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The purposes and tasks of the course are studying of properties of nonideal 
plasmas on the basis of different theoretical methods. Students have to solve concrete 
tasks in physics of plasmas and to assist in their discussions.  
 
 
The tasks of study of the discipline: 
- To understand the basis of theoretical methods used in investigation ionization 

equilibrium and properties for nonideal plasmas; 
- To obtain basic knowledge about fundamental problems in nonideal plasma 

physics and its applications; 
- To learn different types of plasma and methods of calculations; 
- To choose the model of interaction between particles, taking into account different 

effects (screening effects, quantum mechanical effects of diffraction and 
symmetry, degeneration and etc.); 

- To apply the obtained knowledge for the analysis of concrete physical 
phenomena. 

 
The author would like to thank L.E. Strautman and T.N. Ismagambetova for 

their help in the process of proofreading and editing. 
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LECTURE 1 
 

Basic Сoncepts of Nonideal Plasma. Effective potentials for fully ionized 
plasma. 

 
Introduction  
 
It is well known that at low densities plasma can be considered as a mixture of 

ideal gases of electrons, atoms and ions. In this case the particles move along straight 
lines and sometimes collide with other particles. With increase of plasma density the 
average distances between particles decrease and particle’s interacting time increases, 
therefore, the average potential energy increases. If this energy gets to be comparable 
with average kinetic energy of thermal motion, i.e. kineticU E≈ , the plasma becomes 
nonideal. It should be noted that properties of such plasma cannot be described by 
traditional methods of theoretical physics. The interaction between particles in fully 
ionized plasma can be described by long-range Coulomb potential.  In the case of 
complex plasma consisting of electrons, ions, atoms, molecules, clusters, etc., 
different interaction potentials should be used. 

 
Interparticle Interactions and Criteria of Nonideality 
 
The ratio between the average interaction potential energy of particles and the 

mean thermal energy Bk T  is used as a criterion of nonideality of a plasma.  For 
nondegenerate singly ionized plasma this condition can be written by coupling 
(nonideality) parameter Γ : 

 
2

B

e
ak T

Γ = ,                                          (1.1) 

 
where a  is the average distance between particles related to the plasma density by 
the following simple relation: 

 
( ) 34 3 1en aπ = .                                         (1.2) 

 
In the case of multiple ionized plasma the different nonideality parameters for 

ion–ion, ion–electron, and electron–electron interactions should be used. For 
example, in fully ionized plasma with ions having charge number Z  we have the 
following relations: 
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It should be noted that coupling parameters (1.1) and (1.3) can be applied for 

semiclassical dense plasma. For description of classical plasma the following 
nonideality parameter is usually used: 

 
2

1 2

D B

Z Z e
r k T

γ = ,                                          (1.4) 

 
where Dr  is the Debye screening radius. Thus, we can consider the following types 
of plasma using mentioned parameters: 

• Ideal plasma (at , 1γΓ << ). 
• Weakly nonideal plasma (at , 1γΓ < ). 
• Nonideal plasma (at , 1γΓ ≥ ). 
• Strongly nonideal (coupled) plasma (at , 1γΓ >> ). 
To determine the condition of classicality we should compare the characteristic 

distance between particles with the thermal electron wavelength (2 )e e Bh m k Tλ = . 
Since the minimal characteristic radius of the ion–electron interaction is 

2
min ~ / Br Ze k T , the condition of classicality can be written as 

 
2

e
B

Ze
k T

λ << .                                        (1.5) 

 
The condition of classicality can be also written in terms of the degeneration 

parameter ξ : 
 

1F

Bk T
εξ = << ,                                  (1.6) 
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here ( )2/32 23 / 2F en h mε π=  is the Fermi energy.  Sometimes another degeneration 

parameter 1/θ ξ=  can be also used for describing semiclassical plasma’s properties. 
Notice that further compression of the plasma causes an increase of 

nonideality, but up to a certain value (limit) only, because at 3 ~ 1e en λ  with 
increasing density degeneracy of electrons occurs. For example, in metals 

23 3~ 10en cm−  and electrons are degenerate at 510T K≤ , i.e. almost always. With 
increase of plasma density the Fermi energy can be chosen as a kinetic energy scale. 
Therefore, the quantum criterion of ideality has the following form: 

 
2 1/3 / 1q e Fe n εΓ = << .                                       (1.7) 

 
Since 2/3~F enε  we can conclude that 1/3 1/3~ / ~q e F en nε −Γ , i.e. the quantum 

criterion parameter qΓ  decreases with increasing electron density. Consequently, the 
degenerate electron plasma becomes more ideal with compression. Notice that at 
higher densities only electrons can be considered as an ideal Fermi gas, whereas the 
ion component is nonideal.  

As a dimensionless density parameter Sr  the ratio between average 

interparticle distance a  and the Bohr radius Ba  is used /S Br a a= , where  
2 80,5 10Ba h me cm−= ≈ ⋅ .  

 
Screening of Charged Particle’s Field in Plasma 
 
Due to the long–range character of the Coulomb potential the many-particle 

interactions at large distances are important. The potential created by the selected test 
particle and its plasma environment is the well known Debye potential [1]: 

 
2

/ Dr re e
r

ϕ −= ,                                       (1.8) 

 
where k  corresponds to different charged plasma species and Dr  is the Debye 
screening radius: 

 
1/ 2

2 24D k k B
k

r e Z n k Tπ
−

 =  
 

∑ .                          (1.9) 
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According to (1.4) the criterion of ideality for singly charged plasma can be 
written as: 

 
2

~ 1
D B

e
r k T

γ = > .                                       (1.10) 

 
Let us introduce the number of electrons in the Debye sphere 
( ) 34 / 3D e DN n rπ= . Then the criterion (1.10) can be expressed in terms of DN  as 

3 1/ 2 1(3 ) (3 )DNγ −= Γ = .  For ideal plasma we have condition ~ 1DN .  

If the electrons of plasma are degenerate, i.e. 3 ~ 1e en λ , the screening length 
by degenerate electrons is defined by the Thomas–Fermi radius: 

 
2 2( / 3 ) / 4TF er n h meπ= .                             (1.11) 

 
In two–component electron–ion plasma, in which the electrons are degenerate 

but ions are classical, the screening radius of the test charge is defined by the 
following expression: 

 
2 2 2 2( ) ( ) ( )e i i

TF D Dr r r r− − − −= + ≈ .                           (1.12) 
 

Quantum Effects in Interparticle Interactions 
 
At small distances (when average distance between particles is approximately 

equal to the thermal wave-length, i.e. ~ ea λ ) we have to take into account quantum 
effects (for instance, diffraction and symmetry effects). These effects lead to the 
formation of atoms and molecules and play an important role. Taking into account 
these effects eliminates the divergencies at small distances between particles.   

For adequate taking into account of quantum effects at small distances the 
Slater sum and the Boltzmann factor should be jointly applied. It is known that the 
probability density of finding two particles at a distance r  in classical statistics is 
proportional to the Boltzmann factor ( )exp ( ) / Br k T−Φ , here ( )rΦ  is the 
interaction potential between two particles.  In quantum physics such probability is 
defined by the Slater sum [2]: 

 
( )3 *

2 ( , ) 2 exp /e n n B n
n

S r T E k Tλ= Ψ − Ψ∑ ,                   (1.13) 
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where nΨ  and nE  are the wave functions and the corresponding eigenvalues of the 
energy of two particles, respectively, and the summation in (1.13) is performed over 
all states of discrete and continuous spectra. 

Let us define the pseudopotential ( , )r TΦ  as a potential giving in the classical 
case the same particle distribution in space as the potential ( )rΦ  gives in the 
quantum case, i.e. 

 

2( , ) ln ( , )Br T k T S r TΦ = − .                           (1.14) 
 

Notice that the pseudopotential ( , )r TΦ  has the limiting value at 0r =  and 

coincides with ( )rΦ  in the limit T → ∞ . At large distances ( r → ∞ ) ( , )r TΦ has 
a Coulomb-like asymptotic dependence.  

From equation (1.14) at T → ∞  and ,e in n → ∞  the following expression for 
effective potential is obtained [3]: 

 
2 2

2
( ) 1 exp ln(2) exp

ln(2)e B

ee

e rrr k T
rαβ αβ α

αβ

δ δ
λ π λ

    
    Φ = − − + −    

        

.   (1.15) 

 
Taking into Account both Quantum and Screening Effects 
 
It should be noted that even in a rarefied plasma, when ~ 1γ , one cannot 

directly apply the formulas of ideal gas theory for describing the thermodynamic and 
transport properties of the plasma. Some quantities such as the second virial 
coefficient or the mean free path are diverging due to the specific character of the 
Coulomb interaction. It is known that the Coulomb potential has a long range 
character at large distances and an infinite divergence at small distances. 

The divergence at small distances is eliminated by taking into account the 
quantum diffraction and symmetry effects. The divergencies of physical quantities at 
large distances can be eliminated by taking into account the effect of charge 
screening in plasma.   

Notice that diffraction effect is related to the de Broglie waves of 
microparticles and symmetry effect corresponds to the Pauli exclusion principle. 

Consequently, in dense semiclassical plasma the collective (screening) and 
quantum-mechanical effects play an important role in the studies of thermodynamic 
and kinetic properties of the system. In general case these potentials contain quantum 
diffraction effects at short distances, as well as screening effects for large distances 
[4: 
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2

2 2
( )

1 4 /

Ar B r

D

Z Z e e er
r rr

α β
αβ

αβλ

− − 
Φ = − 

−  
                    (1.16) 

 
for electron-electron and electron-ion interactions and here  

 

( )2 2 2
2

1 1 1 / ;
2 DA rαβ

αβ

λ
λ

= − −  ( )2 2 2
2

1 1 1 /
2 DB rαβ

αβ

λ
λ

= + − . 

 
For describing of ion-ion interactions we have the following expression [5]: 
 

2
2 2 2 2

2 2
( )

1 4 /

Ar B r
i i

i i ei ei

ei D

Z Z e e er B A
r rr

λ λ
λ

− − 
Φ = − 

−  
.         (1.17) 
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Figure 1.1 - Effective potentials for fully ionized semiclassical plasma. 
1 – The Debye potential; 2 – The Deutsch potential;  

3 – (T.Ramazanov et al., ion-ion) 
4 – (T.Ramazanov et al., e-e, e-i) 

5 – The Deutsch potential for i-i interaction. 
 

Questions: 
1. The definition of nonideal plasma. 
2. Criteria of nonideality. 
3. Existence of nonideal plasmas. 
4. Screening effects. 
5. Quantum effects. 
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LECTURE 2 
 

Basic Сoncepts of Nonideal Plasma 
 

Charge-Atom Interactions in Nonideal Plasma 
 
In the previous lecture we considered interaction models between charged 

particles only. Notice that in partially ionized plasma (at high densities and low 
temperatures) the interactions between charged and neutral particles are dominant 
and cannot be described in an ideal–gas approximation. The effects of nonideality 
due to charge–neutral interaction are important for such properties as the electrical 
conductivity, thermal conductivity, thermoelectromotive force, etc.  

The interaction between isolated classical atoms and charges.  Let us consider 
the potential produced by atoms (molecules) at the ion (electron) location. It is known 
that the full ion–atom (electron–atom) interaction consists of the exchange, electric 
and polarization interactions. The polarization force is appreciable even at low 
densities due to its long range character. An atom polarized by microfields of ions 
(electrons) creates at the ion (electron) location the polarization potential, thus, we 
obtain the following polarization interaction potential for isolated classical atoms and 
ions (electrons): 

 
2

4( )
2

er
r

αϕ = − ,                                     (2.1) 

 
where ar r>  is the distance between particles;    α  is the polarizability of the atom 
and ar  is the atomic radius.   The total potential created by all atoms at the ion 
location is: 

 

24 ( ) ( )
a

a
r

r n r r drϕ π ϕ
∞

= ∫ ,                           (2.2) 

 
here ( )an r   is the atomic number density which depends on the distance from the 
ion.  If the ion-atom interaction is not so strong the dependence ( )an r  can be 
neglected, i.e. ( )a an n r≠ . Then 

 
22 /a ae n rϕ π α= − .                                       (2.3) 

 
The ideality criterion can be written in the following form: 
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22 1a
ia

a B

e n
r k T
π α

Γ = << ,                             (2.4) 

 
where ar  is the “cut-off” radius of the polarization interaction (this radius is 
approximately equal to the atomic linear size). It should be noted that the effects of 
nonideality caused by charge–neutral interaction can occur in highly polarizable 
gases such as metal vapors. For instance, in the case of cesium plasma 3400 Baα = ; 

4a Br a=  and at 2000T K=   we have 0,1iaΓ ≤  as long as 19 310an cm−< . 
Notice that the electron–atom interaction potential has the same polarization 

asymptote ( )rϕ  but it cannot be adequately determined in wide range of 
temperatures because in this case we have to calculate the electron-atom scattering 
phases. It is the separate and complicated problem. However, the electron–atom 
interaction at low temperatures can be described by a single parameter, namely, the 
electron–atom scattering length L  (as long as 3 ~ 1an L ). Then the real potential 

( )rΦ  can be replaced by a δ -like potential: 
 

2( ) 2 ( ) /r h L r mπ δΦ = .                            (2.5) 
 
The electron–atom interaction energy is calculated by following relation: 
 

2( ) ( ) ( )aU n r r r r drdr′ ′ ′= Φ − Ψ∫
     

,                   (2.6) 
 

where ( )rΨ


 is the electron wave function. For weakly coupled plasma the electron–
atom correlations can be neglected and using Eq. (2.5) we obtain: 

 
22 /aU h Ln mπ= .                                        (2.7) 

 
Finally, the criterion of plasma ideality corresponding to the electron–atom 

interaction has the following form: 
 

22
1a

ea
B

L h n
mk T

π
Γ = << .                                    (2.8) 

 
The screening and quantum effects in “charge-atom” interactions. Let us 

introduce the different effective potentials for the interactions between neutral atoms 
and charged particles in plasma. We will focus on the polarization potential 
describing the interaction between charged particles (electrons) and neutrals. In 
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particular, we consider the inclusion of screening and quantum-mechanical effects 
into the polarization potential. 

