels voxels voxels]);

82 for k1=1:voxels;

83 for k2=1:voxels;

84 for k3=1:voxels;

85 gauss_filter(k1,k2,k3) = (sqrt(2*pi)*variance)^-3*...

86 exp(-((k1-zero_freq)^2+(k2-zero_freq)^2+(k3-zero_freq)^2)/(2*variance^2));

87 end;

88 end;

89 end;

90 gauss_filter=gauss_filter/max(max(max(gauss_filter)));

91 eval([’save ’ filter_name ’ gauss_filter’]);

92 else

93 eval([’load ’ filter_name ’ gauss_filter’]);

94 end

95 clear k1 k2 k3 zero_freq variance

96 end

97

98 % instantaneous RF pulses

99 RF_angles =[pi/2 2*pi/3]; % [radians]

100

101 % Phase cycling data

102 rf1=[0 pi/2 pi 3*pi/2]; % first RF pulse

103 rf2=[0 0 0 0]; % second RF pulse

104 acq=[0 pi 0 pi]; % acqusition

105 N_phases=length(rf1); % number of phase steps

106

107 % Generic name for the given geometry

108 Object_Data = [shape strcat(’_v’,num2str(voxels),’_R’,num2str(round(R)),’_r3’,...

109 ’_c’,num2str(ctr),’_HL’,num2str(half_length))]

110

111 for GT=1:length(G_radient)

112

113

114 pattern=[1 0 0 % unit gradient along X axis

115 0 1 0 % unit gradient along Y axis

116 0 0 1]; % unit gradient along Z axis

117

118 for G=1:3; % loop over the different gradient directions

119 display(num2str(clock))

120 gradient_cycles =pattern(G,:); % [cycles/voxel]

121

122 % Current values of Mx and My magnetization

123 P_olar_Mx=zeros(1,length(A_ngle));

124 P_olar_My=zeros(1,length(A_ngle));
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125

126 for D_irect=1:length(A_ngle)

127

128 % Phase cycling if any. Otherwise just one step

129 for v=1:N_phases;

130

131 % Specific color for all 4 phase steps

132 v_color=[’r’ ’g’ ’b’ ’k’];

133

134 % Display current sample’s orientation

135 display(A_ngle(D_irect)*180/pi)

136

137 % Load current .mat file for the rotated sample

138 eval([’load ’ strcat(Object_Data,’_’,A_long,’_’,num2str((D_irect-1)*10))]);

139

140 % Sum of all spins

141 spin_number=sum(sum(sum(mr3)));

142

143 % Sum of all spins in specific XY plane.

144 spin_number_XY=squeeze(sum(squeeze(sum(mr3,1)),1));

145

146 % Need to replace all zeros with ones to avoid ’division by zero’

147 % error message in normalization procedure

148 for c=1:length(spin_number_XY)

149 if spin_number_XY(c)==0

150 spin_number_XY(c)=1;

151 end

152 end

153

154 % mr_density, mr1,mr2,and mr3 as function of position

155

156 % mr_density = zeros([voxels voxels voxels]);

157 mr1 = zeros([voxels voxels voxels]);

158 mr2 = zeros([voxels voxels voxels]);

159 % mr3 loaded from the hard drive

160

161 % Gauss filtering

162 if smoothing==’y’

163 eval([’load ’ filter_name ’ gauss_filter’]);

164 mr1=real(ifftn(ifftshift(gauss_filter.*fftshift(fftn(mr1)))));

165 mr2=real(ifftn(ifftshift(gauss_filter.*fftshift(fftn(mr2)))));

166 mr3=real(ifftn(ifftshift(gauss_filter.*fftshift(fftn(mr3)))));

167 end

168 clear gauss_filter;

169

170 % Field of instantaneous gradient

171 gradient_matrix_name = strcat(’Inst_Gradient_’,... % Name contains number of voxels

172 num2str(voxels),’voxels_’,num2str(ctr)); % and position of the center ’ctr’

173

174 file_exists = which([gradient_matrix_name ’.mat’]);

175 if isempty(file_exists)

176

177 g_cycl_mat_X=zeros(voxels,voxels,voxels);

178 g_cycl_mat_Y=zeros(voxels,voxels,voxels);

