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Preface

This book is based on a number of our research papers complemented
by some mathematical developments which are usually not included
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details of the method of moments and its applications.

The book is basically destined to Plasma Physics Ph.D. students;
their individual work with the above developments is presumed.

Solutions of most characteristic exercises and problems are provided
in Part III. The theoretical part of Sect. 5 can be considered an
Exercise as well.
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Chapter 1

Asymptotic expansions [1]

Definition 1 The series
s
n=

possibly divergent, is called asymptotic expansion of a function f on an
infinite set M :
o0 Cn
Z) ~ — 1.1
F~Y (1)

n=0

if for any entire number n > 0 it holds that for z € M
N o
zllr&z <f (2) — kz_o z") =0. (1.2)

Proposition 2 On a given set M the asymptotic expansion, if it ex-
ists, 1S unique.

Proof. Indeed, it follows from (1.2) that for n = 0, ¢g = lim f (2), for

n=1,¢ = limz(f(2) — co), and in general,

n—1
P (f(Z)ZZi)v n=0,1,2,..., if it exists.

z—00
k=0



10 Asymptotic expansions [1]

Claim 3 On the other hand, the same series (1.1) can serve as the
asymptotic expansion for different functions. For example, the series
which is identically equal to zero is the asymptotic expansion for the
function identically equal to zero and of the function exp (—x) on the
ray x > 0 and even in any sector |argz| < § — a, a > 0; indeed,
zgrilwx" exp (—x) for any natural n.

Claim 4 Asymptotic series can be added, multiplied and even inte-
grated term by term, but not always differentiated term by term. Indeed,
exp (—z)sinexpx ~ 0 on the ray * > 0, but (exp (—x)sinexpx) =
cos (exp (x)) — (sin (expx)) exp (—z) has no asymplotic expansion at
all, since on the ray x > 0 the limit, at v — +00, does not exist.

Example 5 Prove that the integral exponential function

Biw) = —Ei(-a) = [ ew (-0

t
possesses on the ray x > 0 the asymptotic expansion

exp (—x) 1 2! n !
Eiag)y~r~———(1——+ = -+ (-1)'—+--- ). 1.3
o~ D (1 B B (13)
Hint: a) Integrate repeatedly by parts to show that
© a1 1 2 ne1 (n—)!
r—1)—= - — — —_— —1 A
/I exp (v —t) P :172+m3 +(-1) o +o+
n o dt
+(-1) n!/z exp (:L‘—t)tnﬁ , (1.4)

b) integrating by parts once more, find an estimate for (1.4) and prove
that the condition (1.2) holds for the expansion (1.3).

Example 6 Prove that on the ray x > 0 the error function

2 T
erf (1):—/ exp (—t?) dt
2w
possesses the following asymptotic expansion

2 nf1 1 1.3 1.3.5
erf(w)wl—ﬁexp(—w ) (ﬁ_ﬁ+%_W )
Hint: Integrate repeatedly by parts to find the asymptotic expansion for
the integral

/ exp (w2 - t2) dt = —%/ %d (exp (;L'2 - tz))
and take into account that

/Ooo exp (—t%) dt = g



Chapter 2

The method of moments

Dispersion relations

Claim 7 If a continuous and complex-valued function f (w) is defined
on the real axis, and satisfies the Lipshitz condition

If (w) — f(wo)| < Clw—wel|*, 0<a<1l, C>0,

and f(w) € L? i.e.,

/°° ‘f(w)|2dw < o0,

00

then at Ywy € R there holds the formula of Sokhotsky-Plemelj:

] fwyde T fwhde
lgllrg P PV. W +mif (wp), (2.1)

P.V. standing for the Principal Value integral.

Example 8 Find the boundary values for the real and imaginary parts
of the dispersion function of classical plasmas:
1 [~ dt
Z(@)=—2= xp (—1*) ——, Im( >0 2.2
© == [ ew(-#) . e (2.2

on the real axis.

11



12 The method of moments

Hint: a) The boundary value of the function Z () on the real azis
is determined as
Z(x) = lgg)lZ (z +19);

apply (2.1) to Z (x + 16) to prove that *

Z(0) = iVm; (2.3)

b) differentiating (2.2) and integrating the expression obtained for Z' (),
demonstrate that Z (C) satisfies the differential equation

Z'(Q)+2Z () +2=0;
¢) solve this equation using the boundary condition (2.3).

Theorem 9 Given a function f(z) which is reqular and bounded in
the upper half-plane, if its boundary value on the real azis

f(w) =limf (w +140)

is bounded and f (w) € L2, then the real and imaginary parts of f (w)
are mutual Hilbert transforms:

Ref( ) _ IVP f Imf(w’)dw ,
, (2.4)
Im f (w) = 1VP f Lf(w L

—o0

Hint: Apply the Sokhotsky-Plemelj formula (2.1) to the expression

1 ) dw
2mi ) w —w—id’

—oo

flw+id) = 510,

which stems directly from the Cauchy integral formula and separate the
real and imaginary parts of the result.

Definition 10 The relations (2.4) are called the Kramers-Kronig dis-
persion relations, and for the response functions or susceptibilities in
physics or the Nevanlinna functions in mathematics, e.g. the plasma
inverse dielectric function, they reflect the causality principle.
Exercise 11 Reconstruct the real part of the refraction index n' (w),
whose imaginary part is
" ]‘—\
n'(w)=———=——=, Rel'>0, u>0.
(w—u)"+1?

Hint: Apply the Kramers-Kronig relations (2.4).

IThe integral [*_exp (—t?) % = 0 due to the parity of the integrand.
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Nevanlinna (response) functions and
their mathematical properties [2]
Definition 12 (The Nevanlinna class of functions R): A function
F(z)eRif

1. F(2) is analytic in Im z > 0;

2. ImF(2)>0inImz > 0.

Definition 13 Let x € R be a random variable with a distribution
function o (z). If

o(z) = / f(s)ds (2.5)
the function f(z) is called the probability density function, p.d.f..

Claim 14 The Nevanlinna functions are determined by the Riesz -
Herglotz transform:

F(z)—az+b+7(mlzljﬂ)dg(m) , (2.6)

—o0

where {a,b} € R, a > 0 and g(x) is a non-decreasing bounded function
(distribution) such that

7 dg(z) _

1+ 22
Claim 15 Notice that we can always choose the function g(x) so that

b were equal to
/ zdg (x)
b= ;
1422

Claim 16 Observe also that for Vr € (—1,1), Vs € R and Imz > 0
(see Section IV)

Witis (Z) = = (2~7)

1/°° || d: izt
oo T —Z exp (m(r;is>> cos <7r(r;»1',s)) ’

7!'

particularly,

T r,s—0 xr—z

oo r+is g
ﬁhm/ 77 _ o her,

oo
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and that the integral

oo

/ ||t da 2/ycrexp (islnw) dz
14 a2 1+ a?

—0o0 0

converges 2; it is also easy to see that

Definition 17 (The class of functions Ro): A function G (z) € Ry if
G(z) € R and
lim &)
z—00 2

=0, Imz>0, (2.8)

so that for such functions from (2.6) we have:

o0
d,
G(z)—/ g()-i—hh>0 (2.9)
T —
where the non-negative parameter h does not depend on z, but might
depend on other parameters, e.g., in Physics, on the wavenumber.

2For r < 0 pass to a new variable u = '+
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The classical (untruncated) Hamburger
problem of moments

Definition 18 The real numbers

oy = {(2) = / 2Mdo (z) , m=0,1,2,... (2.10)
are the (power) moments of the distribution o (z). If the distribution
o (z) is differentiable and f(x) = o' (x) is symmetric, all odd-order
moments (2.10) vanish.

Let us summarize some notions and results of the classical theory
of moments [2, 3], [4].
The Hamburger problem is formulated in the following way.

Problem 19 Given a set of real numbers {1, fiy, fta, - - -}, find all dis-
tributions o(x) such that

/ z™do (z) = pt,,, , m=0,1,2,.... (2.11)
The Hamburger moment problem is solvable, i.e., there exists at least
one distribution (p.d.f.) which satisfies (2.11), if and only if the given
set of numbers {p,,}0_, is non-negative, i.e., if the Hankel matriz
I'= (#"’L+7l):n,:0 > 0. If the problem is solvable, it can have a unique
solution (a determinate problem) or an infinite number of solutions (an
indeterminate problem,).

Definition 20 Notice that if o(x < 0) = const (i.e., if f(x <0)=0),
we have the Stieltjes moment problem, and if o(x) = const (f(z) =0)
forx < a, x>0, a,b € R, we deal with the Hausdorff problem finite
interval moment problem.

Theorem 21 [5] In order that a Hamburger moment problem (2.11)
shall have a solution it is necessary that

m

Ay =det (), >0, m=0,1,2,....

]

The problem has an infinite number of solutions if and only if
A,, = det (uw)w_:0 >0, m=0,1,2,....

The problem (2.11) is determinate if and only if

A0>0,...,Ak>0, Ak+1:Ak+2:"'0.
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Claim 22 The set of solutions of an indeterminate problem is in a
one-to-one correspondence with a certain subset of the class of Nevan-
linna functions [2]; this correspondence is described by the Nevanlinna
Sformula, see below.

Claim 23 Given a set of real numbers {sq, s1, 2, ...}, the solvability
conditions of the Stieltjes moment problem

o0
/ 2™do () = $m , m=0,1,2,...
0

is the non-negativity of two Hankel matrices, (Smin)p o @4 (Smint1)pm n—o:
for further details, see [5, 2].

Theorem 24 [5] Given a set of real numbers {co, c1,c2,...}, a neces-
sary and sufficient condition that the one-dimensional Hausdorff mo-
ment problem

1
/ 2"do (x) =cpn , m=0,1,2,... (2.12)
0

shall have a solution is that all differences

. k k [k
AFe, = cpn— (1)Cm+1+(2) Cmy2t-+ ‘+(*1)k <l)cm+k >0, mk=0,12,....

Claim 25 A solvable Hausdorff one-dimensional problem is always de-
terminate.

Claim 26 A truncated Hamburger moment problem [2], i.e., a moment
problem with a finite set of given numbers, i.e., {{i, }2_o, v =0,1,2,...
is solvable if the Hankel matriz ', = (Mm+"):nn=(] > 0, [6], see also
[7] and [8]. In the degenerate case of a sz’ngular’ Hankel matriz T, the
problem of moments (under some special conditions established in [8]
and [6], [7]) has a unique solution described in [6], [7].

Theorem 27 [9, 5, 2] A sufficient condition that the Hamburger mo-
ment problem (2.10) be determinate is that (Carleman’s criterion)

00
—1/2m __
Hom =0
m=1

Corollary 28 [10, 5, 8] If the Hamburger moment problem (2.10) has
a solution (2.5), where f(x) >0 and

/jo Al f (@) de < oo,

e}

for some ¢ > 1 and § > 0, then the problem is determinate, i.e., it has
only one solution.
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Theorem 29 /2, 3] If

/ 1nf(I)dm > —00,
oo 122 ’

the Hamburger moment problem (2.10) has an infinite number of solu-
tions.