As mentioned above at large distances the interaction between an isolated atom 
and a charged particle is given by Eq. (2.1). However, this potential is not appropriate 
for dense (nonideal) plasmas. At short distances it becomes singular. It has to be 
modified if r  is of the order of the extension of the atom as given by the Bohr radius 

Ba . According to Buckingham, a cutoff radius 1r  can be introduced as follows:  
 

2

2 2 2
1

( )
2( )

er
r r

α
Φ = −

+ ,                                      (2.9) 

 
where 4

1 / 2Br aα=  and we obtain the finite value of this potential 2(0) / Be aΦ = − .  
At large distances modification is also necessary. It is known that in dense 

plasmas the Coulomb interaction between charged particles is screened. We have to 
take into account also the screening effects in the polarization potential [6]: 

 
22

2 2 2
1

2( ) exp 1
2( ) D D

e r rr
r r r r

α   
Φ = − − +  +   

,            (2.10) 

 
where Dr  is the Debye radius.   

Notice that both screening and quantum effects should be taken into account in 
nonideal partially ionized plasma. In general case the neutral atom is polarized in an 
external electric field generated by charges of plasma. Thus, we can consider atoms 
as dipoles. Let us consider semiclassical partially ionized plasma consisting of 
electrons, ions and atoms.  In this case the following effective potential for electron-
atom interaction is obtained [7]: 

 

( ) ( )
2 22 2 2 2

4 2 2
( ) (1 )(1 ) (1 )(1 )

2 1 4
Br Ar

D

er e Br B e Ar A
r r

α − −Φ = − + − − + −
−

 


,   (2.11) 

 
where 

 

,411
2

1

,411
2

1

22
2

2

22
2

2






 −−=






 −+=

D

D

rB

rA







                       (2.12) 
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In (2.11) we take into account quantum diffraction effects only in interactions 
between electrons. In the limiting case Dr<<  this potential takes the form of a 
well-known interaction potential (2.1) for isolated classical atoms and electrons. 

At high densities the quantum diffraction effects must be also taken into 
account in considerations of atom-electron interactions. Then in this case we have the 
following potential for electron-atom interaction [7]: 

 

( )
2 2

4 2 2( ) (1 ) (1 )
2 (1 4 / )

Br Ar

D

er e Br e Ar
r r

α − −Φ = − + − +
−  .   (2.13) 

 
Notice that at small distances between particles ( 0r → ) this potential has the 

finite value 2 2(0) /8eαΦ = −  .  
 
Neutral and compound particles in plasma.  Firstly, we will shortly discuss here 

influence of atom-atom interactions in plasma. Usually the plasma interactions 
(Coulomb and polarization) have high intensity and long–range character and the 
interaction between neutral particles are weak. In order to estimate the intensity of 
atom-atom interactions the van der Waals type equation of state can be used: 

 
2( )

1
a B

a
a

n k Tp n a
n b

+ =
−

.                                      (2.14) 

 
Then, the ideality criteria can be written as: 
 

1, / 1a a Bn b n a k T<<       << ,                         (2.15) 
 

where a  and b  are the parameters in the van der Waals equation. These parameters 
can be expressed in terms of the critical temperature and density: 

 
18 / 27 , (3 )c cT a b n b −=       = .                           (2.16) 

 
It should be noted that interatomic interactions in plasma are important at 

densities close to and higher than the critical values.  
 
The range of existence and the classification of states of nonideal plasma. Let 

us consider the fully ionized two–component hydrogen plasma and the corresponding 
existence diagram, the ( , )en T  plane in logarithmic coordinates, for such plasma (see 
Figure 2.1). In this figure the lines corresponding to the conditions 
( 1, 1, 1)qγ γ ξ=  =  =  are also shown. These lines divide the ( , )en T  diagram into 
several characteristic regions.  
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Figure 2.1. The range of existence for nonideal hydrogen plasma. 
 
Let us analyze separate regions on  diagram: 
• Region I: : classical plasma with weak interaction of 

the electrons and ions. 
• Region II: : classical plasma with strong 

interaction of the electrons and ions. 
• Region III: : the electrons form a 

degenerate system with strong interaction while the ions form a classical system with 
strong interaction. 

• Region IV: : quantum plasma with strong 
interaction of the electrons and ions. 

• Region V: : the electrons form a degenerate 
system with weak interaction while the ions form a classical system with strong 
interaction. 
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• Region VI: 1, 1, 1, 1e i qe qiξ ξ γ γ>  >  < > : the electrons are degenerate 
and interact weakly; the ions are degenerate and interact strongly. 

• Region VII: 1, 1, 1, 1e i qeξ ξ γ γ>  <  < < : electron/ion plasma with 
weak interactions, in which the electron component is degenerate. 

• Region VIII: 1, 1, 1e iξ ξ γ<  <  < : classical plasma with weak 
interaction of the electrons and ions. 

 
It should be noted that regions I, VII, and VIII represent gaseous plasmas at 

various temperatures and densities, regions V and VI correspond to a solid state. 
Regions III and IV also correspond to a condensed matter. Region I represents a 
weakly nonideal low–temperature gas discharge plasma.  Region VIII corresponds to 
high–temperature almost ideal plasma. 

 
Nonideal plasma in nature and its scientific and technical applications. In 

Figure 2.2 the plasma parameters realized in nature and in various technical devices 
are shown [3]. 
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Figure 2.2 - The plasma parameters realized in nature and in various technical 

devices. 1 - solar corona; 2 - tokamak; 3 - laser–induced fusion; 4 - core of Sun; 5 - 
Z–pinch; 6 - stellarator; 7 - gas lasers; 8 - plasmotron; 9 - chromosphere of Sun; 10 - 
plasma of hydrocarbon fuel combustion products; 11 - electric arcs; 12 - cathode 
spot; 13 - spark; 14 - MHD generator; 15 - semiconductor plasma; 16 - metal–
ammonia solutions; 17 - metals. 
 
Questions: 
1. Describe polarization interaction potential for isolated classical atoms and ions 
(electrons). 
2. Inclusion of screening and quantum-mechanical effects into the polarization 
potential. 
3. The screening and quantum effects in “charge-atom” interactions. 
4. Classification of states of nonideal plasma. 
5. Nonideal plasma in nature and its applications. 
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LECTURE 3 
 

Experimental Methods of Nonideal Plasma Generation 
 

Electrical Methods of Nonideal Plasma Generation 
 
Introduction.  There are two principally different techniques, namely: 
• heating of ampoules containing the investigated material in resistance 

furnaces; 
• Joule heating of the investigated material by an electric current.  
 
Plasma heating in furnaces. The stationary methods of plasma generation are 

based on heating an ampoule containing the material under investigation (measuring 
cell) in electric furnaces of various designs. In the Figure 1 the schematic diagram of 
such a setup for investigating of alkali metals at high temperatures and pressures is 
shown (Alekseev, 1968). Argon from the cylinder (1) was fed via a system of valves 
to the chamber (3) for purification. Purified argon was delivered into a nitrogen 
thermo compressor (4) with the pressure up to 600 bar, and from the thermo 
compressor to the measuring chamber (5) containing a heater and a measuring cell. 
The pressure was monitored by gauges (2). The temperature was determined using a 
standard thermocouple. 

 

 
 

Figure 3.1. The schematic diagram of the experimental setup for generation 
and investigation of nonideal plasma of metals. 

1 - cylinder with argon; 2 - pressure gauges; 3 - argon cleaning system; 4 – 
thermo compressor; 5 - high–pressure chamber. 

 
The most convenient object for investigations of the nonideality effect is 

cesium which has a low ionization potential ( ), low critical pressure 
(about ), and a critical temperature that is quite accessible to static 
experiments (about ). In the such experiments plasma has the following 
value of the nonideality parameter . 
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The isobaric Joule heating in a capillary. This method was developed by Kulik 

et al. (1984) [10] to investigate the properties of nonideal plasma of cesium, sodium, 
potassium and lithium. A schematic diagram of such experimental setup is shown in 
Fig. 3.2. 

 

 
 
Figure 3.2.  A schematic diagram of setup for isobaric heating in a transparent 

capillary. 
(a): 1 - capillary; 2 - electrodes; 3 - liquid cesium; 4 - argon purge. (b) The time 

dependence of plasma temperature. 
 
In this apparatus transparent quartz (or glass) capillary  in diameter 

and  long is filled with liquid cesium (or other metals) under constant 
pressure of argon. The cesium in the capillary is heated by a current pulse shaped by 
an electric circuit consisting of a capacitor, an inductor and a control thyristor (see, 
Fig.2). In the experiment, the current–voltage characteristic  is measured (from 
the oscillogram). Then, the isobars of electrical conductivity  and thermal 
conductivity  are calculated on the basis of the dependence  using the 
following relations: 

 

,                            (3.1) 

 
where the first equation is the equation of thermal balance and the second one is the 
Ohm’s law;  is the distance from the capillary axis and  is its radius. Some 
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boundary conditions for equation (3.1) such as  at  and  at 
 should be added, here  is the temperature of the outer surface of the plasma 

measured by pyrometer. The typical plasma parameters in such experiments are as 
follows: the maximum pressure is  and the temperature range is 

. 
 
Exploding wire method. The schematic diagram of the exploding wire method 

is shown in Figure 3.3 (Dikhter and Zeigarnik, 1981). A cesium (or lithium) wire 6 is 
placed in a high–pressure chamber 5. An electric current with a density of 

 is passed through the wire and metallic plasma is generated.  
Such plasma contained by a high–pressure inert gas is heated and expands at 

constant pressure. In the experiment the pressure in the chamber, the oscillography of 
current in the circuit and the voltage drop across the plasma column are measured. 
The plasma column expansion process is registered by photo recording. Finally, one 
can use the measured values to calculate the enthalpy, density and electrical 
conductivity. The typical plasma parameters in the experiment with an exploding 
wire are as follows: the maximum pressure is  and the temperature range is 

.     
 

 
 

Figure 3.3 - A schematic diagram of the experimental setup for exploding wire 
method. 

1 - ballast resistor; 2 - capacitor bank; 3 - oscillograph; 4 - high–speed 
photorecorder; 5 - high–pressure chamber; 6 - heated wire; 7 - spectrograph. 
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High–pressure electric discharges. Due to the high density of material and high 
level of temperature, the charged particle concentration in a plasma of high–pressure 
electric arcs and discharges is equal to  at pressures .   It 
should be noted that in such a plasma, the nonideality parameter may reach 
substantial values. Pulsed discharges in gases are generated upon discharging a 
battery of capacitors through an inter-electrode gap. One of the possible designs for a 
discharge tube is shown in Figure 3.4 (Radtke, Guenter, 1976).  

 

 
 
Figure 3.4 - A schematic diagram of high pressure discharge tube. 
1 - quartz window; 2 - auxiliary electrode; 3 - steel ring; 4 - pressure sensor; 5 - 

cathode; 6 - tungsten probes; 7 - anode. 
 
It consists of a quartz tube with four electric leads: anode, cathode (with a 

pressure sensor), and two measuring probes. Inside the tube, a movable auxiliary 
electrode for ignition is mounted. The tube has a length of  and a diameter of 

. It is filled with an inert gas at an initial pressure of up to . The typical 
plasma parameters are as follows: ; ; 

; . 
 
Conclusion. In the first method (plasma heating in furnaces) homogeneous 

volumes of plasma are obtained but the plasma temperature is restricted to  
due to the thermal resistance of structural materials. The methods of the Joule heating 
include high–pressure gas discharges, the explosion of conductors, discharges in 
liquids and some other techniques. By these methods the plasma can be generated at 
considerably higher temperatures up to  but there are some difficulties 
concerning the homogeneity of plasma volumes caused by various plasma 
instabilities. 

 
Dynamic Methods of Nonideal Plasma Generation 
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Here we consider the principally different dynamic methods of nonideal 
plasma generation. Notice that by these methods the highest plasma parameters can 
be obtained. These methods are based on the accumulation of energy in the 
investigated material, or on the viscous dissipation in the front of shock waves, which 
propagate throughout the material causing its compression, acceleration and 
irreversible heating, or on adiabatic variation of pressure in the material. 

 

 
Figure 3.5 - Schematic presentation of the principles of dynamic generation of 

plasma.  is the boundary of maximum compressions of the material, i.e., the 
"cold" (T = 0 K) compression curve. The shaded areas show two–phase regions of 
melting and evaporation.  is the critical point. Circles indicate the initial states of 

the medium.  and  are the curves of cesium and inert gas compression by 
incident and reflected (  and )  shock waves.  and  are the curves of 
shock-wave compression of solid and porous metals.  is the curve of adiabatic 
compression of cesium.  is the unload adiabat of shock–compressed metals. 