179 g_cycl_mat_Z=zeros(voxels,voxels,voxels);

180

181 % All matrix has symmetric "ctr" value at the center coordinate which is not required

182 for j=1:voxels;

183 g_cycl_mat_X(j,:,:)=(j-ctr)*ones(voxels,voxels);

184 g_cycl_mat_Y(:,j,:)=(j-ctr)*ones(voxels,voxels);

185 g_cycl_mat_Z(:,:,j)=(j-ctr)*ones(voxels,voxels);

186 end;

187

188 eval([’save ’ gradient_matrix_name ’ g_cycl_mat_X g_cycl_mat_Y g_cycl_mat_Z’]);

189

190 else

191 eval([’load ’ gradient_matrix_name ’ g_cycl_mat_X g_cycl_mat_Y g_cycl_mat_Z’]);

192 end
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193 % Modifying the components of uniform unit field of instantenous grad. by

194 % the gradient_cycles matrix values

195 g_cycl_mat_X=g_cycl_mat_X*gradient_cycles(1);

196 g_cycl_mat_Y=g_cycl_mat_Y*gradient_cycles(2);

197 g_cycl_mat_Z=g_cycl_mat_Z*gradient_cycles(3);

198

199 % calculations of contribution of the gradients in all

200 % directions to the local frequency offset

201 g_cycl_mat=(g_cycl_mat_X+...

202 g_cycl_mat_Y+...

203 g_cycl_mat_Z)/one_cycle_size(GT);

204 % and rescale with respect to the real size of the CURRENT cycle

205 clear file_exists j k l gradient_matrix_name g_cycl_mat_X g_cycl_mat_Y g_cycl_mat_Z

206

207 % interface again for phase counter

208 %figure(2);

209

210 %set(gcf,’Position’,[768 69 509 880], ’PaperPosition’, [.0 .0 11 8.5],...

211 % ’PaperOrientation’,’Landscape’);

212

213 %subplot(4,2,1);axis off;

214 %text(0,1.4,strcat(’voxels’,’ = ’,num2str(voxels)));

215 %text(0,0.2,strcat(’tau_d_i_p_o_l’,’ = ’,num2str(tau_dipolar),’ s’ ));

216 %text(0,0.0,strcat(’smoothing =’,’ "’,smoothing,’"’));

217

218 %text(.4,1.4,strcat(shape,’ sampled at’ ,’ dt =’, num2str(dt),’ s’));

219 %text(.4,1.2,strcat(’B_0 =’,num2str(tesla),’ Tesla’));

220 %text(.4,1.0,’first inst grad [cycles/voxel]=’);

221 %text(0.9,1.0,strcat(’[’,num2str(gradient_cycles/one_cycle_size(GT)),’]’));

222 %text(.4,0.8,’first inst grad [T/m]=’);

223 %text(0.9,0.8,strcat(’[’,num2str(G_radient(GT)),’]’));

224 %text(.4,0.6,’correlation distance [m] =’);

225 %text(0.9,0.6,strcat(’[’,num2str(d_c(GT)) ,’]’));

226

227 %text(.4,0.4,strcat(’voxel size =’,num2str(voxel_size),’meter/voxel’));

228 %text(.4,0.2,strcat(’cell size =’,num2str(voxels*voxel_size),’ meter’));

229

230 %text(1.4,1.4,strcat(’RF pulses’,’ = ’,’[’,num2str(RF_angles.*180/pi),’]’, ’ degrees’));

231 %text(1.4,1.2,strcat(’rf_1 phases’,’ = ’,’[’,num2str(rf1.*180/pi),’]’, ’ degrees’));

232 %text(1.4,1.0,strcat(’rf_2 phases’,’ = ’,’[’,num2str(rf2.*180/pi),’]’, ’ degrees’));

233 %text(1.4,0.8,strcat(’Acq phases’,’ = ’,’[’,num2str(acq.*180/pi),’]’, ’ degrees’));

234

235 %subplot(4,2,1);axis off;

236 %text(2.1,1.4-(v-1)*0.2,strcat(’current step v’,’ = ’,num2str(v)));

237 %drawnow;hold on;

238

239 % Creating the final distribution of the magnetizations for the

240 % different combinations of RF pulse phases

241

242 [mr1, mr2, mr3]=...