Example 30 The p.d.f.

ay'/e «
fal@;y) = FeXp(—ﬂM ), o,y >0, (2.13)
)
where I' (z) is the Euler T’ function, has an infinite number of moments
for any positive a:

- r ()
] ; = 22 fo()dr = ———2 2
pon (i) = [ et = i,

1
«

(2.14)
Pomi1 () = 0, m=0,12,...

but the Hamburger moment problem for the set of numbers

r?) L)
{1707 () 0, T (;)70,...} (2.15)

has, as it stems from the Carleman criterion, a unique solution, which
is the p.d.f. (2.13), if a« > 1, in particular the Gaussian density
f2(x;555), a > 0, and an infinite number of solutions if « < 1. In
this latter case, all solutions of the moment problem are described by
the Nevanlinna formula ([2]), see below.

Other examples of sets {11, }o_, which generate indeterminate mo-
ment problems are provided in [3].

In (solvable) problems where we already have at least one p.d.f.
with an infinite set of moments, like the problems we are interested
in here, the only question which arises is the one of uniqueness of the
solution of the problem of reconstruction of a (one-dimensional) p.d.f.
by its power moments, {u,,}°_.

Claim 31 If in the vicinity of the point s = 0 there exists the moment
generating function (m.g.f.)

00

1\11(9) = /oo eszf('r)dr = Z Mm%m‘v (216)

m=0
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then the p.d.f., f(z) and its moments can be expressed through the
m.g.f., M,(s) in the unique way:

1 = —isT AT (s
flx)y = o _Ooe M, (is)ds,
dm
= o M(s
Hm ggm Ma(s) »

Claim 32 Notice that, e.g., for the density fo(z;vy) with @ < 1 the
m.g.f. exists only at the point s = 0 (the zero moment) and cannot be
prolongated analytically to a vicinity of this point. For a > 1

a,.yl/a
r@)

which is also the sum of the series

M,(s) = / exp (—yz®) cosh(sz)dzr, s € R, (2.17)
0

© 2m

Z Ham (0577) (;m)! (2.18)

m=0

for any real s. For a < 1 the series (2.18) and the integral (2.17)
converge only along the imaginary axis s = 1y y € R, but diverges in
any band along this axis, i.e., for any s = v + iy, x # 0: the problem
is indeterminate.

Claim 33 The above relations of uniqueness of the solution hold for
the probability distributions of practical interest. For example, moments
and moment generating functions of nmormal, uniform and parabolic
p.d.f.’s are shown in Table 1. The latter two distributions correspond
to the determinate Hausdorff problems, like any other so called bounded
p.d.f.’s with a given infinite set of moments, and they are uniquely
determined by the latter. Due to the Carleman criterion the normal
p.d.f. is defined by its moments in the unique way as well.

Table 1. Moments and moment generating functions of normal, uniform
and parabolic distributions.

f(@) Ham M,(s)
EOénI%Ral ﬁ exp (7%) (2m — 1)lla®™ exp (@)
B 1 a?m sinh as
smifrms ) 3a Bt s
. 3(a?—2?) 3a?m has inh as
gaéabj’};ca 12 (2m+1a)(2m+3) 3 (c?;)g - S(as)%g>
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Orthogonal polynomials and the Nevan-
linna formula

Theorem 34 (Nevanlinna) There is a one-to-one correspondence be-
tween all solutions of the Hamburger problem (19), or all complex
Nevanlinna functions

p(z)= " do (@) (2.19)

oo T— 2

and all Nevanlinna functions q(z) € Ro such that

; (2) _ /-oo do (T) Eni1 (Z) +q (Z) FE, (z)

= . 2.20
Joow 2= Dy (2) +q(2) Dy (2) (2:20)
This last formula is called the Nevanlinna formula.

Definition 35 Here Dy, (z) are orthonormalized polynomials with re-
spect to the measure do [3]:

/ D, (z) Dy (x)do () = §pm, n,m=0,1,..., (2.21)

and B, (z) are their conjugate polynomials:

 Dpn(z) — Dy(t
E,(z) = / Mda (t). (2.22)
oo z—t
Precisely,
1
DO = \/7707 A,l = 17 AO = Mo,
Bo ottt g 1
1 [T U
Di(t) = ——=—=det | . . . I 2.23
W0 = URESC s | B
R N
Ho Hy
Ap = det| @ : k=12, ... (2.24)
K w0 Hog

Let us point out the properties of these orthonormalized polynomi-
als:
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Claim 36 [t can be easily seen that both sets of polynomials do not
depend on the distribution we seek, they are determined by the moments
only:

1 zZ — Qg

1

Do(z) = —=, Dilz) = —= 7 2.25

0() \/!T() 1() T bo ( )
Loty — p3) 22+ 2 (p — popta) + (papey — p2

Dy(z) = (Hota — p7) (pts — pops) + (ppn /2)7

(Hoka — 113) Ao

Eo(z) = 0, Ei(z) = \g? ,

Bo(z) = Mottt = 1) 2+ oty — i) 1t + o (pa i = Holts)
(Hottz — 1) Ao

Besides:

1. The zeros of the polynomials Dy (t) and Ex(t), k € N, are all real;

2. The zeros of the polynomials Dy(t) and Dy_;(t), k € N, are all
real and alternate. The zeros of the polynomials Dy (t) and Ej(t),
k € N, alternate;

3. The polynomials Dy (t) and Ey(t), k € N, can be expressed in
terms of each other:

ZD]C(Z) = bk,le,l(Z) + aka(z) + kak+1(Z) s k= 1., 2, .

(2.26)

or
2Ep(2) = bp_1 Ep—1(2) + apBEr(2) + bpEpa(2) , k=1,2,...,
(2.27)
where
ap = ak,k :/ tDk(t)Dk(t)dO' (t)
by = Grps :/ tDy(t) Disr (£)do (2) :%, k=0,1,2,...;
—00 k

4. They satisfy the Liouville-Ostrogradsky (or Schwarz-Christoffel)
formula :

Dy, 1(2)En(2) =Dy (2)Ep1(z) = =——— n=23,...
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Claim 37 The latter relation permits to define these polynomials in
the recurrent way. Indeed, since
1 1 z—a
Do(z) = , Di(2) = —=——
v Ho Vg bo
0

Ey(2)

Il

o

&=

=

|
=

we have that

(Z — (ll) Dl(Z) — boDo(Z) _

Dy(2) = A
1
(Hotts — 13) 2% + 2 (pafra — pott) + (papty — 113)
(1otts — 17) Ao
z—ay) Ei1(2) — bgEy(z
Byz) = (z —a1) Br(2) — boFo(2) _

by
to (ttotts — 113) 2 + (potta — 1) i1 + pio (patts — piott)
(Hotts — 17) Aa

and so on. This procedure can be easily programmed.

Exercise 38 Check that the polynomials D;(z), j = 0,1,2 are normal-
ized to unity and mutually orthogonal.

Exercise 39 Initiate the construction of the set of orthogonal (but

not normalized) polynomials {Dy,(t)};2, from the canonical basis of the
Hilbert vector space of polynomials,

{1,¢,8,...},

but with the scalar product and the norm defined as

)= [ F@@ido @), 171 = VT,

by means of the standard Gram-Schmidt procedure.



22 The method of moments

Canonical and degenerate solutions
of a solvable truncated Hamburger
moment problem

Claim 40 [t is clear that, at least, due to numerical and measurement
problems, we never possess a large number of moments. Besides, as

we will see, in certain physically important problems, this number is
limited by physical phenomena.

To satisfy the moment conditions

um:/ I""a’a(a?):/ 2" f(x)de, m=0,1,2,...,2v, v=20,1,2,...,

e} e}

(2.29)
one could first consider a step-like distribution
2v
do(z) = Z m;o (x — ;) dx (2.30)
j=0

with the density which actually consists of 2v + 1 point masses located
at some distinct points of the real axis {lj}jio This is a so called
canonical solution of the problem. Then the assumption (2.30) can be
substituted to the conditions (2.29) and the masses {m]}?io can be
obtained directly from the system with the determinant which is the

Van der Monde determinant of an arbitrary set of distinct numbers

2
{xj }ji(]:

1 r -1 mg o
To Ty - T my Hq
= . . (2.31)
2V 2v 2v
To T3 o May Hay

In other words, we obtain an infinite number of canonical solutions
parametrized by the latter set of points of the real axis.

Example 41 Gaussian distribution exp (—z%). Consider a trun-
cated problem generated by the moments

oy = / ™ exp (—1’2) dr, m=0,1,2:

T
Ho = VT :07/42:§~
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Then the system (2.31) becomes:

1 1 1 mo T
To T1 X2 my | = 0
Its solution is just:
my N (w2 — Io)j (z1 — IO)j (2z129 + 1)
my =5 (@ — :r1)_1 (xo — frl)_l (2zoze + 1)
2 (w1 = 29) " (w9 — m2)" (2w021 + 1)

Exercise 42 Nevertheless, for the moment set {1,0, uy} , there ex-
ists the following canonical solution of the moment problem

/ 2™ f (z)dz = p,,, m=0,1,2:

oo

F@) =2pE-9+i@+9),
where
QZILZ_
Ho

Exercise 43 While, for the moment set {1y, 0, ui5,0, i1, } , there exists
the following canonical solution of the moment problem

/ 2" f (x)de = p,,, m=0,1,234:

& g .
@ =m{(1-4)s0+ LHra-o) e},
& 263
where
€2 = Ha 2 _ M4
! to : Ha
This solution will be interpreted later, e.g., in Chapter 4 dedicated to
the investigation of one-component plasmas. The positivity of the cen-
tral feature intensity, (1— (&, /{2)2) follows from the Cauchy-Schwarz

inequality, see Section IV.

Example 44 Degenerate case. Consider now a degenerate trun-
cated problem generated by the moments

NO = 17 /“1 = \/57 MQ = 27 (232)

whose Hankel matriz

n=v 7
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is obviously singular (Ay = detT'y = 0). In this case the solution of

the problem is unique, it can be found in the following way. Find the
-2

N

null-space basis of the matriz Iy, in our case it is a vector {

{ ?’ } with & # 0, construct the polynomial
1

p(t) =&+,

calculate its zeros (in our case we have only one zero ty = \/ﬁ), these
are the locations {x;},_, of the masses in the degenerate solution

do(z) = Z m;d (x — x;) de,

and determine the corresponding masses from the moment conditions
(2.29). Particularly, for the moments (2.32) we have

do(z) =0 (:17 — \/5) dx,
which automatically satisfies the conditions
po =1,y = V2,115 = 2.

Claim 45 Certainly, in physical problems we are basically interested in
non-canonical, continuous solutions Nevertheless, some physical inter-
pretation of the canonical solutions will be discussed as well. To show
how the moment method works in this case, let us consider dynamic
properties of the intrinsically classical. omne - and two - component
completely ionized hydrogen - like plasmas in thermal equilibrium.