 
The technique of dynamic generation of plasma consists of the following 

methods: 
• the adiabatic compression of gases (curve ); 
• the shock–wave compression of gases (curves  and ); 
• the shock–wave compression of solid matter (curves  and ); 
• the adiabatic expansion of shock–compressed matter ( ). 
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The main advantages of these methods are  
• the high purity and homogeneity of the investigated volume; 
• the absence of electric and magnetic fields (hampering the diagnostics 

and causing the development of various instabilities in the plasma); 
• the possibility of obtaining extremely high parameters of plasma; 
• using the general laws of conservation of mass, momentum and energy 

we can obtain the thermodynamic characteristics of plasma by the registration of the 
kinematic parameters of the shock waves (i.e. by the measurement of times and 
distances). 

 
The adiabatic and shock-wave compression of gases. As an example we 

consider the dynamic compression of the cesium plasma because cesium has the 
lowest ionization potential  and we have high charge concentration  at 
moderate temperatures and a substantial value of the nonideality parameter. 
Therefore, cesium is the most popular element in nonideal plasma experiments.  

Figure 3.6 shows a schematic diagram of the experimental setup on the basis of 
the pneumatic, diaphragm shock tube for dynamic compression of cesium vapors (V. 
Fortov, e.a) [9].  The experimental apparatus with a length of  and an inside 
diameter of  was heated to . An ionizing shock wave emerged upon 
expansion into saturated cesium vapor of helium, argon or their mixtures pre-
compressed to about . 

 

 
Figure 3.6 - A schematic diagram of the heated cesium shock tube. 1 - air–

operated valves; 2 - a system for measuring the initial cesium pressure; 3 - a liquid 
cesium vessel; 4 - thermocouples; 5 - propelling gas; 6 - a diaphragm unit; 7 - 
photomultipliers; 8 - shock– compressed plasma; 9 - electrical conductivity 

measuring coil; 10 - beryllium windows; 11 - X–ray tube; 12 - an electric heater. 
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To determine physical characteristics of plasma the corresponding diagnostic 
methods should be developed. The dynamic diagnostic methods are based on the 
using of the relationship between the thermodynamic properties of the investigated 
medium and the experimentally observed hydrodynamic phenomena. (Zel’dovich and 
Raizer, 1988) [11-13]. It is known that the laws of conservation of mass, momentum 
and energy are satisfied in the front of the shock wave upon propagation of a 
stationary shock–wave through the material: 

 

( )

( )( )( )

0

0 0

0 0 0

;
;

1 2

D u D
p p Du
E E p p

υ υ
υ

υ υ

= −  


= +  
 − = + −

,               (3.2) 

 
where the subscripts “0” denote the parameters of material before the front of the 
shock wave; D  is the shock velocity; u  is the mass velocity in the front of the shock 
wave; E , p , υ  are the specific internal energy, the pressure and the specific 
volume, respectively. It is seen that the hydrodynamic and thermodynamic 
characteristics of the material can be derived from the recording of any two out of 
five parameters characterizing the shock wave , , , ,E p D uυ . Usually the shock 
velocity D  is measured most readily and accurately using the well known techniques. 
The choice of the second measured parameter depends on the actual experimental 
conditions. 

The typical plasma parameters are as follows: (0,1 20)p GPa= ÷ ; 
5(0,1 2) 10T K= ÷ ⋅ ; 15 22 35 10 5 10en cm−= ⋅ ÷ ⋅ ; (0,2 3,2)Γ = ÷ . 

 
The adiabatic expansion of shock–compressed matter. In such experiments the 

isentropic expansion curves for shock–compressed matter (curve 2S , see Figure 3.5) 
are described by the Riemann integrals: 
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∫

∫
.                             (3.3) 

 
These quantities are calculated along the measured isentrope ( )S Sp p u= . By 

recording under different initial conditions and shock–wave intensities, one can 
determine the caloric equation of state ( , )E E p υ=  in the region of the p υ−  
diagram. The experimental results for cooper demonstrate that the adiabatic 
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expansion from the states on the shock adiabat with ~ 1410p GPa , 4~ 5 10T K⋅ , 
3 1~ 0,052 cm gυ −  leads to a weakly nonideal plasma with the following parameters 

~ 0,73p GPa ; ~ 9200T K ; 3 1~ 1,3 cm gυ −  and ~ 0,1Γ . 
 

Questions: 
1. Electrical methods of nonideal plasma generation. 
2. Plasma heating in resistance furnaces. 
3. Joule heating by an electric current. 
4. Dynamical methods of nonideal plasma generation. 
5. Adiabatic and shock-compression methods of generating plasma. 
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LECTURE 4 
 

Thermodynamic Properties of Nonideal Plasmas 
 

Introduction  
 
There are several methods for investigation of the thermodynamic properties of 

nonideal plasma. A perturbation theory can be applied at 1Γ <<  for weakly nonideal 
plasma. For strongly coupled plasma ( 1Γ > ) we use a computer simulation by the 
Monte Carlo method. In order to apply the Monte Carlo method we have to know the 
interaction potential between particles in plasma. The thermodynamic properties of 
nonideal plasma at intermediate values of the coupling parameter can be investigated 
by integral equation methods (BBGKI, Ornstein-Zernike etc.) [14]. 

 
One Component Plasma (OCP) 
 
Let us consider the simple and well-studied model of one component plasma 

(OCP). The one–component plasma (OCP) means a system of point-like ions placed 
in a homogeneous medium of charges of the opposite sign. The OCP-model is a good 
approximation for describing the plasma at high pressures. Such a plasma occurs in 
an inertial thermonuclear fusion and   astrophysical objects (in the center of white 
dwarfs and giant planets). In these cases, matter is ionized under the effect of 
pressure and degenerate electrons have sufficient kinetic energy, i.e.  

 

( )2/32 23 / 2kin eE n h mπ≈ ,                                    (4.1) 
 

which means the degenerate electrons produce an almost uniform background density 
distribution. It should be noted that the kinetic energy of electrons is F Bk Tε >>  due 
to the small electron mass at high density ( 0Sr → ) and the pressure of electron 
component is much higher than the corresponding pressure of the ion subsystem. 
Consequently, we have two systems: the Coulomb system of point-like nuclei 
described by the Boltzmann statistics and the quantum electron fluid (see the regions 
V, VI and VII in the Lecture No. 2). Notice that the interaction between these 
components is weak and most attention is concentrated on the analysis of the 
Coulomb internuclear (interionic) interaction. According to this OCP model there are 
no bound states (of molecules, atoms and ions). As the OCP model is the simplest, it 
has been studied in detail by theoretical and computer simulation methods for a wide 
range of the coupling parameter.  
 

Table 1.1 
 

One–component plasma of astrophysical objects 
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Discussion of calculation results. The radial distribution functions are shown in 

the Figure 4.1. Figure 4.2 represents the results for static structure factors. 
 

 
 

Figure 4.1 - The OCP radial distribution functions for different values of the 
coupling parameter . 
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Figure 4.2 - The OCP static structure factors for different values of the 
coupling parameter Γ . 
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Figure 4.3 - The static dielectric functions of the OCP for different values of 
the coupling parameter Γ . 

 
Knowing static structure factors the static dielectric permeability ( ,0)kε  can 

be determined as follows: 
 

12 2( ,0) 1 / ( )Dk k S kε κ
−

 = −  ,                        (4.2) 
 

where 2 24 ( ) /D i Bn Ze k Tκ π= . In the case of almost ideal plasma ( 1Γ << ) these 
functions are monotonic and are described by the linearized Debye approximation: 
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( ) 12 2 2
D DS k k κ

−
= + ,                          (4.3) 

 

( )2 2 2( ,0) /Dk k kε κ= + .                         (4.4) 
 
The radial distribution (pair correlation) functions are monotonic up to 3Γ ≈  

and can be described by the linearized Debye approximation: 
 

( )( ) 1 exp /D Dg r r r r
r
γ

= − ⋅ ⋅ − ,                        (4.5) 

 
where 2( ) /( )D BeZ r k Tγ =  is the nonideality parameter and  

2 2 1/ 2(4 / )D i Br Z e n k Tπ −=  is the Debye radius of screening. At 3Γ ≥  functions 
( )g r  have oscillations due to the formation of short-range ordered structures. It 

means that the system changes from the ideal gas to a liquid state. With an increase in 
Γ  the oscillations increase and an effective hard core is formed.  

Knowing the pair correlation functions and static structure factors the 
thermodynamic properties can be calculated. Here we will briefly discuss these 
results. Let us consider the regions of weak ( 1Γ << ) and moderate (0,1 1≤ Γ ≤ ) 
nonideality. On the basis of Mayer’s diagrams for the excess part of free energy we 
have the following expression: 

 

3/ 2
2 3

3 ( ) ( ) ...
3

ex

B

F S S
Nk T

= − Γ + Γ + Γ + ,              (4.6) 

 
where the first term corresponds to the summation of the "ring" diagrams (the Debye 
approximation), 2 ( )S Γ  and 3( )S Γ are contributions to the free energy on the basis 
of the screened Coulomb potential: 

 

( )
2

( ) exp / TF
er r r
r

Φ = − ,                        (4.7) 

 
where TFr is the Tomas-Fermi radius. The expression for 2 ( )S Γ is given by 

 
( ) / 2

2
11 ( ) / ( ( ) / ) ...

2 2
Br k T

B B
NS e r k T r k T dr−Φ = − + Φ − Φ  ∫


   (4.8) 
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and has the value 3( ln )O Γ Γ  at 0Γ → . On the basis of the relations between 
thermodynamic functions we can write the following expressions for the internal 
energy and thermal capacity: 

 

[ ]3/ 2
2 3

3 3 ( ) ( ) ...
2 2

ex

B

U d S S
Nk T d

= − Γ + Γ Γ + Γ +
Γ

,      (4.9) 

 

[ ]
2

3/ 2 2
2 32

3 3 ( ) ( ) ...
4 2

V

B

c d S S
Nk T d

= Γ − Γ Γ + Γ +
Γ

.     (4.10) 

 
For the case of weakly nonideal regime ( 1Γ << ) we have the following 

simple relations according to the well-known Debye theory: 
 

3/ 2

1 1; ;
3 2

1 ; 3
4

ex ex

B B

V

B

F UE E
Nk T Nk T

c E E
Nk T

= −            = −

=                 = Γ
.            (4.11) 

 
In the opposite case ( 1Γ >> ) the asymptotic expression for internal energy 

can be written as: 
 

9
10

ex

B

U
Nk T

= − Γ .                                     (4.12) 

 
In order to obtain the formula for a wide range of the coupling parameter we 

have to approximate the computer simulated Monte Carlo data: 
 

 1/ 4 1/ 4ex

B

U a b c d
Nk T

−= Γ + Γ + Γ + ,                (4.13) 

 
where 0,897; 0,945; 0,179; 0,801a b c d= −  =  =  = −  and expression (4.13) 
describes the OCP internal energy at 1 160≤ Γ ≤ .  

 
Multicomponent Plasma (MCP) 
 
It is known that OCP model does not take into account the structure of opposite 

compensating background and basic quantum mechanical effects. Neglect of 
quantum–mechanical features can lead to major difficulties with the classical 
description of the particle motion at small distances (at ea λ ). It should be noted 
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that taking into account quantum mechanical effects leads to the formation of bound 
states (that is, molecules, atoms and ions). These quantum mechanical effects should 
be taken into account on the basis of the Boltzmann factor and the Slater sum (see 
Lecture No. 1).  

 
Confined atom model (V. Fortov and V. Gryaznov, 1980). 
Let us consider three–component plasma consisting of atoms, single-charged 

ions and electrons. We assume that the atoms are spheres with variable radius cr . For 
simplicity the sizes of electrons and ions are ignored. We will consider the subsystem 
of finite–size atoms as a set of hard spheres, which do not interact when the distance 
between them exceeds 2 cr . In this case it is necessary to take into account plasma 
effect on discrete spectrum of atoms and ions in dense plasma. These effects can be 
described in the framework of the confined atom model: 

 
2

,( )
,

c

c

Ze r rr r
r r


−  <Φ = 

∞    >
.                          (4.14) 

 
The free energy of such model can be written as: 
 

( , , , , )a i e id hs coulF N N N V T F F F= + + ∆ ,            (4.15) 
 

where the first term is the free energy of the ideal plasma, but the atomic partition 
function depends on the radius, the second term is the contribution of the hard sphere 
repulsion which also depends on cr . In order to include this contribution, the 
computer simulation of molecular dynamic results for the hard-sphere systems is 
used:  

 

2

3 4
( 1)hs a B

yF n k T y
y

−
∆ =

− ,                         (4.16) 

 
where 3(4 /3)a cy n rπ= . The equilibrium value of atomic radius can be determined 
from the condition of minimum of the free energy: 

 

0
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F
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∂
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In order to determine the dependencies of partition functions on atomic radius 

cr , it is necessary to numerically solve a set of nonlinear integral-differential 
equations according to the Hartree-Fock method. 

 
Questions: 
1. One component plasma (OCP). 
2. Structural properties of OCP. 
3. Thermodynamic properties of OCP. 
4. Multicomponent plasma (MCP). 
5. Confined atom model. 
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LECTURE 5 
 

Structural and Thermodynamic Properties of   
Nonideal Plasma by Monte Carlo method 

 
 

Pair Correlation  Functions (Radial  Distribution  Functions) 
 
A pair correlation function (PCF) ( )g r  plays an important role in the 

investigation of structural and thermodynamic (equilibrium) properties of a plasma. 
This function measures the time-independent correlations between the particles. More 
precisely, ( )g r  is the probability that a particle is found at a distance r  from any 
given (test) particle. In the spherical symmetric case when the function ( )g r  depends 

on distance i jr r r= −
 

 between particles, this function is called a radial distribution 
function (RDF). The pair correlation function for ideal and weakly nonideal plasma is 
easily calculated using well known integral equation methods (BBGKI chain, 
Ornstein-Zernike equation, etc.). In the case of nonideal (dense) plasma the 
approximate methods of theoretical physics are not effective due to the absence of 
small parameters in the system. Therefore the computer simulation by the Monte 
Carlo method is applied for investigation of structural and thermodynamic properties 
of a dense plasma.  