243 instant_rf(mr1, mr2, mr3, RF_angles(1), rf1(v));

244 [mr1, mr2, mr3]=...

245 instant_grad(mr1, mr2, mr3, g_cycl_mat);

246 [mr1, mr2, mr3]=...

247 instant_rf(mr1, mr2, mr3, RF_angles(2), rf2(v));

248 [mr1, mr2, mr3]=...

249 instant_grad(mr1, mr2, mr3, 2.0*g_cycl_mat);

250

251 clear g_cycl_mat

252

253 % Phase cycling. Prefix ’d_’ denotes Mx,My,Mz

254 % magnetizations in terms of acqusition reference frame

255

256 d_mr1=zeros([voxels voxels voxels]);

257 d_mr2=zeros([voxels voxels voxels]);

258 d_mr3=zeros([voxels voxels voxels]);

259

260 % Creating or overwriting existing ones "t=-0" .mat files for the Mx, My and Mz 3D magnetization
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261 if v==1

262 name=strcat(’Mx’,’_’,num2str(0));

263 eval([’save ’ name ’ d_mr1’]);

264

265 name=strcat(’My’,’_’,num2str(0));

266 eval([’save ’ name ’ d_mr2’]);

267

268 name=strcat(’Mz’,’_’,num2str(0));

269 eval([’save ’ name ’ d_mr3’]);

270 end

271 % basic definition of the phase cycling

272 if acq(v)==0

273 d_mr1=mr1; d_mr2=mr2;

274 end

275

276 if acq(v)==pi/2

277 d_mr1=mr2; d_mr2=-mr1;

278 end

279

280 if acq(v)==pi

281 d_mr1=-mr1; d_mr2=-mr2;

282 end

283

284 if acq(v)==3*pi/2

285 d_mr1=-mr2; d_mr2=mr2;

286 end

287

288 % I’m using d_mr3 as a temporary storage cell

289 % and updating the Mx, My, Mz from hard drive by it

290 % with each phase step

291

292 name=strcat(’Mx’,’_’,num2str(0));

293 d_mr3=d_mr1;

294 eval([’load ’ name ’ d_mr1’]);

295 d_mr1=d_mr3+d_mr1;

296 eval([’save ’ name ’ d_mr1’]);

297

298 name=strcat(’My’,’_’,num2str(0));

299 d_mr3=d_mr2;

300 eval([’load ’ name ’ d_mr2’]);

301 d_mr2=d_mr3+d_mr2;

302 eval([’save ’ name ’ d_mr2’]);

303

304 name=strcat(’Mz’,’_’,num2str(0));

305 % "d_mr2=mr3" mr3 stays the same irrespectively of the acqusition

306 % phase

307 d_mr2=mr3;

308 eval([’load ’ name ’ d_mr3’]);

309 d_mr3=d_mr2+d_mr3;

310 eval([’save ’ name ’ d_mr3’]);

311

312 % These averaged values are used to plot magnetization evolution

313 mr1_1=sum(sum(sum(mr1)))/spin_number;

314 mr2_1=sum(sum(sum(mr2)))/spin_number;

315 mr3_1=sum(sum(sum(mr3)))/spin_number;

316

317 % Evolution under the Bloch equation

318

319 ps_grad=0.0; % means no background or other "non" instanteneous gradients

320 t=0;

321

322 counter=1;

323 while t<=.0;

324 % 4th order Runga-Kutta: ’Numerical Recipes in C’, 1988, p. 570

325 [d_mr1, d_mr2, d_mr3] = ddf_bloch_eqns( ...

326 mr1, mr2, mr3,M0,...

327 R1, R2, delta_w, ps_grad, D,...

328 ctr,t,dt,...
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329 spin_number,spin_number_XY);

330 % Warren’s linear approximation

331 mr1=d_mr1;

332 mr2=d_mr2;

333 mr3=d_mr3;

334

335 %mr1=mr1+dt*d_mr1/6;

336 %mr2=mr2+dt*d_mr2/6;

337 %mr3=mr3+dt*d_mr3/6;

338

339 %[d_mr1, d_mr2, d_mr3] = ddf_bloch_eqns( ...