But let us start with
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An example: the Drude — Lorentz
model

The Drude - Lorentz formula
Consider the simplest case of the Nevanlinna formula (2.20) with n = 0.
Choose the p.d.f.

f(w) = Reo™ (w),

which is an even function of frequency, and assume that the (internal)
static conductivity
2
Wit

o = lim o™ (
nl0

exists and the power moment
co = / Re o™ (w) dw = w?/4
—o0
converges due to the the f-sum rule [11] 3, while

= / wRe o™ (w) dw = 0.

oo

Here w, = \/4mn.e?/m, is the (electronic) plasma frequency and
is the relaxation time defined, e.g., by the Spitzer formula; n. and
me, as usually, are the number density and mass of plasma electrons.
Remember that in the absence of the spatial dispersion, the plasma
dielectric function

47
o

elw)=1+ it ()

w

is a response or Nevanlinna function [12]. Introduce the Hilbert trans-

form -
. 1 R int
gt (Z) - — / eo (w) dw
Yy w—2z

Observe that due to the Kramers - Kronig relations,

. 1 7 R int ! 1 X R int /
oint (W) = flim/ L(w')dw’ = —PV. / L(w)dw, +Reo (w) =
T 1lo W —w—1m T w —w
—00 —00

= Reo™ (w) +ilmo™ (w),

and that Im o™ (w = 0) = 0.

3We will later justify this result independently.
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Consider the asymptotic expansion of ¢/ (z) in the upper half-
plane:

fes) oo

o) = o [ ) gy = L I il O Py
m w—z Tz 1-*
~ - [ Reo™™ (w) (1 + E) dw
z—00 TZ z

icy (1)
~ —+o|—].
z—0o0 TZ z

Hence,

dmi ;
e(z—>oo):1+ﬂam"(z—>oo)zl——§, Imz > 0.
z z
According to the above definitions,
Dy =y Ey =0,

D1 (Z) = C()Z/\/ A,1A17 El (Z) = (‘g/ AflAl -
oint () = 1 / Rea(w)d _ i Ei(2) + Qo(2) Eo(2)

Iy

83

w—z ¥ m Dy (2) 4+ Qo (2) Dy (2)

83

—00
_ i & /VATAL _ i a
T oz / VA D + g g0 (z) Tzt (2)
Ciwd 1 o0 i

=2 __ : =ihg = -
A z+qo(z) 1—idz7’ @ () = iho T
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A generalization of the Drude-Lorentz model
Consider now the simplified case with n =1 :

00:/ Reo™ (w)dw=wl/4 , =0,

/wReo”‘t (W) dw = wW20?/4, =

O_i,nt (Z) o 7 EQ( ) + Ql (Z) 1 (Z) _ L wf’ (Z + (]1(2)) ) (233)
T Dy (2)+ Q1 (2) D1 (2) 4w 22— Q24 2q1(2)
With the choice
@(2) = qi(z = 0) = ihy = i7Q?, (2.34)
oy o L2 2002
int iw; z+i78) iwy dw () 1
_r .~ 2 =, I 0.
" (2) 4 22 — Q2 (1 — izT) 2—00 47TZ+ 4723 o 28 mz=
(2.35)
If 7Q < /2, the real part of (2.35) on the real axis,
) 95
Reo™ (w) = 002 (2.36)
(w? — Q?)" + w22
possesses two symmetric maxima shifted to
20)2
Winae = £Q4/1 — © — (2.37)

Otherwise, its behavior is qualitatively similar to that of the Drude-
Lorentz conductivity.

Exercise 46 Prove the expansion (2.35).
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Dynamic conductivity of aluminum plasmas

These results were used in [13] to analyze recent data on aluminum
plasmas obtained by means of Quantum Molecular Dynamics simula-
tions (QMD) [14]. This simulation technique uses the Density Func-
tional Theory (to treat the electronic subsystem through the package
VASP) and the Kubo-Greenwood formula.

Then, for the reconstruction of the dynamic conductivity, the values
of the moments ¢q and ¢y were calculated from the computed spectra
kindly provided to us by the authors of [14]. We understand that the
plasma frequency computed from the simulations is an effective one,
accounting for the total electronic density.

0.5 — 05
0.4 |04
g {3 .1
303 1503
So2
-5

02505075 1 12515175 2 02505075 1 12515175 2
wfuwy wlwp

Fig. 1. Here we show the dynamic conductivity real part of (2.36),
which gives the best approximation to the simulation data of [14]. We
can clearly identify the maxima shown by this model at the values given
by (2.37), which appear for 7Q < v/2. Temperature is 25 kK and the

density varies from 1.0 g - em™ to 0.5 g - em™>.
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Non-canonical solutions of a trun-
cated Hamburger problem. Appli-
cation of the Nevanlinna formula

In physical problems we will deal with further, we will consider continu-

ous solutions of truncated Hamburger problems generated by positive
sets of power moments

{Hn-,ﬂhﬂzw‘w#mfhﬂzu}-, v=0,1,2...,

basically, with v = 2 and with the so called immaterial elements i,
and fi9,, 5. Let us see how the Nevanlinna formula in this case provides
a continuous, non-canonical, solution of the problem: construct the
p.d.f. f(z) such that

m:/ 2 f(x)de, 1=0,1,2,...,2v, v=0,1,2,.... (2.38)

The Nevanlinna formula in this case takes the following form:

[T B () QOEE)
&= S T hareen e &Y

Claim 47 Observe that the Nevanlinna parameter function Q, (z) €
Ro effectively depends on the number of moments involved. Neverthe-
less, the asymptotic expansion of the Cauchy transform of the density
in question will satisfy the moment conditions (2.38) independently of
our choice of this parameter function.

Indeed, along any ray within the upper half-plane Im z > 0,

o(z—o00) = —7/ f1_7

ERIRLI> >’+o<l>”“)dx—

1) 242
= Z s / r)dx + O ( ) =

2v 1 2v42
- zl+1 +0 < ) . (2.40)
1=0




30 The method of moments

In other words, the contribution related to the Nevanlinna parameter
function @, (), due to the additional property (2.8), will appear in the
asymptotic expansion (2.40) only in the correction of excessive order
2v + 2. We will see, how this happens in specific examples.

By definition, on the real axis Im z = 0,

e (n) = 1m<nm/°° &)_

0 ) o S—x—1m

i (v, [ L0 ) -

B0+ Q@) E, )
D,y ('L) +Qy ('L) D, (1) ’

— S @)=
Let

Q(r) =ReQ () +ilmQ(z), Q(zr)=ReQ(x)—ilmQ ()

and observe that, also by definitions (2.23) and (2.24), we have:

Ho 0 Hyr My 1
1 Hy ooy Mg z
D, (r) = ——=det : : : : R
v vl I o
Hy—1 0 Hoy—1  Hop x
T P P

so that the algebraic minor, (subdeterminant) of the D, (x) polyno-
mial leading term is just the Hankel determinant

Ho 0 Hy—r My
1 e 1, 1,
A, = det l.1 l. / .+1 (2.41)
Hy—1 = Hoy—1 Moy
Hence,
A, A,
Dy (t) = Dyyi (t),  Dult) =/ =Dy (1), (2.42)

Au+l Au
where {D; (¢) ;’:'01 are orthogonal monic polynomials with respect to the
measure density f (z), i.e., the polynomials with the coefficient of the
term of highest degree equal to one. We show how these polynomials
can be constructed by the Gram-Schmidt procedure applied to the
canonical, non-orthogonal basis

{1,¢,¢,...}
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in Exercise 39. Thus 4

(2.28),

, due to the Liouville-Ostrogradsky equality

f(z) = —=Im

A, Im@Q, (z
™A, 18041 | Dy (2) + Q, (2) D, ()

The "problem" is that the determinant A, ; (see (2.41)) contains
the "immaterial" moments fiy,,; and i, ,, which we do not know.
They might even diverge! This spurious contradiction is immediately
resolved by taking into account the normalization of the orthonor-

malized polynomials {D; (¢) ;:01 : use instead the monic polynomials

{Dy (1)}, :
A, Im@Q, (x)

VA 1B 1 Dy () + Qu () Dy ()]
A, ImQ, (x)

URY; Au—lAy+1

flz) =

ﬁDvH (z) + Qu (2) AAV:1 D, (z)
A, Img, (x)

_ >0, (2.43)
TI'AV—l |Dv+1 (.T) + q (.’E) DU (‘T)|2

0 (2) = Qu () [ DL

Notice that due to the positivity of the moment sequence (2.38), the
Hankel determinants A,_; and A, are all strictly positive.

Thus the immaterial members of the moment sequence are elim-
inated due to the renormalization procedure. What matters for the
physical applications is that the poles of the reconstructed density
f(2), Imz < 0 are the roots of the "polynomial" equation

where

Dyt1(2) + ¢, (2) Dy (2) =0, (2.44)

4Remember that for any z € C,

Imz =Im (z + iy) :%(z—?) = ((z +iy) — (x —1y)).



32 The method of moments

v+1

which "starts" from z'*!, i.e., if we approximate

G (2) = ¢, (2 = 0) = ih,

equation (2.44) acquires the form of the genuine polynomial equation
of the order v + 1.
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The method of moments with local
constraints

The problem set-up
Consider the mixed Lowner-Nevanlinna problem [15, 2, 3, 6, 16], see
also [17] for the matrix version of the problem.

Problem 48 Given a set of real numbers (fig, iy, .-, te,), @ finite set
of points (t1,...,t,) on the real axis, and a set of complex numbers
(wr, ..., w,) with non-negative imaginary parts, find a function of the
Nevanlinna class, ¢ € Ry such that asymptotically, for z — oo inside
any angle 6 < argz <m—4, 0 >0,

2v+1

pz)=-3 “Z—*l +o (2, (2.45)

possesses continuous boundary values in some vicinities of the points
(t1,...,tp) and
ot +10) = wny s = 1,..p. (2.46)

Notice [3] that the condition (2.45) is equivalent to the moment
conditions

/ tff(t)dt =, 1=0,1,...,2v. (2.47)
for the generating distribution density f(¢), such that
[ ()
o(z) = / ft( ) , Imz > 0. (2.48)
-z

The suggested Problem 48 is a mixture of the truncated Hamburger
moment problem [16] with the Lowner-type interpolation problem in
the class of Nevanlinna functions [15].

We describe and test numerically (see below) an algorithm for find-
ing of non-rational solutions of this problem. We are interested in the
possibility to solve the problem when only a very small number of mo-
ments and constraints (data at the interpolation nodes) is known. The
behavior of the problem solution when the number of interpolation
nodes grows is treated in [18].
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The mixed problem solution
Solvability and contractive functions

Assume that the truncated Hamburger moments problem is solvable
and that there exists an infinite set of non-negative measures densities
f (t) on the real axis satisfying (2.47).

As we know, these solutions of the truncated Hamburger moment
problem are parametrized by the Nevanlinna parameter functions ¢, (z) €
Ro by the Nevanlinna formula (2.20),

[ f0d B0+ GEER)

Y= T T D) TG )Du ()

(2.49)
which, according to the Nevanlinna theorem [2], establishes a one-to-
one correspondence between the set of all Nevanlinna functions ¢(z)
satisfying (2.45) and the elements ((z) of the subclass Ry.

Notice that since the zeros of each orthogonal polynomial D, (z) are
real and by virtue of the Liouville-Ostrogradsky identity (2.28), the
zeros of D, (z) alternate with the zeros of D, 1(z) as well as with the
zeros of E,(z). Therefore any function ¢(z) given by the expression on
the right hand side of (2.49) has a continuous boundary value on the real
azis if and only if the corresponding Nevanlinna function ¢, (z) € Ro
is continuous in the closed upper half-plane and such that ¢,(z)D,(z)
has no joint zeros with D, 1(z).