 
Algorithm for calculation of ( )g r . 
 
1. For each particle its surrounding space is divided into spherical layers 

with thickness r∆ . For simplicity 0 / 2r L< ≤ . 
2. In each layer the number of particles ( )N r∆  is calculated. 
3. The obtained results are averaged over all particles in any configuration. 

In this case we use the normal (arithmetical mean) averaging. 
4. The obtained results are averaged for all configurations of Markov’s 

chain. In this case we use the weight function averaging with the Boltzmann factor.  

5. Then the average number of particles ( )N r∆  located at a distance 
between r  and r r+ ∆  from the given particle can be calculated by the following 
formula: 

 

( )
1 1

1( ) exp
M N

i
ij

i j B

UN r N
N k T= =

 
∆ = ∆ ⋅ − 

 
∑ ∑ ,                (5.1) 
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where iU  is the average potential energy of configuration; M  is the number of 
equilibrium configurations from the "stationary" part of MC computer simulation 
"control card". 

6. Finally, the pair correlation function (radial distribution function) is 
defined by the following expression: 

 

2

1 ( )( )
4

V N rg r
N r rπ

∆
= ⋅ ⋅

∆ .                          (5.2) 

 
It should be noted that for the plasma we have a set of pair correlation 

functions ( )g rαβ , where ,α β  are the sorts of particles.    
 
Discussion of results for ( )g r .  
The results for radial distribution function of dense semiclassical hydrogen 

plasma obtained by the Monte Carlo method are presented in Figures 5.1 – 5.5. At 
1<Γ  we have a monotonic (Debye-like) character of ( )g r . Fluctuations of ( )eeg r  

at 0,8Γ =  do not have any physical meaning and are within the range of statistical 
errors (Figure 5.1).  

In Figure 5.2 the electron-ion radial distribution functions ( )eig r  at different 

values of coupling parameter are shown. Notice that the values of ( )eig r  for 0,8Γ =  
are located higher than the corresponding values at 0,5Γ =  and 0,3Γ = . From 
physical point of view this fact means that the probability of finding an electron-ion 
pair at the intermediate distance increases with increasing coupling parameter 
(increase in plasma density). In other words with increase in plasma density the 
probability of formation of electron-ion pair (probability of recombination) rapidly 
increases at intermediate and small interparticle distances.   
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Figure 5.1 - Electron-electron radial distribution functions 
for dense semiclassical plasma at 1=sr  
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Figure 5.2 - Electron-ion radial distribution functions 

for dense semiclassical plasma at 1=sr  
 

It should be noted that we have the opposite situation for ion-ion correlation 
functions ( )iig r  (see, Figure 5.3). In this case the values of ( )iig r  decrease with 
increasing coupling parameter (increasing of plasma density). This fact is connected 
with an increase in the probability of finding like (repulsive) particles with increasing 
plasma density (or coupling parameter). 

It is seen from Figure 5.3 that minimal nonzero probability of finding an ion-
ion pair is observed at relatively large values of interparticle distances with increasing 
Γ . This fact can be explained by a relative increase of average distances between 
ions (as repulsive particles) with increasing plasma density.  
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Figure 5.3 - Ion-ion radial distribution functions 

for dense semiclassical plasma at 1=sr . 
 

Let us discuss the behavior of RDF at )101( ÷=Γ . For 1=Γ  we have a 
monotonic (Debye-like) character of )(rgee  (see Figure 5.4). It should be noted that 
at 3Γ ≥  )(lim

0
rgee

r→
 tends to a constant (non zero!) value. This fact can be explained 

as follows. With increasing coupling parameter it is necessary to take into account the 
interaction between electrons with anti-parallel spins due to the symmetry effect (the 
Pauli exclusion principle). The extremums of )(rgee  are related to the formation of 
quazi-bound states in the dense plasma.   

The ion-ion radial distribution functions are presented in Figure 5.5. It is seen 
that these functions have pronounced peaks at 5>Γ . This fact can be explained by 
formation of ordered structures in dense plasma (see Figure 5.6).  
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Figure 5.4 - Electron-electron radial distribution functions for dense 
semiclassical plasma at 1=sr . 
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Figure 5.5 - Ion-ion radial distribution functions 
for dense semiclassical plasma at 1=sr . 
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Figure 5.6 - Formation of ordered structures in dense semiclassical plasma. 
 
Static Structural Factors of the System 
 
The static structural factor (SSF) also plays an important role in the 

investigation of microscopic properties of plasma. Knowing the radial distribution 
functions, SSF can be defined in the following form: 

 
[ ] )exp(1)(1)( rkirgrdnkS 

⋅−−+= ∫ αβαβ ,              (5.3) 
 

where k  is the wave vector; e in n n= =  is the density number. As an example, SSF 
for dense semiclassical plasma is presented in Figure 5.7. 
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Figure 5.7 - Static structural factors for a dense semiclassical plasma. 

 
Thermodynamic Properties of Plasma 

 
We can define all thermodynamic properties of the plasma on the basis of the 

radial distribution functions. For instance, the equation of state  
( , ) ( , )sP F V T f r= = Γ  can be calculated by the following formula: 

 

2 3

, 0

( )2 ( )
3B

d r
P nk T n g r r dr

dr
αβ

αβ αβ αβ
α β

π ∞ Φ
= − ∑∫ .      (5.4) 

 
The internal energy is calculated as follows: 
 

2

, 0

3 2 ( ) ( )
2 BE Nk T n g r r r drαβ αβ αβ αβ

α β

π
∞

= + Φ∑∫ .             (5.5) 

 
The excess part of the internal energy is given on the basis of the static 

structural factors by the following expression: 
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π


,                (5.6) 

 
where )(~ kαβΦ  is the Fourier transform of the potential.  

In Figures 5.8 and 5.9 the results for excess internal energy and equation of 
state of  dense semiclassical plasma are presented. The MC simulation results have a 
reasonable agreement with the Debye’s asymptotic theory at ~ 1Γ  and the data of 
Ishimaru et al. [16], and Pierleoni et al. [17] at at the other values of the coupling 
parameter.   
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Figure 5.8 - Excess internal energy of a dense semiclassical plasma. 
1 – Pierleoni et al. [17]; 2 – the Debye’s asymptotic dependence; 3- MC 

simulation of Ramazanov et al. [18]. 
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Figure 5.9 - Equation of state of a dense semiclassical plasma. 
1 –interpolation formula of Ishimaru et al. [15]; 2 – the Debye’s asymptotic 

dependence; 3- MC simulation of Ramazanov e.a. [17]; 4 - Pierleoni et al. [16]. 
 

Questions: 
1. Pair correlation functions (PCF). 
2. Integral equation methods for calculating PCF. 
3. Algorithm for calculation of PCF. 
4. Static structural factors of the system. 
5. Thermodynamic properties of plasma. 
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LECTURE 6  
 

Plasma composition in equilibrium state 
 
The most natural way of plasma creation is heating of a gas to a high 

temperature. In collisions with neutral atoms gas particles, possessing high kinetic 
energy, knock out electrons from their nuclear orbits, the gas is ionized and a mixture 
of neutral particles, ions of different charges and electrons arises. It is clear that the 
degree of ionization of the plasma depends on temperature and concentration of the 
initial gas, but how? It is possible to give a universal answer if we assume that warm 
ionized gas is in the thermodynamic equilibrium. Thus, it is possible to use the 
methods of statistical physics and to consider the ionization process as a chemical 
reaction, using a minimum of thermodynamic potential in the equilibrium state [8]. 

Let's consider a system of electrons, ions and atoms of hydrogen in which there 
are ionization reactions by the electron impact: 

 
−+ +⇔ eHH .                                   (6.1) 

 
Free energy as well as other thermodynamic values is a function of the number 

of particles of each type: 
 

),,,,( *
0

** NNNVTFF ei= .                         (6.2) 
 

Here *
0

** ,, NNN ei  are numbers of free ions, free electrons and free atoms, 
respectively. The total number of electrons (ions), both free and bounded, we will 
denote as )( ie NN . These values are connected by the following expressions: 
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0
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0
* ;,, .   (6.3) 

 
The total numbers ie NN ,  in the given system are constants and ***

0 ,, ei NNN  
are variables. 

In the thermodynamic equilibrium free energy as a function of the numbers of 
particles must have a minimum, i.e.: 
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From (6.3) it follows that ***
0 ie NNN δδδ −=−= , therefore  
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Using the chemical potential 
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k N

F

,
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
∂
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=µ ,                                (6.6) 

 
one can obtain the equation which presents the equilibrium condition: 

 
*
0

** µµµ =+ ei .                                    (6.7) 
 

For the ideal system of particles the chemical potential has the following form: 
 

*** ln)( kBkk nTkT += µµ ,                    (6.8) 
 

here 
*
kn -is concentration of k-th component. 
Substituting (6.8) in the equation (6.7), we obtain the so-called equation of 

acting masses: 
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ei
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
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


−+= µµµ .          (6.9) 

 
The quantity К(Т) is called the ionization constant. From elementary Boltzman 

statistics it is known that 
)0(

kµ  is connected with the statistical sum kU as follows: 
 



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kBk VTUTkµ ,                           (6.10) 
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




−= exp ,                                 (6.11) 

Tmkh Bk π2/=Λ .                                   (6.12) 
 
Here summation is extended to all spectrum of internal power conditions of a 

particle of k-th type, and gs characterizes the degeneration degree of the s-th energy 
level (statistical weight). 

The condition with full moment J has a statistical weight: 
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12 += Jg                                       (6.13) 

 
So, for a free electron with quantum number l=0 and s=1/2 the statistical sum 

is Ue=2. Then the equation (6.9) has the following form: 
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Be ππ 2/2/ 0 ≈=Λ .      (6.15) 

 
In most cases the ion is in the ground state and division of the nuclear 

statistical sum is possible. If we assume full degeneration of levels of energy into spin 
and magnetic quantum numbers, we will have 

 
 ),()(2)(0 TTUTU i σ=                                  (6.16) 

∑ −+=
sl

Bsl TkElT )/exp()12()(σ .                     (6.17) 

 
In this case 
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=Λ= σ .                        (6.18) 

 
Expression (6.14) can be generalized for the case of multiple ionization of 

atoms in non-hydrogen plasma. 
For the plasma in the condition of thermodynamic equilibrium the 

concentrations of any i - and (i+1) -ionized atoms (ions) of the same element are 
obtained from the equation (6.9): 
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ie
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++

Λ= ,                            (6.19) 

 
where: 

*
en  is the number density of free electrons, 
*
in  is the number density of i- times ionized atoms, for example i=0 for neutral 

atoms, i=1 for singly ionized particles, 



49 
 

*
1+in  is the number density of (i+1) –times ionized atoms, 

)(TU i  is the statistical sum of i-times ionized atoms, 
)(1 TU i+  is the statistical sum of (i+1)-times ionized atoms. 

Let us note that all energies are counted from zero energy E=0 of the free 
electron, i.e. all bounded energies are negative. We will consider now the states sum 
σ  for hydrogen plasma.  
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.                       (6.20) 

 
It is obvious that the sum disperses. It also disperses in case of alkaline metals: 
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If we limit by the first term in the statistical sum (2.21), we will obtain the so-

called Saha equation. We can write down a system of ionization equations for 
hydrogen, including the Saha equation and the equations following conditions of a 
quasi-neutrality and preservation of the number of nuclei: 
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The Saha equation (6.22) can be applied to calculation of composition of high-

temperature ideal plasma of hydrogen. We can define the ionization degree as the 
relation of the number of free electrons to the total number of electrons: 

 

ee nn /*=α .                                         (6.23) 
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Figure 6.1 - Ionization degree of hydrogen plasma at different values of the 

number density (in the Figure in units of сm-3). 
 
The qualitative dependence ( )Tα  is shown in Figure 6.1. At small 

temperatures α  equals to zero, at high – to 1t, with smooth transition at intermediate 
temperatures. 

In the nonideal plasma it is necessary to consider the collective effects which 
lead to a decrease in the potential of ionization (ionization by pressure). We consider 
the basic concepts of the thermodynamic theory of ionization equilibrium taking into 
account interactions between particles. 

The chemical potential in any nonideal plasma also contains an additional 
contribution caused by interaction, i.e. 

 
int**0* )(ln)( KKBKK nTkT µµµ ++= .           (6.24) 

 
The elementary approach is the Debye approach, in which 
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Let us define now the ionization decrease as 
 

2

2 D

ZeI
r

∆ = − .                                    (6.26) 

 
We can also find the Saha equation for nonideal plasma 
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It is obvious that the system has the bounded states while there are negative 

eigenvalues of the Schrödinger equation. In systems with Coulomb interaction the 
existence of bounded states is limited by screening. Under the condition 

 

0arD ≤ .                                      (6.28) 
 

The bounded states do not exist, i.e. effK is zero at 0arD < . Then we have a 
system of the Saha equations for hydrogen in the following form: 
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where 
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In Figure 6.2 the concentrations of ions and free electrons of non-ideal Al 

plasma in the Debye approximation are presented [18]. 
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Figure 6.2 – Composition of Al plasma. 