340 % mr1+dt*d_mr1/2,mr2+ dt*d_mr2/2,mr3+ dt*d_mr3/2,M0,...

341 % R1, R2, delta_w, ps_grad(:,:,:), D,...

342 % ctr,t,dt,...

343 % spin_number,spin_number_XY);

344 %mr1=mr1+dt*d_mr1/3;

345 %mr2=mr2+dt*d_mr2/3;

346 %mr3=mr3+dt*d_mr3/3;

347

348 %[d_mr1, d_mr2, d_mr3] = ddf_bloch_eqns(...

349 % mr1 + dt*d_mr1/2, mr2+ dt*d_mr2/2, mr3+ dt*d_mr3/2,M0,...

350 % R1, R2, delta_w, ps_grad, D,...

351 % ctr,t,dt,...

352 % spin_number,spin_number_XY);

353 %mr1=mr1+dt*d_mr1/3;

354 %mr2=mr2+dt*d_mr2/3;

355 %mr3=mr3+dt*d_mr3/3;

356

357 %[d_mr1, d_mr2, d_mr3] = ddf_bloch_eqns( ...

358 % mr1 + dt*d_mr1,mr2 + dt*d_mr2,mr3 + dt*d_mr3,M0,...

359 % R1, R2, delta_w, ps_grad(:,:,:), D,...

360 % ctr,t,dt,...

361 % spin_number,spin_number_XY);

362 %mr1=mr1+dt*d_mr1/6;

363 %mr2=mr2+dt*d_mr2/6;

364 %mr3=mr3+dt*d_mr3/6;

365

366 mr1_2=sum(sum(sum(mr1)))/spin_number;

367 mr2_2=sum(sum(sum(mr2)))/spin_number;

368 mr3_2=sum(sum(sum(mr3)))/spin_number;

369

370 % p1 and p2 controls the subplot windows for the graphic

371 % output depending on the acqusition phase

372 if acq(v)==0

373 p1=3;p2=5;

374 mr1_1_v=mr1_1; mr1_2_v=mr1_2;

375 mr2_1_v=mr2_1; mr2_2_v=mr2_2;

376 end

377

378 if acq(v)==pi/2

379 % "-mr1_1" magnetization sent to p1=5 subplot

380 % dedicated for the My signal in aqusition frame

381 p1=5;p2=3;

382 mr1_1_v=-mr1_1; mr1_2_v=-mr1_2;

383 mr2_1_v=mr2_1; mr2_2_v=mr2_2;

384 end

385

386 if acq(v)==pi

387 p1=3;p2=5;

388 mr1_1_v=-mr1_1; mr1_2_v=-mr1_2;

389 mr2_1_v=-mr2_1; mr2_2_v=-mr2_2;

390 end

391

392 if acq(v)==3*pi/2

393 p1=5;p2=3;

394 mr1_1_v=mr1_1; mr1_2_v=mr1_2;

395 mr2_1_v=-mr2_1; mr2_2_v=-mr2_2;

396 end
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397

398 %figure(2);

399 %subplot(4,2,3);title(’<mr_x>’);drawnow;hold on;

400 %subplot(4,2,5);title(’<mr_y>’);drawnow;hold on;

401

402 %subplot(4,2,p1);

403 %line([t t+dt],[mr1_1_v mr1_2_v],’color’,v_color(v));

404 %title(’<mr_x>’);

405 %grid on;axis tight;drawnow;hold on;

406

407 %subplot(4,2,p2);

408 %line([t t+dt],[mr2_1_v mr2_2_v],’color’,v_color(v));

409 %plot(t+dt, 2*(tau_dipolar/(t+dt))*real(besselj(2,-(t+dt)/tau_dipolar)),’r.’);

410 %title(’<mr_y>’);

411 %grid on;axis tight;drawnow;hold on;

412

413 %subplot(4,2,7);

414 %line([t t+dt],[mr3_1 mr3_2],’color’,v_color(v));

415 %title(’<mr_z>’);

416 %grid on;axis tight;drawnow;hold on;

417

418 %saveas(gcf, strcat(’General’,’_’,num2str(v),’_’,num2str(counter)), ’jpg’);