To meet the constraints (2.46) it is enough to substitute into the
r.hs. of (2.49) any function (,(z) € PRy which is continuous in the
closed upper half-plane and satisfies the following conditions:

_ wsDqul (t,s) + Eu+1 (te)

W) —¢ (t)= =1,..p 2.50
és Cu( é) wsDy(ts) +Ey(tq) ) yos P ( )
Note that by (2.28),
AV I s
Im &) = S >0, 5= 1.

VA [wDy (L) + B (t)]

Thus Problem 5 reduces to

Problem 49 Given a finite number of distinct points ti,...,t, of the
real axis and a set of complex numbers wy, ..., w, with positive imaginary
parts, find the set of functions (,(z) € R continuous in the closed
upper half-plane which satisfy conditions (2.50).

Each Nevanlinna function ¢, (z) in the upper half-plane admits the
Caley representation

1+ 6% (z)

C(2) = ) (2.51)

=— Imz>0, v=0,1,2,...
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where

0 (z) = % (2.52)

is a holomorphic function on the upper half-plane with contractive val-
ues, i.e. ‘9(")(2)‘ <1, Imz > 0. The function §*)(z) connected with

the Nevanlinna function ¢,(z) by the linear fractional transformation
(2.52) is continuous in the closed upper half-plane if {, (z) satisfies this
condition. On the other hand, the Nevanlinna function ¢, (z) given as
the linear fractional transformation (2.51) of a function §)(z) which
is holomorphic on the upper half-plane, continuous in its closure, and
has contractive values, is continuous at the points of the closed upper
half-plane where 6 (z) # 1. Therefore Problem 49 is equivalent to the
following problem for contractive functions.

Let 9B be the set of all contractive functions which are holomorphic
on the upper half-plane and continuous on its closure .

Problem 50 Given a finite number of distinct points ti,...,t, of the
real axis and a set of points )\(1"), ey /\;"),.

w ¥ —i

Sewgy

<1, s=1,..,p (2.53)

find a set of functions 0% € B such that

0(t) =2 s=1,...p. (2.54)

Problem 50 is a limiting case of the Nevanlinna-Pick problem [3, 2]
with interpolation nodes on the real axis. Its solvability for any in-
terpolation data )\(1") sy /\;") inside the unit circle was actually proven
in [19]. The point is that the associated Pick matrix is automatically
positive definite for given contractive interpolation values once the in-
terpolation nodes are close enough to the axis; this guarantees that
the approximate Nevanlinna-Pick problem is solvable once the inter-
polation nodes are close enough to the real line. Then one applies the
Vitali-Montel theorem to take the limit as the interpolation nodes go
to the real line. This implies also that the Nevanlinna-Pick problem is
/\<5”>‘ ~1.

We describe below an algorithm of solution of Problem 50 when all

solvable even if some or all

‘)\g”)‘ < 1, which is a simple modification of the Schur algorithm. An
alternative algorithm, similar to the Lagrange method of the interpo-

lation theory, can be applied if some or even all ‘)\g")‘ =1 [16].
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Schur algorithm

Note that a function 8% € 9B satisfies the condition

0 (t) =\, W < 1,
if and only if it admits the representation
_ 4+ A

W) (2 (2.55)

Ao, () +1

where ¢, € B and ¢,(t;) = 0. In the case of the Nevanlinna-Pick
problem, i.e., when t¢; belongs to the upper half-plane, the function
¢,(z) admits the representation

Z*tl
=Xo (%)
Z*t]

¢(2) =

where x, (z) is an arbitrary contractive function in the upper half-
plane. There is no such simple form for the contractive function ¢, (z)
when t; € R.

Here we carry out the reconstruction procedure using the non-
rational functions, in particular, using the function [16]

t1+1
» « 1+t dt v ”
6, =0 e d & [ B mle— ) 5 b= 0 9l ),
t1—1

(2.56)
with a unique free parameter o € (0,1) ® Here 9(1") is any function from
B such that

y / 1 AW -\
0¥ (¢,) = (Aﬁ")) = AN a9 p (257)
‘ ul” (t:) 1 - APAW

Such a choice of (-)(1")(2) guarantees the verification of all of the condi-
tions (2.54). Hence Problem 50 with p nodes of interpolation on the
real axis and strictly contractive values of the functions to find at these
nodes, reduces to the same problem but with p — 1 nodes of interpola-
tion and modified values at these nodes given by (2.57). Repeating the
above procedure p — 1 times with a suitable choice of the parameter a
and modifying the values of emerging contractive functions at the re-
maining points tsy1, ..., t, according to (2.57), permits to obtain some
solution of Problem 50. Observe that contrary to the Nevanlinna-Pick

5This parameter can be found by the Shannon entropy maximization procedure
[20].
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problem with nodes in the open upper half-plane, our Problem 50 is al-
ways solvable if the values of the function to reconstruct are contractive
at the nodes of interpolation.

Let 02’:)1 € B be a contractive function emerging after the s —1 step
in the course of the Problem 50 solution by the above method, and let

(s-1) (0)
(Ag’”) = 92”_)1(253), (/\g")) = /\(1”). It follows from the above
arguments that should the initial parameters )\(1"), ...,/\(") be strictly

contractive, there exists a set of solutions of Problem 50 described by
the formula

Q(V)(Z) _ (l(l')(z)u(”)(z) + b(V)(Z)
) (2) + A (2
where the elements of the matrix of the linear fractional transformation
(2.58) are non-rational functions constructed as above and ;*)(z) runs
the subset of all functions from B satisfying the condition u®)(t,) =

(r-1)
(A;”) . This matrix can be calculated as

(2.58)

(g o) —ﬁ e ()

(v) @) 5—
A(z) dV)(z) o <A£V)>( l)ug") (2) 1

(2.59)
where numbers s in matrix factors on the right hand side increase from
left to right.

Observe that the simplest choice for the function p(z) in (2.58) is

. ) (-1 P, (v) W) :
just u(2) = (/\p . Hence, if initial parameters A7, ..., \)” in
Problem 50 are strictly contractive, then among the solutions of this
problem there are non-rational functions of the type we consider.

A numerical testing of this representation is given in the next Sec-
tion.

An example

Consider a physically interesting case of v =2 and p = 1.
Precisely, let

o(z) = / %, Imz > 0. (2.60)
with T
flo)= -2 Em (W)7 (2.61)
e w) =1 - et )
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being the inverse dielectric function, compare to Section 2. Notice also
that
f(w) = 4Reo™ (w) Jw?, (2.62)

where 0% (w) is the system external conductivity,

int
o_emt (w) — (:M Eft)
1+ T (w))
and o™ (w) is the system internal conductivity such that o¢ = 0™ (w = 0) <
oo is the static conductivity. Then we have the following sum rules [21]:

Ch:/ fdt=1, Ci=C3=0, (2.63)
Cs :/ Lrydt =w; (2.64)

(wp, as before, is the plasma frequency), and
Cy :/ tf(t)dt == w (w + 07, (2.65)

since, due to the Cauchy-Schwarz inequality (see Section IV), CoCy —
C2>0.
Hence, by virtue of the Nevanlinna theorem,

©y(2) = 7%, Imz > 0, (2.66)
where we can put
Do(z)=1, Di(z)=2 Dy(z)=2"—-w,
D3(2) =2 -z (w2+Q%), Eo(2)=0, Ei(z)=0Cy, (2.67)
Ex (2) = Coz, Es(2) =Gy (2* — %),
and e ,
“i=G =Y

Thus, at z = wy € R let

wi=— =wi+ Q. (2.68)

v -1 -1
B = g, (wy) = —PV. / Ime™ (w) dw N Ime™ (wp) cC,

7w (W — wo) iwo
and
P = duwy+1= wggc (wo) +1= (2.69)
T 1
= 17w0PV/ me —iIme™! (wp)
mw (w — wo)

= 1+e (w:())*ﬁ Hw=wy) =1—¢e(wp).
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Observe that the latter expression was obtained using the Kramers-
Kronig relations,

oo

e (w)=1+PV. /

—o0

Ime!(s)ds

Tls—w) +ilme™ (W)

and that with o < oo,

dmi !
€1 (0) = lim (1 4 gt (w)) =0
w

w—0
so that with wy = 0 in (2.69), ¥ = 1, while, due to the parity of (2.61),

Ime ! (w)
by = 0) = lim ————=
0=, (0) e iw
with Im & > 0. It is important that the latter parameter has a clear
physical meaning. Indeed, since

41 .
e(w)=1+ I yint (w)
w

with
2 .
int _ _ _ ﬂ int _ _ _ L
Reo™ (w=0) =09 = p Imo™ (w=0) =0, @077_%2). (2.70)
Then
_ Qz (Wo) _ 7i q>()D3(W0) + E?(WO) _ 7ﬂ+ f(/}Q2 cc
wp wp PoDa(wp) + Eo(wp) wp  (Ywo — <I>0w§) Wy
(2.71)
with 0 0 o
WOZQ2():* 3:1’7——::171,.
Wp Dows Wp

To mention that if we possess numerical data on the loss function (2.61)
or the measure (2.62), we can use the latter of the relations (2.70) to
find the transport relaxation time 7 and the static conductivity.

We want to reconstruct the Nevanlinna function ¢s(z) € Ry such
that (2.71) would hold. Our Shur-like algorithm reduces the search for
the function ¢»(z) to the construction of a contractive function r(z)

r(z) = 2B Z i (2.72)
¢2(2) 4wy,
such that .
v=r(z=wy) = 1= lv] < 1. (2.73)

Y+
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By virtue of (2.59),

] 1
u(z) + (2.74)
u(z) + vt
with
“rh d
« + sz S
= — In|s — - 1), (2.
u(z) = exp — P n|s wo|52+1 , a€(0,1), (2.75)
wo—1
which vanishes at z = wg 6. Thus,
1 v+ 1 141
q2(2) = iw +riz) _ iw (E *+Dulz) +v7 + (2.76)

TP —r(2) P@—-Duz)+ov1-1
and when wgo = 0, u (0) = 0, while
@(0) =irQ? . (2.77)

The corresponding model expression for the internal conductivity,

g s
int le z+ 7’TQ

= 2.78
" (2) dr 22— P2 (1 —iz7) (2.78)
automatically satisfies the sum rules (2.63), (2.64) and (2.65) and in-
terpolates between the static conductivity oy = w%7’/47r and the as-
ymptotic expansion
% iw2?

o
Az Amwzd

it (2 — 00) = +---, Imz>0. (2.79)

We can obtain a rational model for the Nevanlinna parameter func-
tion if we put, e.g., u (z) = z/ (z + is) with some positive parameter s.
Then

_ o 2F10
¢ (2) = ih Sl (2.80)
where s
5z§(1+h).

Alternatively, a non-rational model for the function ¢, (z) follows
from (2.76), (2.73), and (2.71).