 
Questions: 
1. Definition of the plasma composition in the equilibrium state. 
2. The Saha equation for ideal plasma. 
3. The Saha equation for nonideal plasma. 
4. The decrease in the ionization potential. 
5. Composition of nonideal plasma on the basis of Debye approximation. 
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LECTURE 7 
 

Composition of dense Beryllium and Carbon Plasma 
 

 
Effective potentials that take into account both collective effects at large 

distances and quantum diffraction effects at small distances were derived by means of 
the dielectric function [4, 5, 7]. All effective potentials introduced above can be used 
if / 2ei Drλ < . 

 
Composition of partially ionized plasma 
 
Partially ionized plasmas are multi-component systems that contain electrons, 

ions, and atoms. The interactions between the particles cause a decrease of the 
ionization potential compared with isolated atoms and ions; for details [8]. The 
composition of partially ionized non-ideal plasmas in thermodynamic equilibrium 
requires the evaluation of the chemical equilibrium for all relevant reactions in the 
system for a given density and temperature [6]. If the formation of molecules and 
higher neutral clusters can be neglected, the following ionization processes are taken 
into account [14]: 
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+ + + + +
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⇔ + ⇔ + ⇔ + .     (7.1) 

 
The system of Saha equations for the calculation of the plasma composition 

with maximal ionization state k+ can then be written in the following form: 
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where 1/ Bk Tβ = ; 3ln( / 2)id

e B e ek T nµ = Λ  is the ideal electron chemical potential, 
g0=4, g1=2, g2=1, g3=2, g4=1    the spin factors for beryllium atom and ions, g0=9, 
g1=6, g2=1, g3=2, g4=1, g5=2, g6=1 are  the spin factors for carbon atom and ions. The 
values ( ) 1

nonid nonid nonid
k e k kµ µ µ µ+ + + −∆ = + −  are corrections due to the non-ideality of the 

plasma resulting in a shift of the chemical equilibrium relative to the ideal plasma. 



54 
 

These corrections to the chemical potentials are related to the free energy of the 
system. According to the usual relation:  

  

F
Nα

µ ∂
=

∂ , 
,

a
a T V

F
N

µ
 ∂∆

∆ =  ∂  .                       (7.3) 

 
The free energy is connected with the internal energy and the pressure. It is 

possible to determine the free energy  F  from well-known Clausius-Helmholtz 
relation: 

 

2

E F
T T T

∂
= −

∂ , 2

E F
T T T
∆ ∂ ∆

= −
∂

,                       (7.4) 

 
where E∆   is the energy in the plasma caused by the interaction between the 
particles:  

 

2
VE eZ n
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α α αφ∆ = ∑ ,                                  (7.5) 

 
and V is the volume of the plasma, eZα αφ  is the potential energy of every ion in the 

electron field around the probe ion; αφ  is the potential energy created by charges at 
the location of the probe ion. Based on the effective interaction potentials (1.16) and 
(1.17), the non-ideality corrections to the chemical potentials were calculated. 

In order to solve the system of Saha equations, we have to consider two further 
equations, the conservation of the number of nuclei and the conservation of the total 
charge in the system, 
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The contribution from the polarization of neutral atoms [8] was calculated via 

the linearized virial coefficient for the interaction of electrons with atoms (2.13): 
 

0 3, ( ).nonid PP PP
eAtom Atom eAtomn B B d r rµ = = Φ∫      (7.13) 

 
Composition of Be plasma 
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We have solved the system of equations (7.9)-(7.13) numerically and present 
the results in Figures 7.1-7.3. The corrections to the chemical potentials (a decrease 
in the ionization energy) for Be plasma are compared with the usual Debye shift in 
Figure 1 as a function of temperature at a fixed density of n=1020 cm-3. The present 
results show that the consideration of short-range quantum diffraction effects beyond 
the Debye model in moderately dense plasmas gives lower ionization potentials. 
Figure 7.2 presents the curves for the relative fractions of particles versus the 
temperature for dense Be plasma at 

30.1 /g cmρ =  in comparison to the data of 
Kerley [24] and results calculated with the program package COMPTRA04 [25] 
taking into account higher interaction corrections based on efficient interpolation 
formulas. As one can see from Figure 7.2, all results are in good agreement for high 
temperatures, i.e. for weak non-ideality. The differences between the curves are 
mainly due to the consideration of quantum diffraction effects via the effective 
potentials in the present study. In Figure 7.3 the degree of ionization for Be plasma is 
shown for different temperatures.   
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Figure 7.1 - Correction of the chemical potentials of non-ideal Be plasma: solid 

lines are the Debye approximation; 
dashed lines are the results of the present work. 
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Figure 7.2 - Composition of Be plasma at 
30.1 /g cmρ = : 

solid lines are the results of present woqsswrk; dashed lines are the results 
obtained by COMPTRA04; dotted lines are results of Ref.[20]. 
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Figure 7.3 - Ionization degree of Be plasma 

for different temperatures. 
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Figure 7.4 - Composition of Be plasma at 

31.85 /g cmρ = : 
solid lines are the results of the present work; dashed lines are the results 

obtained by COMPTRA04. 
 
Composition of C plasma 
 
As for Be plasmas the composition of C plasma was derived by solving 

numerically the system of equations (7.9)-(7.13). The results are presented in Figures 
7.5-7.6. The decrease in the ionization energies in C plasma was calculated on the 
basis of the effective potentials (7.1)-(7.3). Figure 7.4 shows the curves for the 
relative fractions of all particles versus temperature for dense C plasma at 

30.01 /g cmρ =  in comparison with results of Ref. [13]. Figure 7.5 shows the 
curves for the relative fractions of all particles versus temperature at a constant 
number density of 22 31.4 10 /n cm= ×  in comparison with results of Ref. [26]. The 
consideration of quantum diffraction effects in the interactions when calculating the 
composition of dense C plasma leads to the deviations in the curves. 
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Figure 7.5 - Composition of non-ideal C plasma at a constant density of  

30.01 /g cmρ =  as function of temperature: solid lines are the results of the present 
work; dashed lines are the results of Ref. [21]. 
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Figure 7.6 - Composition of non-ideal C plasma at a constant number density 

of 
22 31.4 10 /n cm= × as a function of temperature: dashed lines are the results of the 

present work; solid lines are the results of Ref. Kundson. 
 

Questions: 
1. Composition of partially ionized plasma. 
2. Composition of a semiclassical nonideal plasma. 
3. Influence of non-ideality of the plasma in calculations of the plasma composition. 
4. The corrections to the chemical potentials of Be and C plasma. 
5. Quantum diffraction effects in calculations of the plasma composition. 
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LECTURE 8 
 

Transport Properties of Nonideal Plasmas 
 

Introduction  
 
It is known that electrophysical properties of plasma are primarily determined 

by the electron component. Electrical conductivity of weakly nonideal plasma at 
1Γ <<  can be determined by well known Spitzer theory. For strongly coupled plasma 

( 1Γ > ) we use a computer simulation molecular dynamic method. The transport 
properties of nonideal plasma at the moderate values of coupling parameter can be 
investigated by kinetic equation methods.  

 
Electrical conductivity of weakly ionized plasma  
 
The electrical conductivity σ  is defined by the number density of electrons 

en  and their mobility µ : 
 

eneµσ = .                                       (8.1) 
 

In the case of nonideal plasma, these quantities are connected by well known 
expressions from kinetic theory. The number densities of electrons  en  and ions in  
are related by the Saha formula (see Lecture No. 5): 
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,          (8.2) 

 
where an  is the number density of atoms; ∑ and 

i∑ are statistical sums of atoms 
and ions, respectively; I  is the ionization potential. Due to the absence of complex 
ions in the ideal plasma, we have i en n= . At low temperatures the degree of 

ionization is low ( e an n<< ): 
 

1e an K n= .                                               (8.3) 
 
Electron–ion and electron–electron interactions can be ignored in weakly 

ionized plasma; therefore, we consider only interactions of electrons with atoms 
(molecules) of a neutral gas. Such a model of plasma is called the Lorentz gas model.  
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We will use the Boltzmann equation to derive the expression for mobility of 
electrons. In stationary and spatially homogeneous cases the Boltzmann kinetic 
equation for the distribution function of electrons ( )f υ  in the electric field F


 has 

the following form: 
 

( ) ( )c
eF f I f
m

υ υ
 

− ∂ ∂ = 
 


 

.                        (8.4) 

 
It should be noted that the left–hand side of this equation describes the field 

effect and the right–hand side is responsible for the variation of the number of 
electrons in an element of phase volume due to collisions; ( )cI f  is the collision 
integral. We assume small deviations of ( )f υ  from equilibrium due to the fact that 
the electron mass is much smaller than the atomic mass. Then, ( )f υ  should be close 
to spherically symmetric form and can be represented as follows: 

 

0 1( ) ( ) cos ( )f f fυ υ ϑ υ= +
  

,                                 (8.5) 
 

where ϑ  is the angle between the directions of the velocity and the electric field. 
Under conditions of thermodynamic equilibrium the symmetric part of the 
distribution function 0 ( )f υ is maxwellian. Notice that the nonsymmetric part 1( )f υ  is 
important for calculation of the electron mobility and, consequently for investigation 
of plasma electrical conductivity.  

Substituting the expression (8.5) for ( )f υ  in the kinetic equation (8.4) we 
obtain the following formula: 
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υ υ
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  .                        (8.6) 

 
The direction of electron’s velocity is strongly changed at each collisions and 

this direction does not depend on its velocity before collisions. Then 
 

1 1( ) ( ) ( ) ; ( ) ( )c aI f f n qν υ υ ν υ υ υ= −     =
   

,                   (8.7) 
 

where ( )q υ  is the transport cross section of electron–atom scattering and ( )ν υ  is  
the corresponding electron–atom collision frequency. The electrons are mainly in 
chaotic thermal motion and drift in the direction opposite to the field F


. The drift 

velocity ( Fω µ= −


) is defined as the mean electron velocity over the time 
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considerably exceeding the time between individual collisions and given by the 
following expression: 

 
2

1cos ( ) cos ( )f d f dω υ ϑ υ υ υ ϑ υ υ= =∫ ∫
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,               (8.8) 
 

because 0 ( )f υ does not make contribution to ω . Substituting the expression for 

1( )f υ  from kinetic equation in the formula for drift velocity ω  we have the 
following relation for mobility of electrons / Fµ ω= : 
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Integrating over the angles and substituting the maxwellian distribution for 

0 ( )f υ , and using the fact that 2
0 0/ / Tf fυ υ υ∂ ∂ = −

 
 we finally get: 
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where /T Bk T mυ =  is the thermal velocity of electrons. Expressions (8.9) and 
(8.10) describe the mobility of electrons in the Lorentz plasma approximation. It 
should be noted that formula (8.10) is useful for calculation of electron’s mobility in 
the real plasma. But in this case we should know electron-atom collision frequency 

( )ν υ .   
The expressions (8.9) and (8.10) are valid at the following conditions: 
1) The binary collision approximation is valid and the neutral gas must be 

sufficiently rarefied, i.e. 3/ 2 1an q << . 
2) The temperature must be sufficiently high and the thermal wavelength of 

the electron sufficiently small, so that we can ignore the interference of the electron 
on atoms, i.e. 1a en qλ << . 

3) The potential energy of the Coulomb interaction between electrons must 
be much smaller than their kinetic energy, i.e. 2 1/3 / 1e Be n k T << . 

4) The plasma must be nondegenerate, i.e. 2 2/3 / 1e Bn mk T << . 
5)  The correlation between atoms can be neglected, i.e. 

1; / 1a a Bn b n a k T<<      <<  ( a  and b  are the coefficients of the van der Waals 
equation of state for the neutral gas). 
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It is convenient to integrate over the electron energy 2 / 2E mυ=  instead of 
velocity. Then, we have for mobility the following expression for mobility: 
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where the collision frequency is ( ) ( ) 2 /aE n q E E mν = . Introducing the mean 
(effective) collision frequency ν  and cross section q , one can write: 
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In the simplest case when the electron–neutral collision can be approximated as 

a scattering on a hard sphere of a diameter d , the transport cross section is 
independent of energy, i.e. 2( ) / 4q E dπ= . In this case by averaging over energies 
we have the following values: 
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In the case of real plasma the transport cross section is a function of energy. 

One can conclude that if the dependence ( )q E  is known, the mean cross sections 
( )q T  can also be easily calculated. A large number of reference data on electron–

atom and electron–molecule scattering cross–sections is available from special books. 
As an example the data of averaged cross–sections for atoms of alkali metals are 
shown in the table 8.1. 

 
Table 8.1 

Averaged transport cross sections of electron scattering on atoms of alkali 
metals, ( )q T  in units of 2 2

010 a  
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The electrical conductivity of plasma can be estimated by the following 
expression: 

 

6 1 113.8 10 e

a

n ohm cm
n q T

σ − −≅ ⋅   ,                          (8.15) 

 
where q  is the average cross section in units of 16 210 cm−   and T  is the temperature 
in K . 
 
Questions: 
1. Electrical conductivity of weakly ionized plasma. 
2. Electrical conductivity of weakly ionized plasma in the Lorentz approximation. 
3. Mobility of electrons in the Lorentz plasma approximation. 
4. Validity of expressions (8.9) and (8.10) for mobility of electrons. 
5. Collision frequency and cross-sections. 
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LECTURE 9 
 

Transport Properties of Nonideal Plasmas (continuation) 
 

Introduction 
 
The equation derived in the previous lecture describes the electron mobility on 

the basis of electron-atom collision frequency and is not valid for the case when the 
electron–atom collision frequency ν  becomes comparable with the electron–ion 
collision frequency iν . 