419

420 % Need to make all previous .mat files equal to 0, starting

421 % with counter=1 for the first phase setp only

422 if v==1

423 name=strcat(’Mx’,’_’,num2str(counter));

424 d_mr1=0.0*d_mr1; eval([’save ’ name ’ d_mr1’]);

425

426 name=strcat(’My’,’_’,num2str(counter));

427 d_mr2=0.0*d_mr2; eval([’save ’ name ’ d_mr2’]);

428

429 name=strcat(’Mz’,’_’,num2str(counter));

430 d_mr3=0.0*d_mr3; eval([’save ’ name ’ d_mr3’]);

431 end

432 % the same phase cycling scheme as before

433 if acq(v)==0

434 d_mr1=mr1; d_mr2=mr2;

435 end

436

437 if acq(v)==pi/2

438 d_mr1=mr2; d_mr2=-mr1;

439 end

440

441 if acq(v)==pi

442 d_mr1=-mr1; d_mr2=-mr2;

443 end

444

445 if acq(v)==3*pi/2

446 d_mr1=-mr2; d_mr2=mr2;

447 end

448

449 % updating the accumulated value of magnetization with each step

450

451 name=strcat(’Mx’,’_’,num2str(counter));

452 d_mr3=d_mr1;

453 eval([’load ’ name ’ d_mr1’]);

454 d_mr1=d_mr3+d_mr1;

455 eval([’save ’ name ’ d_mr1’]);

456

457 name=strcat(’My’,’_’,num2str(counter));

458 d_mr3=d_mr2;

459 eval([’load ’ name ’ d_mr2’]);

460 d_mr2=d_mr3+d_mr2;

461 eval([’save ’ name ’ d_mr2’]);

462

463 name=strcat(’Mz’,’_’,num2str(counter));

464 d_mr2=mr3;
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465 eval([’load ’ name ’ d_mr3’]);

466 d_mr3=d_mr2+d_mr3;

467 eval([’save ’ name ’ d_mr3’]);

468

469 mr1_1=mr1_2;

470 mr2_1=mr2_2;

471 mr3_1=mr3_2;

472

473 t=t+dt;

474 counter=counter+1;

475 end

476 end

477

478 N=counter-1;

479 load(’Mx_0.mat’);

480 load(’My_0.mat’);

481 load(’Mz_0.mat’);

482

483 mr1_1=sum(sum(sum(d_mr1)))/spin_number;

484 mr2_1=sum(sum(sum(d_mr2)))/spin_number;

485 mr3_1=sum(sum(sum(d_mr3)))/spin_number;

486

487 t=0;counter=1;

488 % ploting result of phase cycling after uploading the final

489 % values of magnetization

490 while counter<=N;

491

492 load(strcat(’Mx_’,num2str(counter)));

493 load(strcat(’My_’,num2str(counter)));

494 load(strcat(’Mz_’,num2str(counter)));

495

496 mr1_2=sum(sum(sum(d_mr1)))/spin_number;

497 mr2_2=sum(sum(sum(d_mr2)))/spin_number;

498 mr3_2=sum(sum(sum(d_mr3)))/spin_number;

499

500 %figure(2);

501

502 %subplot(4,2,3);

503 %line([t t+dt],[mr1_1 mr1_2],’color’,’b’,’Linewidth’,2);

504 %title(’<mr_x>’);

505 %grid on;axis tight;hold on;

506

507 %subplot(4,2,5);

508 %line([t t+dt],[mr2_1 mr2_2],’color’,’b’,’Linewidth’,2);

509 %plot(t+dt, 2*(tau_dipolar/(t+dt))*real(besselj(2,-(t+dt)/tau_dipolar)),’r.’);

510 %title(’<mr_y>’);

511 %grid on;axis tight;hold on;

512

513 %subplot(4,2,7);

514 %line([t t+dt],[mr3_1 mr3_2],’color’,’b’,’Linewidth’,2);

515 %title(’<mr_z>’);

516 %grid on;axis tight;hold on;

517

518 mr1_1=mr1_2;

519 mr2_1=mr2_2;

520 mr3_1=mr3_2;

521

522 t=t+dt;

523 counter=counter+1;

524

525 P_olar_My(D_irect)=mr2_2;

526 P_olar_Mx(D_irect)=mr1_2;

527

528 end

529

530 %figure(2);%clf;

531 %figure(3);clf;

532
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533 end

534

535 Current_G=G_radient(GT);

536 eval([’save ’ strcat(’Polar_NrvSlc’,’_Dir’,num2str(G),’_Gr’,num2str(GT)) ’ P_olar_My ...