Exercise 51 Obtain the asymptotic expansion (2.79).

t+1
6Notice that Im <i / Iff‘; In|s —t| d‘*]) T —s0.
21 2|t

s
t—1



Part 11

Solution of physical problems
by the method of moments
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Here we will study the dynamic properties of dense one - and two-
component plasmas in the context of the truncated Hamburger problem
(see Sections 4 and 5), and provide an example of application of the
method of moments with local constraints, Section 4. We start with
the
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Chapter 3

Calculation of power moments
on the basis of the Kubo lin-
ear theory

Introduction and the zero moment

In Chapter 2 we have seen that the method of moments expresses the
dynamic (i.e., frequency-dependent) characteristics of the system in
terms of the static (frequency-independent) ones. The physical charac-
teristics of the system interfere, within the method of moments, ba-
sically through the sum rules. If we presume the existence of the
Coulomb system inverse (longitudinal) dielectric function, ¢! (k,w)
(IDF), the sum rules are effectively the power frequency moments of
the (positive) loss function £ (k,w) = —Im e (k,w) /w:

C, (k) = l/ WL (kyw)dw, v =0,2,4. 3.1)

T e}

Notice that the odd order moments vanish due to the symmetry of the
loss function. Let us also introduce the characteristic frequencies
W)= =2 g = B,
Cy (k) Cy
The procedure we will describe here is applicable to the
calculation of higher order convergent moments as well.

(3.2)

45
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Since the IDF is a genuine response function [11] and thus satis-
fies, by virtue of the causality principle, the Kramers-Kronig relations
(2.4), some general properties of the static dielectric function e (k, 0)
can be obtained, Besides, we know that the moments (3.1) determine
the asymptotic expansion of the IDF [3], see Section 2. Indeed, due to
the the Kramers-Kronig relations (see also (5.24)),

e}

1 Ime! (k
e’l(k7z):1+f/m€7(’w)dw,lmz>0, (3.3)
™ w

—o0

with the limiting value at Im z = 0 understood as

e}

1 Ime! (k,w'
1+71im/wdw':
T 1l0 W' —w —in

—oo

et (k,w)

fes)

1 Ime* (ko'
14+ —PV. / de, +ilme™ (k,w)(3.4)
m W —w

—o0

Particularly, since the imaginary part is an odd function of frequency
and thus vanishes at w = 0,

1 T Tme (k,
Lk 0) =1+ 1PV, /de,
™ . w

We assume here that the static dielectric function € (k, 0) exists. We will
see that the integrand in this principal value integral has a removable
singularity, which means that it converges as a usual Riemann integral.
The latter is actually the zero power moment of the loss function:

Co (k) = —/jo de — 11— (k,0). (3.5)

oo

The relation of the zero moment to the system static structure factor
charge-charge is discussed below in Sect. 5.

The power moments C, and C, are found in Appendix IV; par-
ticularly, it matters that even if the interparticle interaction might be
different from the bare Coulomb one and is described by an effective
potential, the second power moment of the loss function, due to the
f-sum rule [11], remains unchanged and equal to the square of the
dust plasma frequency (for simplicity we deal here with a hydrogen-
like completely ionized plasma in thermal equilibrium with the species
a=0,1,...s whose charge numbers and masses are Z, and m,):

oo S 2.2
Cy = l/ wzﬁ(k,w)dwzw§:2w7

™
bl a=0

(3.6)

Mg
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Like in (2.40) one can study the asymptotic expansion of the IDF
along any ray in the upper half-plane:

el(k,z)—el(k,o)—k?lr]ow
Y (G OO R
— (k0 Co(k)+ 2 C“Zﬂk) =
:1+w’zd wzdtf(k)+~

(3.7)
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The loss function second and fourth
power moments

Definitions
For the higher order power frequency moments (3.1),
1

C,,(k):%/ WL (k,w)dw, v=2/4,

directly, from the Kubo linear reaction theory formula applied to our
model system, we get:

L (k,w) = 2 /.wCD(k £) et
N ke | e e
. o [ D (k1)
WL (k,w) = el /_oo = Ldt. (3.8)

To obtain expression (3.8) we have used the limiting property

lim ® (k,t) =0

t—+oo

of the correlation function
@ (k,t) = ([nk (1), n—x (0)]),

and have integrated by part v — 1 times.

These formulas are valid if @ (k,t) is differentiable with respect to
time and has integrable time derivatives. Then, by virtue of the time
reversibility, we obtain:

N 4w 0 (k,0)  4mi [ [e-1
C, (k) = R o e <{ P (0), py (0)} > . (3.9)

The operator derivatives in (3.9) are determined by the formulas:
. 1 - . 17. N
pe (0 == [ () ] (0 = 5[5 0). Fo) ..o, (310)
where Hj is the system Hamiltonian in the absence of the external field.

Since for arbitrary Heisenberg operators A and B taken at simultaneous
time instants, we have that

(o) ==(la2])



Calculation of power moments on the basis of the Kubo linear theory 49

even order moments

Cu k) = 21 < [”JB ©), A% (oﬂ > Ci=12 (31

To calculate the moments explicitly, use now the representation of the
charge density operator p, (0) = p, in terms of the operators of cre-
ation and annihilation of the species a particles possessing a quantal

momentum Aiq and being in a spin state 7, a;

o> Qg7 Tespectively,

e
Px = Ni% Z ZaOg_y +0qr (3.12)

a,q,7

(V is the system volume) and the explicit representation of the external-
field-free Hamiltonian,

~ ~ ~ 2,2 U
Hy=K+W = Z Z?qalfaw + %Z Z Was (q) (nén’iq - 6abna) .
a,q,7 @ ab q

(3.13)
Here m, is the species a mass; the prime at the sum over q means that
the value q = 0 must be omitted. In what follows we omit the spin
indices, they cannot influence the results since the interaction (3.14) we
consider is spin-independent; these results will be mainly independent
of the statistics type.

We consider a quite general case with

4me?

Wy (q) = 740,;, (@5 Cab (@) = Coa (@) (3.14)

being the effective interaction potential for the particles of species a
and b (in a purely Coulomb system (,, = Z,%), while

1 N N,
ne =——= ay_qax 5 (ng) = —= =n,vVV, 3.15
4= L ) = =V G

where NV, is the number of charged particles of the species a in the vol-
ume V' occupied by the system we consider, N, = n,V. The averaging
in (3.9) and further is carried out over the canonical ensemble defined
by the Hamiltonian (3.13).

The f-sum rule

Thus with p, = ;)112 and py, = Sﬂ, we obtain:

o () = 3 ([ pa)

(3.16)
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Since the f-sum rule is independent of the direct interaction contribu-
tion to the Hamiltonian, we observe that {pk, W} = 0 and that the
density operator time derivative can be calculated simply as

= i [kak} h\fz Zusy (P q k%> bpb }
with

R p*  np?
2m,  2mg

€a (P) =

We presume that the charged particles are all fermions and we know
that for fermions the anticommutators

{a7. 07} = albf +bfal =0, (3.17)
{as; br} = ashy + bras =0, (318)

but
{a:, br} =alby + beal = Supdsr (3.19)

and
{b:, a,r} =blay + ab = Supdsr - (3.20)

Exercise 52 Prove that
[0 au, b 0] = Gap (Surad by — Suebf aw) , (3.21)
where dq4 and dps are, of course, the Kronecker symbols.
Exercise 53 Prove that
[a;kaq, (n;nlip — 6Cbna)] =

6115

Vi (mpagxaa—p = ";”’q—k+p”’q)+ﬁ (g watpn’p = Gq x plan’p)
(3.22)

Now, we are able to simplify the first derivative:

f)k:m[plvﬁ] h\ﬁzng ab[qkaqbb]

a,b,q,p
= lﬁ\ﬁ a%:pZ wEa ( pqaqtkap — 6q,k7pa;aq) =
= 1h\ﬁ Z Za Ea q kg — €q (q — k) Qg kaq) =

a,q, P

= Y (a1 s =

eh Zy k?
= v Zm— (q . k—5> at_yaq- (3.23)
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From (3.12) and (3.23) we have:

. eh Za )
[pk’ p’k} VvV GZ‘; e k—k /2) —k%as \F Z bep+k
e2n A/
- = - " (a-k - K2/2) [ad g, b cbp] =
a,b,q,p a

25~ Zo7
== Z . (q k- k2/2) dab (‘5p+k,qaqtkap - 5q—k<,pa;;+kaq) =

WV ap M
- i%ﬁ Z;fb( k= k?/2) (a)_yaq-x — afaq) =
- ivh u(((q+k) k—k2/2) - (a-k — k*/2)) ataq =
= kQZ aq0q ;
wherefrom

dmi ¢, 47 h Zg
Cy(k) = k2 <[/)k,‘/)—kJ> 12 <Vk Z ma‘l;aq> =
a,q

2,
— 47r€2§ @
— M
Here, as before,

1 N,
Ng = V Z <aq+aq> = 7

q
is the species ¢ number density. Thus,
1 [ Z2n,
Co (k) =~ /m WL (k,w) dw = w? := dre? Z T (3.24)

where w,, is the system plasma frequency.

The 4'" moment
Similarly, see Appendix IV for details,

-l ()
—eh?
- W; (
+4”7§Z’Z< k) o

abp e

e ] o 7] -

q ka’q

n 7prk+p .
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Remember that the double prime means that the there is only one
a # b contribution and that the value q = 0 is omitted.
Then, according to (3.11),

Cy (k) = / WL (k,w)dw = Cf (k) + C¥ (k) =
Z2n,ES

Z%n,
_ 21274 alla 2,2
= mwe h'k E ﬁ+87rek E 2

a a a

1672¢? Za a-X’(Z,, . Za s b w
+ 1% Z ECab((]) k2q? (m<n—k—an+q>fﬁ<”—qnq>)'
a,b,q#0
(3.25)

The average partial kinetic energy

o Mo, oy 3 Fyp(n,)
Bp =2 (vi) = 28 pi?

OO :UU
F,(n) = —d
=]

is the order-v Fermi integral, and 7, = Su, the dimensionless chemi-
cal potential of the subsystem a, which should be determined by the
normalization condition

where

2
F1/2(77a,) = gD2/2~
a2 h2k2 B2 (3r2n,)"*
Dy = BEp, — felbe _ ghkke _ gh (Brna)
2 2myg, 2my,
being the degeneracy parameter. Notice that in a classical case Fj5(n —
—00) ~ D32,

We omit in the latter sum (3.25) the g = 0 contribution, but the
contribution which corresponds to q = —k is present. This "singular"

contribution equals

ZoZi
cyY (k) = 16772642({1,, (k) - Trz)bnanb.

a
a,b

The rest, which is the correlation contribution, equals

cY (k) =
’ dq q- k 2 Z, 7 Zf
= 167" /W(ab (9) Vnanb% (mami,sab (k+aq) - @Sab (@)=

a,b,q

(3.26)
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dq Z
m2

@ (S0 0) = S0n () +

= 167°€¢

dq qa-k)? [ Z.Z z
+167r2e42/ SCab \/narLb( quQ) Y S (k+q) — 2 Dab (@)) =

atb MMy a
= O’ (k) + Cp (k)
where
o dq Z
Ci (k) = 16mc o (0 Fa (),
q-k
Fu(a) %(SM (+ @)~ S0 (0).
and

) = 167 Y [ 8 @) VL @),

a#b

Here Sup (¢) is the partial static structure factor which can be cal-
culated by different numerical methods like the method of Ornstein -
Zernike, the method of molecular dynamics, Monte - Carlo, etc. [22],
or evaluated analytically using the method of temperature Green func-
tions [23, 24].

Now we carry out integration over the angular variables (in a homo-
geneous system the result cannot depend on the direction of the vector
k) and thus simplify the same and different species contribution to the
correlation part of the fourth moment. Let

7.7 V4
“ S (k) = 24 S (q)) .

a

MMy

q+k d
Za = a 2—k2— 2 2/71).
(@) / ¢ (@ »°

Then

2
st( )_16W2642Zna/ quCaa )(kzkz) (Saa(k+q)_1)_

16772642 o / dqgam q k) (Saa () —1) =

((p— k) k)*
k2 (p — k)?