 
Electrical conductivity of strongly ionized plasma 
 
The above mentioned situation was considered by Spitzer (1962) [1]. It is 

known that due to the long–range character of the Coulomb interaction a small-angle 
scattering is important in strongly ionized plasma. The small-angle scattering can be 
taken into account by the so-called "Coulomb logarithm" ln Λ . This quantity in a 
classical plasma is defined as the ratio between the Debye radius Dr  and the Landau 

length 2 / BZe k T . More information can be found in the Table 9.1 (see below).  
According to Spitzer we can write the expression for electron-ion collision 

frequency in the following form: 
 

4 2 3/ 2 1/ 2( ) 2 (2 ) lni iE e Z E m nν π − −= Λ  .                 (9.1) 
 

If we assume that ln Λ  does not depend on energy, then averaging over 
energies gives the following formula for the electron-ion collision frequency: 

 
23/ 2 2

ln
4 2

B
i i

B

k T Zen
m k T

πν
 

= Λ 
  .                       (9.2) 

 
Using the condition of electro-neutrality e in Zn=  we get the expression for 

electrical conductivity: 
  

3/ 2

3/ 2 2 1/ 2

2(2 ) 1
ln

Bk T
Ze m

σ
π

=
Λ ,                             (9.3) 
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where 
3ln ln
γ

Λ = ; 2 /( )D BZe r k Tγ =  is the nonideality parameter; 

2 1/ 2(4 / )D e Br n e k Tπ −= is the Debye radius of electrons. In plasma due to the 
Coulomb long–range interaction the electron–electron correlations have influence on 
the electrical conductivity even at small values of nonideality parameter. In order to 
take into account  these correlations, the term which is responsible for electron–
electron collisions must be added to the right–hand side of the kinetic equation. 

It should be noted that the electron–electron interactions cause a decrease in 
electrical conductivity. Initially, the velocity distribution function of electrons is 
spherically symmetric. The applied field disturbs this symmetrical distribution and 
the electron–electron interactions oppose this disturbance, consequently, the mobility 
of electrons decreases. Thus, the resulting expression for the electrical conductivity of 
fully ionized plasma (Spitzer’s formula) is 

 
3/ 2

3/ 2 2 1/ 2

2(2 ) 1( )
ln

B
Sp

k TC Z
Ze m

σ
π

= ⋅
Λ ,                           (9.4) 

 
where ( ) 0,582 1,0C Z = ÷  at different values of charge number Z, i.e. C(1)=0,582   
and ( ) 1,0C ∞ = . For singly charged ions ( 1Z = ) we have 

 
3/ 2

4 1 11,53 10
lnSp
T Ohm cmσ − − −= ⋅ ⋅   ⋅

Λ ,                  (9.5) 

 
where T  is the temperature in K . The Spitzer theory is valid for classical weakly 
nonideal plasma.  

 
The Coulomb logarithm for plasma 
 
As it was mentioned above the Coulomb logarithm is an important factor in the 

kinetic theory of plasma. In the general case it can be defined as a ratio between 
maximal and minimal values of impact parameter, i.e. max min/b bΛ = . It should be 
noted that the Coulomb logarithm has different expressions in the cases of classical 
and quantum plasmas (see Table 9.1). 

 
Table 9.1 

Classical and quantum expressions for the Coulomb logarithm 
 

Typical lengths of 
Coulomb 
interactions 

Classical plasma Quantum plasma 
1/3

D er n−>  1/3
D er n−<  1/3

D er n−>  1/3
D er n−<  
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maxb  ~ Dr  
1/3~ ea n−≈  ~ Dr  

1/3~ ea n−≈  

minb  2~ / Be k T  
2~ / Be k T  ~ e  ~ e  

Λ  
3/ 2~ −Γ  1~ −Γ  3/ 2 1/ 2~ T− −Γ ⋅  1 1/ 2~ T− −Γ ⋅  

 
According to Table 9.1 we can make the following conclusions: 
• For the classical plasma, when 2 / B ee k T >>  , then ( )fΛ = Γ   and we 

have * ( )fσ = Γ , where * 2 1/ 2 3/ 2( )Be m k Tσ σ−= ⋅ . Consequently, in the classical 
regime the isobars and isotherms for different matters are described by the universal 
curve *( )σ Γ  on the coordinate plane *σ − Γ . Therefore, we can conclude that the 
Coulomb properties of plasma have a similarity in this case.  

• The similarity is not realized when the quantum effects become 
significant at  min ~ eb   and in this case we have the additional dependence of the 
Coulomb logarithm on temperature. This fact can explain layering (stratification) of 
isotherms on *σ − Γ  diagram observed experimentally.  

 
Electrical conductivity of nonideal plasma.  
The Chapman-Enskog method 
 
The transport properties of plasma can be calculated by kinetic equation 

method. In this case it is necessary to know the data of scattering processes of 
particles or the interaction potential between particles. For instance, the electrical 
conductivity of plasma is defined as follows: 

 
2

(1)

3
8 (1)

e
m

σ =
Ω ,                                 (9.6) 

 
where 

( ) 2 (2 2) ( )

0

( ) 1/ 2

0

( ) exp( ) ( ) ;

( ) 2( / ) 1 cos ( , ) ;

l r l

l l
B

r g g g dg

g k T m g b b g db

π

ϑ

∞
+

∞

Ω = − Φ  

 Φ = −   

∫

∫

   

           (9.7) 

 
b  is the impact parameter; 

1/ 2/ 2( / )Bg u k T m −=
 

 is the dimensionless relative 
velocity. 
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The resulting isotherms of the electrical conductivity are shown in Figure 9.1 
as a function of the total electron density. Comparison with the fully ionized case 
shows that partial ionization leads to a decrease in the electrical conductivity, 
especially at low temperatures. This may lead to a pronounced minimum in the 
conductivity isotherms. 

 

 
 

Figure 9.1 - Electrical conductivity of partially ionized hydrogen plasma 
(broken lines) in comparison with the results for the fully ionized case (solid lines) 

for various temperatures as a function of the total electron density. 
 

The dimensionless electrical conductivity  is shown in Figure 9.2 as a 
function of the nonideality parameter . For ideal plasmas , we have good 
agreement with the Spitzer theory. The results for the fully ionized case agree well 
with the data for the partially ionized plasma for . For higher nonideality 
parameters, the electrical conductivity of the partially ionized plasma is substantially 
lower. In the strong coupling regime  we have good agreement with the 
experimental data.  
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Figure 9.2 - Reduced electrical conductivity as a function of the nonideality 
parameter. Solid line represents the results for partially ionized plasma (T. 

Ramazanov et al.); dashed and dash-dotted lines denote the data for fully ionized 
plasma (Kh. Nurekenov & S. Kodanova); dotted line is the Spitzer theory; asterisks 
are Ichimaru's results; triangles, boxes and circles represent the experimental data 

(Radtke, Ivanov et al.). 
 

Questions: 
1. Electrical conductivity of strongly ionized plasma. 
2. The Spitzer formula. 
3. The Coulomb logarithm for plasma. 
4. The electrical conductivity of nonideal plasma. 
5. The Chapman-Enskog method. 
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LECTURE 10 
 

Transport Properties of Plasma  
by Molecular Dynamics Simulation  

 
Introduction 
 
In the previous lecture we have considered molecular dynamics method for 

computer simulation of equilibrium (thermodynamic) as well as non-equilibrium 
(transport) properties of plasma. Using this method the microscopic state (particle’s 
coordinates, velocities etc.) can be obtained. But our final goal is the evaluation of 
transport properties of plasma such as diffusion, electrical conductivity, viscosity etc. 
For this purpose we will consider at first the autocorrelation functions of dynamical 
variables. Then we will show how we can calculate macroscopic transport properties 
of plasma on the basis of the autocorrelation functions of microscopic dynamical 
variables. 

 
Autocorrelation functions (ACF) of microscopic quantities. Properties of 

ACF 
 

Definition. An autocorrelation function of random variable ( )X t  is defined as 
follows: 

 
( ) ( ) ( )G S X t X t S= ⋅ + ,                             (10.1) 

 
where ...  denotes the ensemble averaging. For random variable we have 0X = . 

Thus an autocorrelation function at 0S =  has the following dispersion 2 0X = . 
Autocorrelation function means the correlations between current and previous 
(or initial) microscopic states of the system. 

 
Properties of autocorrelation functions. 
1) An autocorrelation function is the even one, i.e. 
 

( ) ( )G S G S= −                           
 
2) An autocorrelation function has a maximum at 0S = . Actually,  

[ ]2 2 2( ) ( ) ( ) ( ) 2 ( ) ( ) 0X t X t S X t X t S X t X t S± + = + + ± + ≥ , 

It follows that (0) ( )G G S≥ .  
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3) Since ( )X t  is a random quantity we can suppose that correlation between 
( )X t  and ( )X t S+  is absent at large values of S , therefore: 

lim ( ) 0
S

G S
→∞

=   
There are the most important autocorrelation functions for investigation of 

plasma’s properties.  
Velocity autocorrelation functions (VAF): 
 

1

1(0) ( ) ( ) ( )
3

N

i n i n
i

t t t t
N

υ υ υ υ
=

= ⋅ +∑   
.                      (10.2) 

 
Microscopic electrical current correlation function: 
 

(0) ( ) ( ) (0)i i j j
i j

j j t Z t Zυ υ= ⋅∑ ∑
   

.                (10.3) 

 
For simplicity, autocorrelation functions are considered in units of: 
 

1
(0) (0)

N

i i
i

G G
=

⋅∑
 

.                                    (10.4) 

 
In Figures 10.1 and 10.2 velocity autocorrelation functions and mean square 

displacements of coordinates of a dense semiclassical plasma are shown for different 
values of coupling parameter.  It should be noted that fluctuations of these quantities 
lie within statistical errors ~ 1/ N . The convergence of velocity autocorrelation 
functions becomes weak (slow) with decreasing of coupling parameter. This fact may 
be connected with decreasing of particle’s collision frequency in weakly non-ideal 
plasma. Mean square displacements increase linearly with dimensionless time (in 
units of the Longmuir frequency eω ) 5≤t  according to the Einstein formula 

0~ 6 ( )D t t− . The saturation range ( 12t ≥ ) indicates that particles are distributed 
uniformly and diffusion process reaches its stationary value.  
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Figure 10.1 - Velocity autocorrelation as a function of dimensionless time at 
2Sr = . 
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Figure 10.2 - Mean square displacements of coordinates as a function of 
dimensionless time at 1Sr = . 

 
Relation between macroscopic (transport) coefficients and microscopic 

quantities in plasma. Basic principles of the Green-Kubo linear response theory 
 
Using the microscopic states of the system we can estimate transport 

coefficients of plasma. For example, diffusion coefficient is calculated via mean 
square displacements of coordinates: 

 
2

0

0

( )
lim ( ) lim

6( )t t

r r
D D t

t t→∞ →∞

−
= =

−

 

.                           (10.5) 

 
In principal, knowing diffusion coefficient we can estimate another transport 

coefficients (for instance, by Onsager or Einstein relations).  
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Transport coefficients of plasma can be also obtained on the basis of the 
autocorrelation functions of microscopic dynamical variables. Relations between 
macroscopic (transport) coefficients and microscopic quantities in plasma are given 
by Green-Kubo linear response theory. According to this theory each macroscopic 
transport coefficient is defined by some microscopic dynamical variable (see, Table 
10.1). 

 
Table 10.1 

The correspondence between microscopic dynamical variables and 
macroscopic transport coefficients of plasma 

 
Dynamical variable Transport coefficient 

Velocity of particle - ( )ir t
•

 
 
Diffusion - D  

Microscopic electric current 

( )i i
i

e z r t
•

∑ 
 

Electrical conductivity - σ  

Energy flux ( ) ( )i i
i

d r t E t
dt ∑ 

 Thermal conductivity - λ  

Off-diagonal components of stress 

tensor ( ) ( )i i
i

dm x t y t
dt

•

∑  

Shear viscosity - η  

Diagonal components of stress tensor 

( ) ( )i i
i

dm x t x t
dt

•

∑  
Longitudinal viscosity 

4
3
η ξ+  

 
 
We can construct so-called Green-Kubo relations according to this table. For 

instance, diffusion coefficient is evaluated via velocity autocorrelation function as 
follows: 

 

0

1 (0) ( )
3

D t dtυ υ
∞

= ∫
 

.                                    (10.6) 

 
An electrical conductivity is defined on the basis of the microscopic electrical 

current autocorrelation function by the following expression: 
 

0

(0) ( )const j j t dtσ
∞

= ∫
 

.                           (10.7) 
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The basic principle of linear response theory for electrical conductivity of 

plasma can be explained as follows. Let plasma is located on the constant external 
electric field. Then in our system the electric current is induced, i.e. this current we 
can consider as a linear response to external perturbation (electric field). There is a 
direct proportionality between these quantities and they are related by well known 
Ohm’s law: 

 

j Eσ=


,                                             (10.8) 
 

where the proportionality coefficient σ  is the electrical conductivity [22]. 
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Figure 10.3 - Electrical conductivity of nonideal hydrogen plasma 

 
1, 2 - T S Ramazanov, K N Dzhumagulova and A Zh Akbarov.//J. Phys. A: Math. 

Gen. 39 (2006) 4335. 
3 - Spitzer theory 

4 - Boercker D.B., Rogers F.J., DeWitt h.E.// Phys.Rev.A., 1982, v.25, p.1623. 
5 - Baus Marc, Hansen Jean – Pierre, Sjogren Lenart. // Phys. Lett., V. 82A, № 4, 

1980. 
6 - Ishimaru S., Tanaka S.,// Phys. Rev., A.32, 1985, p. 1790. 