537 P_olar_Mx Current_G Object_Data voxel_size R r A_long’]);

538

539

540 %figure(4)

541 %subplot(1,2,1);

542 %polar(A_ngle,abs(P_olar_Mx));

543 %title(’Mx’);

544 %drawnow;hold on;

545 %subplot(1,2,2);

546 %polar(A_ngle,abs(P_olar_My));

547 %title(’My’);

548 %drawnow;hold on;

549 %whos;

550 clear d_mr1 d_mr2 d_mr3 mr1 mr2 mr3

551 %whos;

552 end

553 end

554 toc

555 quit

1 function [d_mr1, d_mr2, d_mr3] = ddf_bloch_eqns(mr1,mr2,mr3,M0,...

2 R1, R2, delta_w,ps_grad, D,...

3 ctr,t,dt,...

4 spin_number,spin_number_XY)

5

6 g = 267.522*10^6; %units: 1/(s T)

7 mu0 = 4*pi*1e-7; %units: NA^-2

8

9 b_damp1=0.0;

10 b_damp2=0.0;

11

12 %b_damp1 =(sum(sum(sum(mr2)))/spin_number)/(g*M0*tau_damping);

13 %b_damp2 =(sum(sum(sum(mr1)))/spin_number)/(g*M0*tau_damping);

14

15 [br1, br2, br3] = ddf(mr1,mr2,mr3);

16

17

18 d_mr1 = mr2.* (delta_w + 2*pi*ps_grad + g*mu0*M0*br3) - mr3 .* (g*b_damp2 + g*mu0*M0*br2) + ...

19 diffusion_term(D, mr1) - R2.*mr1;

20 d_mr2 = -mr1.* (delta_w + 2*pi*ps_grad + g*mu0*M0*br3) + mr3 .* (g*b_damp1 + g*mu0*M0*br1) + ...

21 diffusion_term(D, mr2) - R2.*mr2;

22 d_mr3 = mr1.* (g*b_damp2+g*mu0*M0*br2) - mr2 .* (g*b_damp1+g*mu0*M0*br1) + ...

23 diffusion_term(D, mr3)-R1.*mr3+R1;

24

25 %-------------------------------------------------------------

26 function diff_term = diffusion_term(D,mr1);

27 diff_term = 0; % needs to be implemented

1 function [br1, br2, br3] = ddf(mr1, mr2, mr3)

2 voxels = size(mr1,1);

3 %non_local_sum=zeros(voxels,voxels,voxels);

4 deltak = zeros(size(mr1));

5

6 %zero_freq_file = [’ddf_0freq_’ num2str(voxels)];

7 %file_exists = which([zero_freq_file ’.mat’]);

8 %if isempty(file_exists)

9 % for r1=1:voxels

10 % for r2=1:voxels

11 % for r3=1:voxels

12 % for rp1=1:voxels

13 % for rp2=1:voxels

14 % for rp3=1:voxels

15 % if rp1 == r1 & rp2 == r2 & rp3 == r3

16 % integrand(rp1,rp2,rp3)= 0;
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17 % else

18 % integrand(rp1,rp2,rp3)= (1-3*((r3-rp3)^2/((r1-rp1)^2 + (r2-rp2)^2 + (r3-rp3)^2))) / ...