Z? rL,z dp

= 167°¢

aa - k|) (Saa (p) - 1) -
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Z2n, -k)?
tore 2 [ st S (Sal) 1) =

m2

Z%n,
2
m?

= 167°¢

2:)3@, (@) (Sea () — 1),

(a-k)°

((q_ k) 'k)2 _ C (q) .
aa k2q2 ’

Ga (q) = Caa (‘q - kD k2 ‘q _ k‘2

Hence,

. ' Ga(g,5)ds
C’K —16772€4Z m2 / 71)(](]/ W

1

with

e 1.2)2
Ga (Q= 5) = Caa (\/ q2 + k% — 2(]](39) M - Caa (Q) 827

k2 (¢* + k2 — 2qks)
or

o () = ot 3 Zete / 0= 1) (2 (o) - S5 iy

m2

Notice that in the case of the pure Coulomb interaction,

oi )=t 0 5 / 10k dg

with )
10 (¢® — k?) gtk
k)= —— 2— ——F—1In
Flak) =5 -2 e s
so that the standard expression for the same-species correlation correc-
tion [6] is recovered.

Similarly,
, d
oVl (k) = 167r2642/ qggab (@) Vi Fuy () ,
a#b
— (q ) k) ZaZb Zz
Fu(q) = k2q2 My Sap (k +q) m2 w (9) |
so that

8 Z,
Cit(k Z \/nam/q Sas (g (nb wla) =3 -=

a

Cap (q)> dg,

and if we have species with sugmﬁcantly different charge-to-mass ratios,
the different-species correction equal to wyH = whhe; (0) /3, hei (0) =
gei (0) — 1, ge; (r) being the electron-ion radial distribution function [6],
is also recovered.
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Higher order moments

In the same way, higher order moments can be calculated, e.g. in model
Coulomb systems with the effective potential (3.14 ) different from the
bare Coulomb one. But in purely Coulomb systems containing species
of different masses, the sixth and higher-order moments diverge [21].
This takes place because the corresponding explicit expressions contain
uncompensated contributions like

Z <ngn’iq> = 0.

q

The divergence of higher-order moments Cy; (k) with [ > 2 is related
to the slow decay of the loss function as |w| — co. If we presume that
for |w| — oo

Lk, |w| — 00) = A(K) /|w]",

then due to the divergence of the sixth moment and the convergence
of the fourth one (3.25), we conclude that 5 <y < 7.

In a completely ionized plasma for w > (/)" the microscopic acts
of the electromagnetic field energy absorption become the processes
inverse with respect to the bremsstrahlung during pair collisions of
charged particles. As it was shown by L. Ginzburg ([25], and also, e.g.,
[27]) this circumstance permits to use the detailed equilibrium principle
to express the imaginary part of the longitudinal dielectric function,
Ime (k,w), of a completely ionized plasma, which is directly related to
the plasma external dynamic conductivity o (k,w) real part, in terms
of the bremsstrahlung cross-section. A calculation similar to that of
Ginzburg, but using the well-known expression for the bremsstrahlung
differential cross-section for high values of energy transfer and w >
(Bh)~" [26], lead to the following asymptotic form of Ime (k,w) in a
completely ionized (for simplicity,hydrogen-like) plasma [21]:

A Ao ( wr ) , (3.27)

Ime (k,w > (/371)71) > —

where
4 25/21 VAL 3
0= TneniW7 wr = m7

n; = Zn.. The main term of (3.27) was obtained by Perel’ and Eliash-
berg [28]. One of our aims is to specify (3.27) taking into account the
sum rules (3.1). Notice that even the main term of the plasma dielec-
tric function asymptotic behavior (3.27) is still discussed in literature,
producing sometimes even contradictory results [29].
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Chapter 4

One-component plasmas

Introduction

The classical one-component plasma (OCP) might be considered a test-
tube for the modelling of strongly interacting Coulomb systems [30],
see also [31] and [32] for more recent reviews. OCP is often employed as
a simplified version of real physical systems ranging from electrolytes
and charged-stabilized colloids [33], laser-cooled ions in cryogenic traps
[34] to dense astrophysical matter in white dwarfs and neutron stars
[35]. Another modern and highly interesting pattern of the OCP is
dusty plasmas with the pure Coulomb interparticle interaction poten-
tial substituted by the Yukawa effective potential [36].

The classical OCP is defined as a system of charged particles (ions)
immersed in a uniform background of opposite charge. It is character-
ized by a unique dimensionless coupling parameter

L =3(Ze)? /a. (4.1)

Here 37! stands for the temperature in energy units, Ze designates the
ion charge, and a = (3/47m)1/3 is the Wigner-Seitz radius, n being the
number density of charged particles. For I' > 1 the interaction effects
determine the physical properties of the OCP.

57
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The investigation of OCPs using the
classical method of moments

The OCP static properties like the pair correlation function, g (r), the
static structure factor (SSF), S (k), and the static local-field correc-
tion, G (k), can be found by computer simulations (see [31] and [32]).
Moreover, molecular dynamics (MD) as well as other simulations can
provide valuable information on the dynamic structure factor (DSF),
S (k,w) and other dynamic characteristics.

In this Section, the OCP dynamic properties are studied by the
moment approach based on sum rules and other exact relations, see [37],
[38] and references therein and comparison is made with the simulation
data of Hansen, McDonald, and Pollock [39] and of Wierling, Pschiwul
and Zwicknagel [32]. The results of alternative theoretical methods,
the quasi-localized charge approximation (QLCA) [40, 41], [31], the
visco-elastic approximation (VEA) [42, ?], and the recurrence relation
(RR) technique, [43, 32], are considered as well.

Precisely, the aim of this Section is threefold. First, we use the
method of moments to study the OCP dispersion plasmon frequency,
wr, (k), the corresponding decay decrement, 0, (k), and the dynamic
local-field correction (DLFC), G (k,w). Second, we compare our results
on the dynamic structure factor to the MD simulation data of [39] and
pay special attention to onset of the so called negative dispersion of
the plasmon mode in strongly coupled OCPs by determining the range
of the coupling parameter I" within which the derivative dwy, (k) /dk
changes its sign. And third, we crosscheck our results against the theo-
retical methods mentioned above. In particular, we note that the plas-
mon decay rate cannot be studied within the QLCA approach due to
its intrinsic nature and, to the best of our knowledge, its k-dependence
was not referred to in the literature as yet. We also show how the VEA
and RR results for the DLFC and the DSF can be retrieved and partly
extended within the sum rule or moment approach.

Mathematical background

Consider five convergent sum rules which are frequency power moments
of the system DSF,

1 0
S, (k) = E/ w’S (k,w)dw, v=0,1,2,3,4. (4.2)

o)

All odd-order moments vanish since, in a purely classical system, the
DSF is an even function of frequency.
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The method of moments is, generally speaking, capable of han-
dling any number of convergent sum rules. In two-component plasmas,
though, all higher order frequency moments diverge which can be at-
tributed to and understood [44] from the exact asymptotic form of the
imaginary part of the dielectric function [28]. There is no such clear the-
oretical result for the model system to be dealt with here and, thus, it
is simply impossible to presume that the three first even order moments
(4.2) are the only convergent even order frequency sum rules. However,
the ambiguity of higher-order frequency moments [42], related to our
scarce knowledge of the triplet and, presumably, higher-order correla-
tion functions, remains insuperable nowadays and can only impede our
understanding of the physical processes to be described below.

As we know [3], the analytic prolongation of the positive function
of frequency, DSF, onto the upper half-plane Im z > 0, constructed by
means of the Cauchy integral formula,

1 (> S(k,w)

n

S(k,z) = dw, (4.3)

o W—Z

admits the asymptotic expansion

S(h2 = 00) = So(k) S(k) Sa(k) (g) Imz > 0. (4.4)

z 23 25 25

The zero-order moment is, obviously, the SSF, Sy (k) = S (k), while
the second moment is the f-sum rule,

520 =30 = (1) =2 (%) (45)
and
Sy (k) = wiwg (k) {1 + %2 + U(k)} = wlwy (q) {1 + q; + U(q)} .
(4.6)

Here ¢ = ka, w, = \/4mne?/m refers to the plasma frequency and
kp = \/4mne2Z2[ is the Debye wavelength, m being the ion mass, and

o 1 r no_ 21 1.2 /7i7 _ . 2
U =g [ 180) = U F sk Rk = o= [ 15G) =111 (i)
0 0
where
5 p P p g q+p ,
. . - - = — | In|—= R = s = Ka.
Floa) =4 2q2+(4q3 a0 o) 1 ka, p="FKa

This last contribution to the fourth moment is due to the ion-ion
interactions in the OCP, while the second term represents the Vlasov
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correction to the ideal gas dispersion relation of the plasmon mode,
wr = Wy.
As in [45] the following limits hold

Utk —o00) =2 (9(0) = 1) = —3, (47)

Uk —0)~ 135%5 E:? - %%) (4.8)

where, by virtue of Parseval’s theorem,

[SCAR ]

iy = T /¢ S ® -1

= /(;5 r) —1]dr,

is the average interaction energy between two ions with

¢ (k) =4m (Ze)* [k, 6 (r) = (Ze)* /r .
As we know, the Nevanlinna formula of the classical theory of mo-
ments expresses the response function [2, 37]

1 E5(25k) + Q2 (k, 2) Ep (25 k)
"Dy (z;k) + Qy (k, 2) Dy (2; k)

(

S(k,z) = (4.9)

in terms of a Nevanlinna class function Qs = Q2(k, z) € Ro, which we
model here as

Qk,z) = - (Lk) + 22/000% (4.10)

with 7 (k) > 0 and a non-decreasing bounded function u (¢) such that

* du (t)
1re =%
—00
Furthermore, the polynomials D; (2;k), j = 0,1,2,3, orthogonal

with respect to the distribution density S (k,w) and their conjugate
counterparts E; (z; k), j = 0,1, 2,3 are once more determined as

(22 k) /D (Zk)S(k,w)dw, j=0,1,2,3:

w—z

Do(z;k) =1, Di(z;k) =2 Dy(z;k) =2 —w?(k),
D3 (2 k) = 2% — 203 (k), Eo(z;k)=0, Ei(z;k)=So(k), (411)
By (2;k) = So (k) 2z, Es(z;k) = So (k) [2° + wi (k) — w3 (k)] .
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The frequencies w; (k) and ws(k) in Eq. (4.11) are defined by the re-
spective ratios of the moments S, (k) [37], and, thus, are determined
by the system static characteristics:

wi =wi (k) = S2 (k) /So (k), w)=wj(k)=Ss(k)/S2 (k). (412)
The DSF is therefore found from (4.3) as

S (k,w) = Eliﬁ]lImS(law+2'77)

mT™n
n S (k) 2 (= ) Im Qs (I, )
7w (2 — ) + Re Qs (k) (? — @) + [Im Qs (ks )]” (" — 2)”

(4.13)

In the present work we approzimate the Nevanlinna interpolation func-
tion Q4 (¢, 2) by its static value it~* (k) = Q3 (k, 0), where the "relax-
ation time" is selected to reproduce an exact static value of the dynamic
structure factor in (4.13):

7S (k,0) w? (k)
T ==25m DA R

(4.14)

Alternatives in determination of the relaxation time were discussed in
[46] (Ch. 9). Note that
2 k) — 2 k

Ak = 2B e (4.15)

w

P
due to the Cauchy-Schwarz inequality, see Appendix IV. Once more, it
is important that the DSF (4.13), since Qs (¢, z) € Ro, obeys the cor-
rect asymptotic expansion (4.4) and, hence, satisfies the sum rules (4.2)
by construction, regardless of the form of the Nevanlinna parameter
function Q2(k, z). On the other hand, this means that the asymptotic
expansion (4.4) holds for any adequate choice of the function Q2 (%, 2).