7 – T.S.Ramazanov, G.Nigmetova, G.Roepke, R.Redmer. // J.Plasma Phys. 2006. 
 
 
 
 
 



79 
 

1E-3 0,01 0,1 1

104

105
 

W
σ 

(Ω
m

)-1

 

 

30 kK 20 kK

10kK

ρ (g/cm3)

 1
 2
 3
 4

 
 

Figure 10.4 - Electrical conductivity of nonideal tungsten plasma 
 

1 - Experiment: S. Saleem et al., Phys. Rev.E. Vol. 64. (056403)(2001) 
(for 20kK). 

2 -Theoretical results for 20 kK of S. Kuhlbrodt, R. Redmer (Phys 
Rev. E – 2000. – vol. 62). 

3 -Y.T. Lee and R.M. Moore.( Phys. Fluids 27, 1273 (1984)). 
4 - Present work for different temperatures (T. Ramazanov, K. Galiyev, 2003). 

 
Questions: 
1. Autocorrelation functions (ACF) of microscopic quantities.  
2. Properties of ACF. 
3. Relation between macroscopic (transport) coefficients and microscopic quantities 
in plasma. 
4. Basic principles of the Green-Kubo linear response theory. 
5. Electrical conductivity on the basis of the microscopic electrical current 
autocorrelation function. 
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LECTURE 11 
 

Optical Properties of Nonideal Plasmas 
 

Introduction 
 
The optical properties of plasma are also of great interest because the plasma 

radiation contains information concerning the temperature and concentration of 
particles, elastic and inelastic collisions, and ionization and recombination processes.  
Nowadays we have extensive data about optical properties of rarefied plasma where 
the elementary processes are easily separated. With increase of plasma density (at the 
weakly nonideal regime) we have such effects as a spectral line shift and broadening, 
as well as shift of photoionization continua. With a further increase of nonideality, 
these effects do not change in their behaviour but only increase quantitatively (we 
have so-called "spectroscopic stability"). At high density regime (in laser-condensed 
matter interaction, in pinched electric discharges, in dynamical experiments, etc.) the 
electron spectrum is deformed in highly compressed plasma.  

 
Basic radiation processes in rarefied weakly ionized plasma 
 
Let us introduce the basic concepts of the radiation theory. The spectral 

absorption coefficient νκ  is determined in terms of the attenuation dIν  which is 

experienced by the radiation intensity Iν  passing through a layer of matter of 
thickness dl :  

 
dI I dlν ν νκ= −                                          (11.1) 

 

In the case of thermodynamic equilibrium νκ  is related to the radiation 

intensity Iν  by the following Kirchhoff’s law:  
 

1

3 2( ) ; ( ) 2 exp 1
B

hI B T B T h c
k Tν ν ν ν

νκ ν
−

−   
=     = −  

  
,      (11.2) 

 
where ( )B Tν  is the Planck’s function. The quantity I dν ν  is the energy emitted by 

volume dV  per unit time in unit solid angle in the frequency interval dν .  
The radiation processes in weakly nonideal plasma have been studied very well 

and can be divided into two groups: 
1) Bound–bound transitions in atoms which provide a series of spectral 

lines. These lines converge at  the photoionization thresholds.  
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2) Bound–free and free–free transitions which define the photoionization 
and bremsstrahlung processes with the continuous spectrum. 

It should be noted that this division is not absolute, for instance, in strongly 
nonideal and high–pressure plasma the spectral lines are overlapped with the 
continuous spectrum.  

 The integrated intensity of the spectral line is defined by the  oscillator 
strength nnf ′ :  

 

( )2 / nn nd e mc f nνκ ν π ′=∫ ,                            (11.3) 
 

where νκ  is the absorption coefficient in a spectral line due to the n n′→  

transition. nn  is the concentration of absorbing atoms. 
According to (11.2) and (11.3) the integrated intensity of the spectral line is 
 

2

3

2 n
n nn

n

gheI I d n f
m gν
πν

λ ′ ′
′

= = ⋅∫ ,                        (11.4) 

 

where nn ′  is the concentration of radiating atoms; ng  and ng ′  are the statistical 
weights of the low–lying and high–lying states, respectively. 

The oscillator strength of absorption line is defined by  the Einstein probability 
of spontaneous transition: 

 
3

2 2 28
n

nn n n
n

g mcf A
g eπ ν

′
′ ′= ⋅   .                            (11.5) 

 

The factor n nA ′  is equal to the inverse lifetime of an atom in the state n  

relative to the n n′→  transition. The complete data for nnf ′  and n nA ′  are provided 
by special books (for instance, see Wiese W., et al. Atomic transitions probabilities. 
Washington, 1966).  

For hydrogen–like atom we have the well known quaziclassical Kramers 
formula:  

 
3

32 2
5 3 5 3 2

32 1 1,96( )
( ) ( )3 3

n n
n n

E Ef n n
n n n n Z Ryπ

−
−− − ′

′
 −′ = − =   ′ ′  

,   (11.6) 
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where nE ′  and nE  are the binding energies of the n′ -th  and n -th levels. In Kramers 
formula (11.6) the transition is considered between states with the main quantum 
numbers n′  and n  averaged over the remaining quantum numbers. The line spectral 
intensity fully depends on the absorption coefficient because the Planck function 
varies slightly within the line (see formula (11.2)). The dependence νκ  on frequency 
ν  is defined by the behaviour of the line broadening. In a rarefied (weakly nonideal) 
plasma, the line broadening is defined by radiation damping and the Doppler effect. 
The broadening in nonideal plasma is mainly defined due to the interparticle 
interactions. 

Let us consider the bound–free and free–free transitions:  
• Bound–free transitions in the field of an ion (recombination radiation): 
 

A e A hν+ + → + .                               (11.7) 
 
• Free–free transitions in the field of the ion (bremsstrahlung in the field of 

the ion): 
 

2 2
1 2

2 2
m mA e A e hυ υ ν+ +   

+ → + +   
    .              (11.8) 

 
• Free–free transitions in the field of the atom (bremsstrahlung in the field 

of the atom): 
 

2 2
1 2

2 2
m mA e A e hυ υ ν

   
+ → + +   

    .                 (11.9) 

 
In the case of absorption we distinguish the following transitions. 
• Bound–free transitions in the field of ions (photoionization of atoms): 
 

A h A eν ++ → +                                  (11.10) 
 
• Free–free transitions in the field of the atom and ion (the expressions of 

(11.8) and (11.9)). 
• Photodetachment of the electron (the absorption process): 
 

A h A eν− + → +                                  (11.11) 
 
• Photoattachment of the electron (the radiation process): 
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A e A hν−+ → +                                (11.12) 

 
It should be noted that the final (resultant) continuous spectra represent the 

superposition of several continua due to individual processes. Therefore, the 
determination and analysis of the resultant spectrum are a complicated problem. 

In the case of plasma with developed ionization, the greatest contribution to the 
continuous spectrum intensity is made by free–free transitions of electrons in the 
fields of ions. The absorption coefficient, including the correction for stimulated 
radiation, is given by Kramers’ formula: 

 

( )
6 2

/
33/ 2

2 2 1
3 3

Bh k T
e i

B

e Z g n n e
c m k T

ν
νκ

νπ
−= −

 ,   (11.13) 

 
where Z is the ion charge; g is the Gaunt factor.  

L. Biberman and G. Norman (1967, UFN-Physics Uspekhi) developed an 
approximate calculation technique for the calculation of absorption and radiation 
coefficients in both free–free and bound–free transitions in the plasma of complex 
atoms and ions. This technique takes into account the following effects: 

• The merging of spectral lines near the continuous spectrum boundary. 
• The lowering of the ionization potential I∆ . 
• The complex atoms are not hydrogen–like. 
 
Optical properties of nonideal plasma 
 
The influence of the interparticle interaction on the optical properties causes 

the well–known effects of spectral line broadening and shift. In the case of dense 
plasma, both broadening and shift effects are caused by the interaction between a 
radiating atom or ion and surrounding particles.  

The scheme of calculating line broadening through the interaction of atoms 
with ions and electrons in weakly nonideal plasma is as follows (Baranger, 1962). 
The electric field generated by ions is assumed to be constant and the Stark 
broadening is determined for an atom in this field. The broadening of each Stark 
component is then calculated within the impact approximation. After that, the 
resultant distribution of intensity is averaged over all possible values of intensity of 
the ion microfield. In this case taking into account these effects for absorption 
coefficient we have the following expression: 

 

( )( ) ( )
122

0 01 / 2νκ κ ν ν δ
−

 = + − − ∆  ,            (11.14) 
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where δ  is the line width; ∆  is the line shift; the absorption coefficient at the line 
center is 1 2

0 2 1 21 1(8 ) ( / ) (2 / )g g A nκ π λ πδ−= ; λ  is the radiation wavelength; 1n  
is the number density of absorbing atoms. 

The shift and width of spectral line are expressed in terms of the amplitude of 
elastic forward scattering (0)f : 

 

[ ] [ ] 1Re (0) Im (0) ( )
2e e e e tot avav av

h hn f n f n q
m m

δ υ∆ = −  ;    = = ,    (11.15) 

 
where totq  is the total scattering cross section. 

As a rule the Holtsmark distribution of ion microfields is used for calculation 
of the absorption coefficient in lines. On the other hand it is known that the 
Holtsmark distribution is valid for rarefied weakly nonideal plasma. Therefore it 
should be noted that nowadays the systematic studies have not yet been performed 
with taking into account the effect of strong nonideality on the spectral lines. For this 
purpose it is necessary to use the adequate microfield distribution functions which 
take into account both quantum and screening effects in dense (nonideal) plasma and 
results of recent experiments (Griem, 2000).   

Figure 11.1 represents the spectral absorption coefficient of air plasma. The 
broken line indicates the contribution made by continua. With increasing the density, 
the lines broaden considerably and merge to form quasi–continua, thus making 
significant contribution to the integral optical characteristics. 
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Figure 11.1 - The absorption coefficient of air plasma for 42, 2 10T K= ⋅  at two 
values of relative density 0/ρ ρ ; 0ρ  is the normal density of air. 

 
 

Figure 11.2 - The absorption coefficient of the Balmer series per single absorbing 
atom as a function of wavelength λ (Guenter et al. 1985). Experimental results: 1 - 

17 3 41,7 10 ; 1,6 10en sm T K−= ⋅    = ⋅ ; 2 - 17 3 48, 4 10 ; 2,22 10en sm T K−= ⋅    = ⋅ . 



86 
 

 

 
 

Figure 11.3 - The radiation spectrum of hydrogen plasma. 
16 3 49,3 10 ; 1,41 10en sm T K−= ⋅    = ⋅ . Solid line is the experimental data (Wiese et al., 

1972). Dashed line represents the theoretical results of D’yachkov et al., 1987. 
 

Questions: 
1. Basic radiation processes in rarefied weakly ionized plasma. 
2. Bound–bound transitions. 
3. Bound–free. 
4. Free–free transitions. 
5. Optical properties of nonideal plasma. 



87 
 

LECTURE 12 
 

Basic Сoncepts of Nonideal Dusty Plasma 
 

Introduction 
 
Dusty plasma is the system consisting of the plasma’s particles as well as of 

macropaticles of condensed matter. Other terms used for such systems are "complex 
plasmas", "colloidal plasmas" and "plasmas with a condensed disperse phase". Such 
system is strongly coupled and forms liquid–like and crystal–like structures. Dusty 
plasma occurs in the nature and in many laboratory and technological devices.  

 
Charging of dust particles in plasmas 

 
It should be noted that dust particles immersed in plasma acquire an electric 

charge and can be considered as additional charged component (see Figure 12.1). 
Therefore, the properties of dusty plasmas are much more diverse in comparison with 
the ordinary multicomponent plasmas consisting of electrons and different types of 
ions. The dust particles can be considered as recombination centres for plasma 
electrons and ions and as sources of electrons (thermo-, photo-, and secondary 
electron emission). It means that the dust component can significantly influence the 
plasma ionization balance. It should be also added that the dust particle charge is not 
fixed, but is determined by the surrounding plasma parameters and can fluctuate even 
for constant plasma parameters. 
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Figure 12.1 - The schematic representation of dusty plasma. 
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At the present time we can mention the following important directions in the 
study of dusty plasma properties:  

• formation of ordered structures, including crystallization and phase 
transitions in the dust subsystem; 

• elementary processes in dusty plasmas: charging of dust for different 
plasma and particle parameters;  

• interactions between the particles, external forces acting on the particles; 
• linear and nonlinear waves in dusty plasmas (solitons, shock waves, 

Mach cones), their dynamics, damping and instability. 
 
There are four mechanisms for charging of dusty particles in plasma (see 

Figure 12.2): 
1) Capturing of electrons. In this case we have the following plasma 

parameters: 0,1 2P torr= ÷   is the pressure; 4(1 8)10eT K= ÷  is the temperature of 

electrons; 300iT K=  is the temperature of ions; 8 10 310 10en cm−= ÷  is the electron 

density number; 4 5(10 10 )Z e= ÷  is the charge of dusty particles; 4 610 10Γ = ÷  is 
the coupling parameter.   

2) Thermal-electron emission. The plasma parameters for this case are as 
follows: 9 12 3~ 10 10e in n cm−= ÷  is the density number of electrons and ions; 

4 7 310 10dn cm−= ÷  is the density number of dusty particles; 2 3(10 10 )Z e= ÷  is 
the charge of dusty particles; 120Γ ≤ . 