19 % (2*((r1-rp1)^2 + (r2-rp2)^2 + (r3-rp3)^2)^1.5);

20 % end

21 % end

22 % end

23 % end

24 % non_local_sum(r1,r2,r3) = sum(sum(sum(integrand)));

25 % end

26 % end

27 % end

28 %eval([’save ’ zero_freq_file ’ non_local_sum’]);

29 %else

30 %eval([’load ’ zero_freq_file ’ non_local_sum’]);

31 %end

32

33 %load(’ddf_0freq_217.mat’);

34

35 %br1_from_0_component = -1/(4*pi)*non_local_sum;

36 %br2_from_0_component = -1/(4*pi)*non_local_sum;

37 %br3_from_0_component = 2/(4*pi)*non_local_sum;

38

39

40 zero_freq = floor(voxels/2 +1); %calculate using filter symetric about zero freq

41 deltak_file = [’ddf_deltak_’ num2str(voxels)];

42 file_exists = which([deltak_file ’.mat’]);

43 if isempty(file_exists)

44 for k1=1:voxels;

45 for k2=1:voxels;

46 for k3=1:voxels

47 if k1==zero_freq & k2==zero_freq & k3==zero_freq

48 deltak(k1,k2,k3) = 0;

49 else

50 deltak(k1,k2,k3) = (3*((k3-zero_freq)^2 / ...

51 ((k1-zero_freq)^2 + (k2-zero_freq)^2 + (k3-zero_freq)^2)) - 1)/2;

52 end

53 end;

54 end;

55 end

56 eval([’save ’ deltak_file ’ deltak’]);

57 %else

58 % eval([’load ’ deltak_file ’ deltak’]);

59 end

60

61 %deltak=ones(voxels,voxels,voxels);

62

63 br1=fftn(mr1); br1=fftshift(br1);

64 br2=fftn(mr2); br2=fftshift(br2);

65 br3=fftn(mr3); br3=fftshift(br3);

66

67 eval([’load ’ deltak_file ’ deltak’]);

68

69 br1=deltak.*br1;

70 br2=deltak.*br2;

71 br3=deltak.*br3;

72

73 clear deltak;

74

75 br1=ifftshift(br1); br1=ifftn(br1); br1=real(-1/3*br1);

76 br2=ifftshift(br2); br2=ifftn(br2); br2=real(-1/3*br2);

77 br3=ifftshift(br3); br3=ifftn(br3); br3=real( 2/3*br3);

78

79

80 %br1 = real(-1/3*( ifftn(ifftshift(deltak.*fftshift(br1)))));%-mk1/voxels^3*1/(4*pi)*non_local_sum;

81 %br2 = real(-1/3*( ifftn(ifftshift(deltak.*fftshift(br2)))));%-mk2/voxels^3*1/(4*pi)*non_local_sum;

82 %br3 = real( 2/3*( ifftn(ifftshift(deltak.*fftshift(br3)))));%+mk3/voxels^3*2/(4*pi)*non_local_sum;

1 function [mr1_after_rot, mr2_after_rot, mr3_after_rot] = instant_rf( ...
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2 mr1, mr2, mr3, rf_radians, rf_phases)

3 mr1_after_rot = ...

4 cos(rf_phases)*( ...

5 mr1 ...

6 ) + ...

7 sin(rf_phases)*( ...

8 mr1*cos(rf_radians) - mr3*sin(rf_radians) ...

9 );

10 mr2_after_rot = ...

11 cos(rf_phases)*( ...

12 mr2*cos(rf_radians) + mr3*sin(rf_radians) ...

13 ) + ...

14 sin(rf_phases)*( ...

15 mr2 ...

16 );

17 mr3_after_rot = ...

18 cos(rf_phases)*( ...

19 -mr2*sin(rf_radians) + mr3*cos(rf_radians) ...

20 ) + ...

21 sin(rf_phases)*( ...

22 mr1*sin(rf_radians) + mr3*cos(rf_radians) ...

23 );

1 function [mr1_after_grad, mr2_after_grad, mr3_after_grad] = instant_grad( ...

2 mr1, mr2, mr3, g_cycl_mat)

3

4 mr1_after_grad = ...

5 cos(2*pi*g_cycl_mat).*( ...

6 mr1 ...

7 ) + ...

8 sin(2*pi*g_cycl_mat).*( ...

9 mr2 ...

10 );

11 mr2_after_grad = ...

12 cos(2*pi*g_cycl_mat).*( ...

13 mr2 ...

14 ) - ...

15 sin(2*pi*g_cycl_mat).*( ...

16 mr1 ...

17 );

18 mr3_after_grad = mr3;
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