Within the approximation described above we adopt,
S (k,w) wi

S(k0) [ — 2R+ [ — w2 (k) wr (B (4.16)

The static characteristics, i.e., S (k,0), S (k) together with the mo-
ments Sy (k) , Sy (k), which, in turn, determine the characteristic fre-
quencies wy (k) , wy (k), and 771 (k), are to be calculated independently,
e.g., in the hyper-netted chain (HNC) approximation or to be taken
directly from the MD simulation data on the DSF. Straightforward
comparison of the data obtained from (4.16) with the simulation data
is transferred to Sect. 4. Note that the DSF (4.16) contains an exact
static value, S (k,0).
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In a classical system and due to the fluctuation-dissipation theorem
(FDT),
L(k,w)

3¢ (k)
so that the moments (4.2) are proportional, for a given value of the
wave number, to the corresponding moments of the loss function

S (k,w) = (4.17)

-1 ,
L(kw) = ,M7 (4.18)
w
in the following way:
k‘2
S, (k) =-5C,(k), v=0,24: (4.19)
)
1 oo
C, (k) = 7/ WL (k,w)dw, v=0,24. (4.20)
TJ -

where €1 (k, w) stands for the plasma inverse dielectric function (IDF),
a genuine response (Nevanlinna) function of frequency.

Since we have constructed the DSF on the basis of the Nevanlinna
formula, we, thus, obtain for the IDF [37]:

W?)(Z +Q2)
2(22 — wd) + Qa(22 — w?)’

Hk,2) =1+ z=w+i0%, (4.21)
where, the Nevanlinna parameter function Q2 = Q2 (k,z) coincides
with that of (4.9) due to relation (4.17).

The aim of the following Section is to compare expression (4.16) to
those stemming from the visco-elastic approximation [42, 24] and the
continued-fraction approach.

Alternative theoretical approaches
VEA

It is well known that the VEA is based on the random-phase approx-
imation (RPA) for the polarization operator and interpolates between
the dynamic local-field correction (DLFC) and the RPA itself [24].
Consider, first, the RPA polarization operator (a simple loop)

I (k,w) = Bn(1+CZ Q). C*Eﬁ+ o

== / xp(=t) (4.22)

Here
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is the plasma dispersion function [47]. Note that the following expan-
sions hold:

Z@Hm:ime%ﬂf%(L%&+%&7m>,@n
. _ 1 3
Z (¢ —o00) ~i ﬂexp(—CQ)—(1<1+@+4f<4+-~-). (4.24)

When the coupling effects come to play, the DLFC amends the RPA
form of the IDF as follows:

_ ¢ (k) I (k,w)
Ykw)=1— ’ . 4.25
€ (hw) 1— 6 (k) (G (k,w) — 1)1 (k, w) (4.25)
A direct comparison of Egs. (4.21) and (4.25) leads to the following

expression for the DLFC:

A (k)

G (k,w) = A(kw)+ o
1+ a6

(4.26)
which, in the static approximation Q (k,w) = i7~! (k) we employ, sim-
plifies to
Ak B (k —iTwA (k,
Ghw) = A(hw)+ 2K Blhbw) zimwd(kbw) o)

1—iTw 1—itw

Right above the following notations are utilized:

2 2
1 w* — ws

O

p

Ak,w) =1+

B(k,w) = A(k,w)+A k) .

Due to the Kramers-Kronig relation,

B 1 [ w'dw’ .
etkw)=1-— ;Kmﬁ(k,w') o z=w+i0",
k2 k‘2
S (k) =S (k)=-5Co(k) = 5 [1 — ek, 0)] , (4.28)
k3 k3

so that the correct value of the static local-field correction (SLFC),
B (k,0) = G(k,0) := G (k) is automatically obtained from (4.26).
Moreover, by virtue of (4.28), the SLFC is directly related to the SSF:

Gy =1+ {1,;}_ (4.29)

Another static characteristic we employed was the static value of
the DSF, S (k, 0) . Since the asymptotic behavior of the DLFC as w — 0
is difficult to predict for strongly coupled systems, we had to consider
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S (k,0) to be an input parameter determined on the basis of the sim-
ulation data together with the SSF S (k).

The influence of the SLFC on the static properties of dense and
cold electronic liquids (the interaction potential, the static conductivity,
etc.) within the STLS model [24] has recently been studied in detail in
[48].

It follows from (4.24) that A (k,w — o0) ~ —U (k) asymptotically.
Thus, we recover the VEA, which is an interpolation between the as-
ymptotic values of the DLFC at w = 0 and w — oo:

GVEA () ) = B (k,0) —itwA (k, 00) _ G (k) + itwU (k) (4.30)

1—Tw 1—Tw

But expression (4.27) might be considered as an extension of the VEA
equivalent to representation (4.16) and

wi(wr +1)

T(w? — w3) + i(w? — w?)’

e hw) =1+ - (4.31)

stemming from (4.21) with Q2 = i7~!. Observe also that Eq. (4.30)
coincides with Eq. (2.159) of [24] if we identify the Nevanlinna static
parameter 7 (k) as the generalized visco-elastic relaxation time 7, (k)
and observe that, by Eq. (2.146) of [24], U (k) = —I (k).

As further shown in Sect. 4, numerical results obtained from Eqgs.
(4.16) and (4.31) coincide, within the computational error, with those
found from Egs. (4.25), (4.26), and (4.27).

It is relevant to note that the model expression for the DSF (4.16)
coincides formally with that obtained within the same VEA in [46].
Such a coincidence takes place because the adjustable parameters of
the general hydrodynamics approach [46] were chosen to satisfy the
same number of convergent frequency moments of the DSF. The differ-
ence between these two expressions lies in that the OCP hydrodynamic
characteristics, which, of course, describe the dissipation processes in
the system, acquire, within the moment approach, some specific defin-
itions, see below, (4.40, 4.41).

Generally speaking, the hydrodynamic characteristics like the kine-
matic viscosity, the adiabatic sound velocity, and the thermal conduc-
tivity, for which there exist generic expressions in terms of the specific
limiting values of the correlation functions of the hydrodynamic current
longitudinal component, can presumably be determined by numerical
simulations only.

The choice of the Nevanlinna parameter function, a non-phenomenological
component of the moment approach, might seem to be as arbitrary as
that of the memory function form and its parameters, see, e.g., [46].
Nevertheless, here we manage to relate all parameters involved in (4.16)
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to measurable quantities, like the zero-frequency value of the DSF. Al-
though, for more realistic systems like two-component plasmas [44], the
Nevanlinna parameter function can further be specified by taking into
account some details of the energy dissipation processes [28].

A remark on the continued-fraction approach

As it is mentioned above, we compare our theoretical results to two
data sets, [39] and [32]. The theoretical approach employed in [32] was
the method of recurrence relations [43], closely related to the method
of continued fractions, which, in turn, is equivalent to the classical
moment method we apply. Indeed, it is easy to see that expression
(4.21) for the response function

Wiz +Q)
2(22 = w) + Q2% — w})’

Xk, 2) =€t (k,2) —1= z=w+1i0",
(4.32)
is equivalent to the truncated continuous-fraction form [32] (the so-

called J-fraction, for a recent review, see [49)):

x(k2) i =etk,2) —1=x(k0) |1 - —T—5— (4.33)

Z———
2_ 2
wi-—wi

—

with the same Nevanlinna parameter function Q2 = Q2 (k, 2), x (k,0) =
€ 1(k,0) — 1. Of course, representation (4.33) satisfies the sum rules
(4.20) independently of the choice of the function Q2 = Q2 (k, z). Nev-
ertheless, the form of the DLFC employed in [32], is equivalent to the
VEA expression (4.30) but without any limitation to small wavelengths.

Plasma modes

Approximate solution to the dispersion relation If, in a com-
plete accord with the Landau damping, the decay rate of the plasma
mode is assumed exponentially small, then, the poles of (4.31) lead to
the existence of two modes in the system, i.e. the diffusion, unshifted,
mode at w,s = 0 and the plasmon modes at w; = fws (k). From the
mathematical point of view, such an assumption implies the incorpo-
ration of the so-called canonical solution to the moment problem [50]
for the DSF:

s =t { (35— 55) 5+ g [+ ) +3 (o —W%&)
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which generalizes the Feynman approximation for the DSF used in [46]
(Ch.7) and, thus, justifies the VEA.
Eq. (4.34) makes the Landau-Placzek ratio,

2 2
Wy — Wy
2
wi

RL[J (k)) = >0

a measurable quantity. Note that if the plasma isothermal compress-
ibility is introduced as k = n (On/0p),, with p being the pressure, the
compressibility sum rule then states that

k2 Bn
G(kﬂo)_%(lf h) (4.35)
hence, due to (4.8),
Rup(h—0) = 2 (310 87kD (4.36)
—0) ~ — - — . .
e k2 k| 15k

On the other hand, in the classical limit one gets for any frequency,

lim G (k,w)=1-¢(0)=1, (4.37)

k—oo

Further, if the decay decrements are assumed to be finite but small
enough, then, the dispersion relation

wr(w? —wd) +i(W —w?) =0 (4.39)

can approximately be solved to give simple estimates for the decrements
of the two collective modes, respectively, as

_ wi (k)
dus (k) = 00k (4.40)
wiA
5y (k) = 7%. (4.41)

Both decrements determined above are obviously negative.

Finally, by construction, the sum of the intensities of all three peaks
equals S (k), i.e., satisfies the elastic sum rule.

One serious drawback of the above approximate solution to the dis-
persion equation is that it is unable to predict the appearance of the
"negative" dispersion, i.e. physical conditions under which the deriv-
ative dwy, (k) /dk first vanishes and, then, turns negative. To specify
these conditions it is necessary to study the dispersion relation in a
more strict manner.
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Exact solution of the dispersion relation Dispersion relation
(4.39) can be solved exactly using the Cardano formulas. Let w =
2mi

exp (T) =(-1+ %z\/g) and introduce the following parameters:

w21\ o1 w? 2 \?
o (2 Ly (e e 2\
¢ (3 972) 4T2< 3 Tt e )

Then, the exact solutions of the dispersion relation, i.e., the solution
with the zero real part and two solutions with symmetric real parts,
are:

Was = —w?X —wY — L, (4.42)
3T
= —wX —uw?Y — - 44
wr, w. w 3 (4.43)
i
==X -Y - —. 4.44
L 3T ( )
The approximate solutions are naturally recovered
iw? (k)
us k = 717 44
e = =gy (4)
iw2A (k)
k) = wa (k ? 4.46
wi (k) = ws (k) 27 (k) w3 (k) (4.46)
k % inA (k) 47
b= ® 5 Gy m an

when, formally, 7 (k) — oc.