3) Photo-electron emission. By this mechanism the following plasma 
parameters can be realized: 0,01 40P torr= ÷   is the pressure; 

(300 400)i nT T K≈ = ÷  is the temperature of ions; 2 3 310 10dn cm−= ÷  is the 

density number of dusty particles; 3 4(10 10 )Z e= ÷  is the charge of dusty particles; 
4~ 10Γ . 

4) Radioactive generated plasma. In this case we can reach the following 
plasma parameters: the fission energy is (5 100)fE MeV= ÷ ; the energy of beta 

decay is 100E keVβ = ; 2 3(10 10 )Z e= ÷  is the charge of dusty particles; 
~ 100Γ . 
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Figure 12.2 - The different charging mechanisms of dusty particles in plasma 

 
The photo of dusty particles obtained by electronic micrography is presented in 

the Figure 12.3. As one can see it looks as "cauliflower".  
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Figure 12.3 - Photo of dusty particle was formed in RF discharge (15 MHz, 1 
Torr) and obtained by electronic micrography (A. Garscadden et al., 1994) 

("Cauliflower") 
 
Some peculiarities of dusty plasma. OML theory 
 
Let us represent some peculiarities about specific processes in dusty plasma. 
• If the dusty particle charge in the unit volume is more than the charge of 

free electrons, i.e. / 1d d en Z n ≥  , then the collective influence of particle-grain 
interaction on plasma processes is significant. 

• The charge of dusty particles is the variable quantity and depends on 
parameters of surrounding medium. 

• The screening of electrical field of dusty particles is realized at the 
following Debye radius: 

 

2 2 2

1 1 1

e iD d d
= + ,                                        (12.1) 

 
where ed , id  are the Debye radii of electrons and ions,  respectively. Since in many 
experiments the condition i ed d<<  is  realized, then the screening process is 
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defined by the radius of ions and the linear size of dusty particles satisfies the 
following condition a D<< .  

• In order to consider the dust component as the additional component of 
plasma it is necessary to realize the following condition for particles in Debye’s 
sphere of dusty particles. 

 
34 1

3d dN n Dπ
= >> .                               (12.2) 

 
In this case the resulting Debye’s radius is defined as follows: 
 

  2 2 2 2

1 1 1 1

D e ir d d D
= + + .                             (12.3) 

 
It should be noted that if the distance between dusty particles is more than Dr  

then the interaction between macroparticles is non-Coulomb. 
• Due to the high rate of dissipation, the plasma particle’s fluxes 

recombined on dusty particles must be supported by external sources. Since the dusty 
plasma is the open system the probability of ordered structures formation in such 
system is high.   

 
Orbit motion limited (OML) approximation. In order to describe particle 

charging in gas discharge plasmas some methods are used. One of the most 
frequently used approaches is the orbit motion limited (OML) theory. According to 
this theory the cross–sections for electron and ion collection by the dust particle are 
determined only from the laws of conservation of energy and angular momentum. 
The conditions of applicability of the OML theory are formulated in the following 
form: 

 

( )D i ea r l>> >> ,                                         (12.4) 
 

where ( )i el is the mean free path of the ions (or electrons). It is also assumed that the 
dust particle is isolated and other dust particles do not affect the motion of electrons 
and ions in its vicinity.  

In the OML theory it is assumed that the electrons and the ions are collected if 
their trajectories cross or graze the particle surface. In this case the corresponding 
velocity–dependent cross–sections are given by the following expressions: 
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  = 
                           < −   

 
= − 

 

,               (12.5) 

 
where em  and im  are the mass of electrons and ions, respectively; υ  is the velocity 

of the electrons and ions relative to the dust particle; the surface potential sϕ  of the 
dust particle is negative and the ions are singly charged. 

Knowing the corresponding cross–sections and velocity distribution functions 
( ) ( )e if υ  the electron and ion fluxes to the particle surface can be determined by the 

following integration: 
 

3
( ) ( ) ( ) ( )( ) ( )e i e i e i e iI n f dυσ υ υ υ= ∫ .                  (12.6) 

 
If we use the Maxwellian velocity distribution of plasma particles: 
 

( )( )

( )

23/ 2
2

( ) 22 exp
2e i

e i

e i T
T

f υπυ
υ

−  
 = −
 
 

,                   (12.7) 

 

where ( ) ( ) ( )/
e iT B e i e ik T mυ =  is the electron (ion) thermal velocity, then integration 

in equation (12.6) using (12.5) and (12.7) gives the following expressions for  
electron and ion fluxes: 

 

( )
( )

2

2

8 exp / ,

8 exp 1 /
e

i

e e T s B e

i i T s B i

I a n e k T

I a n e k T

π υ ϕ

π υ ϕ

=

= − .                       (12.8) 

 
It should be noted that the stationary potential of the dust particle surface 

(floating potential) is determined by the balance of electron and ion fluxes collected 
by the particle: 

 

e iI I= .                                               (12.9) 
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The range of existence of nonideal dusty plasma (in nature,  laboratory 

and technology) 
 

DUSTY PLASMA IN UNIVERSE

Space Nebulas Comet Tails

Planet Rings

ПЭОС – 2008, Алматы, Казахстан

 
MICROELECTRONICS TEСHNOLOGY

ПЭОС – 2008, Алматы, Казахстан

 
Microelectronic devices with plasma 

technology 

Joint European Torus

ПЭОС – 2008, Алматы, Каз

Thermonuclear devices 
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Questions: 
1. Charging of dust particles in plasmas. 
2. Mechanisms for charging of dust particles in plasma. 
3. Some peculiarities of dusty plasma. 
4. OML theory. 
5. The range of existence of nonideal dusty plasma. 
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LECTURE 13 
 

Basic Сoncepts of Nonideal Dusty Plasma  
(continuation) 

 
Electrostatic potential around a dust particle  

 
The distribution of the electrostatic potential ( )rϕ  around an isolated spherical 

dust particle of charge dZ  in isotropic plasma satisfies the Poisson equation: 
 

4 ( )i ee n nϕ π∆ = − − .                                     (13.1) 
 

with the boundary conditions ( ) 0ϕ ∞ =  and ( ) saϕ ϕ= . The potential is connected 
to the particle charge according to the following relation: 

 

2
d

r a

Z ed
dr a
ϕ

=

= − .                                        (13.2) 

 
In the case of plasma with a Boltzmann distribution of electrons and ions, 

where the condition ( )/ 1s B e ie k Tϕ <  is satisfied, we can linearize the right–hand side 

of Eq. (13.1) and have the following expression for ( )rϕ : 
 

( ) exps
D

a r ar
r r

ϕ ϕ
 −

= ⋅ − 
  ,                           (13.3) 

 
where in this case 2 2 2

D e ir d d− − −= + . The surface potential is connected to the charge 

through the formula ( )1 /d
s D

Z e a r
a

ϕ = + . For the case Da r<< , the expression for 

the potential distribution can be written in the following form: 
 

( ) expd

D

Z e rr
r r

ϕ
 

= − 
  .                             (13.4) 

 
It should be noted that the potential (13.4) is the screened Coulomb potential 

which is often applied to describe the electrostatic interaction between the particles in 
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dusty plasmas. In different physical systems this form of the potential is also known 
as the Debye–Hueckel or Yukawa potential. 

 
Main forces acting on dust particles in plasmas  
 
Notice that the main forces acting on dust particles in plasmas can be 

conveniently divided into two groups:  
• the forces which do not depend on the particle charge (force of gravity, 

neutral drag force, thermophoretic force): 
• the forces which depend directly on the particle charge (electrostatic 

force and the ion drag force). 
 
The gravitational force. The gravitational force is determined by the  
following expression: 
 

g dF m g= ,                                             (13.5) 
 

where g  is the gravitational acceleration. The gravitational force is proportional to 

the particle volume, i.e. 3~gF a . 
 
The neutral drag (friction, resistance) force. In the case of weakly ionized 

plasma, the main contribution to this resistance force comes from the neutral 
component. The two regimes which are determined by the Knudsen number  

/nKn l a=  should be distinguished. Here nl , a  are the atomic or molecular free 
path and the size of dust particles, respectively. In the case 1Kn <<  (the 
hydrodynamic regime) the resistance force is determined by the Stokes expression: 

 
6nF auπη= − ,                                            (13.6) 

 
where η  is the neutral gas viscosity and u  is the particle velocity relative to the 
neutral gas. In the opposite limiting case of 1Kn >> (the free molecular regime) and 
for sufficiently small relative velocities ( ~

nTu υ ) we have the following formula: 
 

28 2
3

n

n n n
T

uF a n Tπ δ
υ

= − ,                     (13.7) 

 
where nn  and nT  are the concentration and temperature of the neutrals; δ  is a 
coefficient of the order of unity that depends on the exact processes proceeding on 
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the particle surface. In the case of high relative velocities ( ~
nTu υ ) the neutral drag 

force is determined as follows: 
 

2 2
n n nF a n m uπ= − ,                                  (13.8) 

 
where nm  is the mass of neutrals. 

 
The thermophoretic force. If a temperature gradient takes place in a neutral gas, 

then the particle experiences a force directed opposite to this gradient, i.e. in the 
direction of lower temperatures. It is connected with the fact that the larger 
momentum is transferred from the neutrals coming from the higher temperature 
region. 

 
24 2

15
n

th n n
T

aF Tπ κ
υ

= − ∇   ,                                (13.9) 

 
where nκ  is the thermal conductivity coefficient of the gas. 

 
The electrostatic force. The electrostatic force acting on conducting charged 

particles is given by the following formula: 
 

el d effF Z eE=
 

,                                         (13.10) 
 

where an effective electric field can be expressed as: 
 

2( / )1
3(1 / )

D
eff

D

a rE E
a r

 
= + + 

 

.                               (13.11) 

 

Plasma polarization induces a dipole moment of dust particles 3
effp a E≈


 
directed along the field. In the nonuniform electric field the force acting on dipole has 
the following form: 

 

( )dpF p E= ∇
 

.                                      (13.12) 
 
Ion drag force. If we have a drift of ions (electrons) relative to the dust particle, 

then there is a force connected with the momentum transfer from the plasma to the 
dust particle. Due to the larger ion mass, the effect associated with the ions typically 
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dominates; therefore, this force is called "ion drag force". The ion drag force is 
connected with two processes: momentum transfer from the ions that are collected by 
the particle (non-elastic scattering) and momentum transfer from the ions that are 
elastically scattered in the electric field of the particle. 

In the general case the formula for the ion drag force is written as:  
 

( ) ( )tr
I i i i iF m n vf v dvσ υ υ= ∫
   

,                       (13.13) 
 

where ( )if v  is the ion velocity distribution function and ( )tr
iσ υ  is the momentum 

transfer cross–section for ion collisions with the dust particle. 
It should be noted that at the present time most of the results have been 

obtained for binary collision (BC) approximations, i.e. for the case of collisionless 
ions with "isolated" dust particles.   
 
Questions: 
1. Electrostatic potential around a dust particle. 
2. Main forces acting on dust particles in plasmas. 
3. Forces which do not depend on the particle charge. 
4. Forces which depend directly on the particle charge. 
5. Drift of ions (electrons). 
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Questions 
 
1. The definition of nonideal plasma and criteria of nonideality. 
2. Existence of nonideal plasmas. 
3. Interparticle interactions in the case of fully ionized plasma.  
4. Screening and quantum effects. 
5. The interaction between isolated classical atoms and charges in partially 

ionized nonideal plasma.  
6. The screening and quantum effects in “charge-atom” interactions for 

partially ionized nonideal plasma. Neutral and compound particles in plasma.   
7. The range of existence and the classification of states of nonideal plasma. 

Nonideal plasma in the nature and its scientific and technical applications. 
8. Electrical  methods  of  nonideal  plasma  generation.  
9. Dynamical  methods  of  nonideal  plasma  generation. 
10. One component plasma (OCP). Structural and thermodynamic properties of 

OCP.  
11. The confined atom model for multicomponent plasma.  
12. Definition of the plasma composition in equilibrium state. The Saha 

equation for ideal plasma.  
13. The Saha equation for nonideal plasma. The lowering of ionization 

potential.  
14. Composition of a nonideal plasma on the basis Debye approximation.   
15. Composition of a semiclassical nonideal plasma. 
16. Ionization of plasma by pressure. Mott transition. 
17. Chemical plasma model. Physical plasma model. 
18. Structural and thermodynamic properties of  nonideal plasma by Monte 

Carlo method. 
19. Electrical conductivity of weakly ionized plasma in the Lorentz 

approximation.  
20. Electrical conductivity of strongly ionized weakly nonideal plasma. The 

Spitzer formula. The Coulomb logarithm for a plasma. 
21. The electrical conductivity of  nonideal plasma. The Chapman-Enskog 

method. 
22. Integral equations in statistical physics. 
23. The Ornstein-Zernike equation for OCP. HNC and PI approximations. 
24. The Ornstein-Zernike equation for multi-component plasma. The 

computational scheme.  
25. Microscopic and transport properties of nonideal plasma by molecular 

dynamic method. 
26. Optical properties of nonideal plasma. The basic radiation processes in 

plasma. 
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27. Nonideal dusty plasma. Basic principles and charging types of 
macroparticles. 

28. The peculiarities of interaction between macroparticles in dusty plasma and 
formation of dust-plasma structures.  

29. Basic forces acting on dusty particles in plasma. Phase diagram.   
30. Determination of the basic parameters and structure characteristic of a 

dusty plasma. 
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