It is expected that the frequencies wy, (k) (and w’, (k)) correspond
to the positions of the shifted peaks of the DSF [30].

Our results for the OCP collective modes are invalid in the long-
wavelength limit only like those, for instance, of the VEA hydrody-
namic approach [46]. Note that in the QLCA the direct thermal effects
are dropped out, i.e., the corresponding dispersion relation for the plas-
mon mode lacks the classical Vlasov contribution [40], [41] (though in
[45] this contribution was included as a result of the moment analysis
without providing any detail or obtaining quantitative agreement with
the simulation data) and the decrements of the collective modes are
out of the scope of that theory.
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Numerical results and conclusions

We have carried out a numerical analysis of the dispersion relation
(4.43) based on the HNC results for the static characteristics and have
confirmed that the derivative dwy, (k) /dk vanishes at about I' = 9 so
that the negative dispersion takes place for higher values of the coupling
parameter I'.

We have also carried out an extensive comparison of our theoretical
results with the simulation data of [39] and [32]. To do so we have used
the graphic data presented in [39] and the numerical data of [32].

First of all we compare the theoretically predicted and simulated
forms of the DSF (Figs. 2 - 8).

S(k,w)/S(k,0)

w/wp

Fig. 2. The OCP normalized
dynamic structure factor for
I'=0.993 and ¢ = 0.6187 in
comparison with the simulation
data of [39] (boxes). The solid line
is constructed according to (4.16)
with the values of the moments
taken from [39] and/or calculated
by the HNC method; the
dot-dashed line is also constructed
according to (4.16) but with the
values of the moments obtained by
direct integration of the graphic
data of [39].
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S(k,w)/S(k,0)

w/wp

Fig. 3. Same as in Fig. 2 but for
I'=9.7 and ¢ = 1.3835.

S(k,w)/s(k,0)

w/Wp

Fig. 4. Same as in Fig. 2 but for
I' =110.4 and ¢ = 3.0937.

W/ Wy

Fig. 5. Same as in Fig. 2 but for
I' =152.4 and ¢ = 6.1837.
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S(k,w)/s(k,0)

w/wp

Fig. 6. The OCP normalized
dynamic structure factor for
I'=2.0 and ¢ = 0.49109 in
comparison with the simulation
data of [32] (boxes). The solid
line is constructed according to
(4.16) with the values of the
moments taken from [32] and/or
calculated by the HNC method;
the dot-dashed line is also
constructed according to (4.16)
but with the values of the
moments obtained by direct
integration of the graphic data of
(32].

S(k,w) /s (k,0)

w/wp

Fig. 7. Same as in Fig. 6 but for
I'=4.0 and ¢ = 0.34725.
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Fig. 8. Same as in Fig. 6 but for
' =8.0 and ¢ = 1.389.

The simulation data have been processed in two different ways to
calculate the static parameters (the frequencies w_? (k), j=1,2, etc.).
We have used either the static MD data presented in the above men-
tioned papers, or the data on the DSF itself to calculate the moments
directly. In the latter case, care, of course, has been taken of the "tails"
of the DSF, corresponding to high frequencies: the asymptotic behav-
ior of the DSF according to (4.4) has been used, in a consistent way,
to evaluate the high-frequency contributions to the moments.

In all figures we display the dimensionless DSF normalized to its
zero-frequency value, S (k,w) /S (k,0) vs. the dimensionless frequency
w/w, at fixed values of the dimensionless wave numbers ¢ = ka and
at different values of the coupling parameter I', corresponding to the
OCP liquid state. It is seen that a good quantitative agreement with
the simulation data is gained, especially, for the positions of the un-
shifted peaks of the DSF, i.e., for the plasmon mode dispersion when
the moments are calculated by direct integration of the DSF data.

In a few cases we have had to adjust the static values of the DSF
within the numerical precision. In this context it is necessary to admit
that the simulation data of [39], which are already 34 years old, proved
to be somewhat inconsistent when we use the graphic data of [39] on
the DSF to estimate the values of the power moments {5, (k)}é They
turn out quite different from the corresponding values provided in the
paper.

Additionally, we present results for the dispersion relation of the
Langmuir mode and the corresponding decay rates obtained by the
exact and approximate solutions of the dispersion equation € (k,w) = 0
(Figs. 9-12).
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Fig. 9. The normalized plasmon frequency Rewy, (¢) /w, for four
different values of I': a) I' = 0.993; b) I' = 9.7; ¢) I' = 110.4; d)
I' = 152.4. Solid lines: VEA (4.48); diamonds: the approximate solu-
tion of the dispersion equation, Rewy, (¢) /wp, = w2 (q) /wy; triangles:
determined from the positions of the reconstructed DSF maxima with
the values of the moments taken from [39]; circles: same as triangles
but with the values of the moments obtained by direct integration of
the graphic data of [39]; squares: the exact solution of the dispersion
equation with the values of the parameters taken from [39]; dashed
squares: determined from the positions of DSF maxima of the graphic
data of [39].
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Fig. 10. The normalized plasmon decay rate Imwy, (¢q) /w, for four
different values of I': a) I' = 0.993; b) ' = 9.7; ¢) I' = 110.4; d)
I' = 152.4. Solid lines: VEA (4.48); triangles: the approximate solution
of the dispersion equation, (51); squares: the exact solution of the
dispersion equation calculated using the data of [39)].
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Fig. 11. Same as in Fig. 9 but using the data of [32] for three
different values of T: a) ' =2; b) ' =4;¢) T =8.
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Fig. 12. Same as in Fig. 10 but using the data of [32], for three
different values of T: a) ' =2; b) ' =4;¢) T =8.

These results on the dispersion are compared to the positions of the
plasmon peaks of the DSF and to the prediction of the VEA estimate
[51]:

wr, (q) s 01 ¢
1+ L (142 +i5,L 44
Wy +2r< ) T (4.48)
60 4D
b= —5 — 5= Wi (0,23\/f) ,

5y = f%m (o.23ﬁ) ,

where

. £ ¢
W) = W () + T3 (6) = 1+ -2 (ﬂ> 7
and Z (x) is defined in (4.22), [47].

Notice that no plasmon mode is observed on Fig. 4 for I' = 152.4
and ¢ = 6.1837. This is confirmed by our exact solution of the disper-
sion relation with the module of the imaginary part being only about
a half of the real part of the solution, see Figs. 8 and 9 d).

Regarding the existence of negative dispersion due to interparticle
correlations, we should note that the comparison of simulations results
obtained in Ref. [39] and Ref. [32] is not conclusive at this point, since
both show quantitatively different trends at large values of I'. But
even in the case of [32], we observe that the correlational energy term
amounts to compensate the Vlasov thermal dispersion contribution at
the highest value of the coupling. Nonetheless, we should outline here
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the good agreement achieved in any case by our theoretical approach,
once the static characteristics have been computed through numerical
simulations. We should also mention that the accuracy of our calcula-
tions for the dispersion in Fig. 11 ¢) might be affected by the fact that
the maximum frequency available in the simulated spectra in [32] only
reaches a value of 2.8 (compared to 6.5 for the other two cases). This
might be applicable specially for the circles line in Fig. 11 c).

Within our approach we can also compute the effects of damping
processes on the collective mode, which is given by the imaginary part
of the zeros of the dispersion equation € (k,w) = 0. Our results show
an increment of the modulus of the imaginary part of those zeros, as
a function of k. This behavior is expected due to the existence of the
well-known Landau damping mechanism, which dominates at those
higher values of the wavevector. There are two additional main damp-
ing mechanisms, namely, collisional damping and diffusional damping.
The latter is more relevant at small values of k. Fig. 12 points out
the fact that there is a certain non-monotonic behavior of the damp-
ing as a function of k, which could be explained by a cancellation of
those damping mechanisms at intermediate values of the wavenumber.
In addition, we observe that higher values of the coupling parameter
tend to counteract damping effects, probably due to the higher particle
localization. Finally, it is evident that the usage of the VEA tends to
underestimate notably the importance of damping processes. Again,
this is not surprising, as this approximation does not describe dynamic
screening adequately at intermediate frequencies.

Finally, for the reference, we present the values of the static pa-
rameter S (¢ = ka,0) we used in the present work, see Tables 2 and
3.
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Table 2. The values of S (¢ = ka,0) taken from [39].

¢ =0.6187 | ¢ =0.8750 | ¢ = 1.3835 | q = 1.8562

[ =0.993] 00133 0.0413 0.1059 0.1581
q=0,6187 | ¢=1,3837 | q=2,315 | q = 6, 1873

=97 0,001 0.0075 0.0763 0.3897
¢ =0.8750 | ¢ = 1.8562 | ¢ = 3.0937 | ¢ = 6.1873

T =1104] 0.0003 0.0045 0.1220 1.003
¢ =0.8750 | ¢ = 1.8562 | ¢ = 3.0937 | ¢ = 6.1873

[ =1524| 0.0001 0.0045 0.1160 1.0733

Table 3. The values of S (¢ = ka,0) taken from [32].

q=0.34725 | ¢ = 0.8750 | ¢ = 1.3835 | g = 1.8562 | ¢ = 1.8562
T =05 0007897 | 0.025195 | 0.040043 | 0.055783 | 0.145137
T=1 | 0002741 | 0.005957 | 0.022131 | 0.029141 | 0.097899
T=2 | 0001305 | 0.002572 | 0.013369 | 0.018699 | 0.059578
T=4 | 0000665 | 0.001557 | 0.011154 | 0.015553 | 0.036259
T =8 | 0.000256 | 0.000509 | 0.001203 | 0.001343 | 0.009562

In conclusion, a fairly good agreement is obtained with numer-
ous simulation data on the dynamic properties of strongly coupled
one-component plasmas. The model expressions for the DSF or the
DLFC characteristic for the VEA or the recurrence relation approach
are incorporated into the moment scheme. This allows us to deter-
mine the abstract component of our approach based on phenomeno-
logically sounded properties. Our results on the collective modes and
their damping complement those found with other approaches. A more
systematic set of simulation of this system could be interesting with
the aim of studying the onset of negative dispersion and quantitative
damping properties at long wavelengths. Our methods can be used
to model dynamic properties of more complex Coulomb systems with
high density of energy.
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The investigation of OCPs using the
method of moments with local con-
straints

The numerical procedure
Since we try to reconstruct certain non-negative densities, the solvabil-
ity of the moment problem is not an issue. In each case the absolutely
continuous non-negative measure with this density is just one of the
solutions of the moment problem. We use a finite, very small number
of moments, which can be easily estimated numerically, i.e. we want
to solve the truncated problem which, since the sought measure has a
non-zero density, has infinitely many solutions.

To apply the Schur-like algorithm described above, one has to know
not only the values of some power moments of the distribution density
f (t) under investigation,

Ch :/ t'ft)ydt, k=0,1,....2n, n=12.., (4.49)
but also the values of the Nevanlinna function,

F(t)dt
t—ts

0
ws = ¢ (ts) = P.V./ +inf(ts) , (4.50)
at the set of real points (t1, ..., t,).

In all five cases we consider, the latter principal value integrals were
computed numerically and the sets of orthogonal polynomials (??) were
calculated directly, while the conjugate polynomials were generated us-
ing the recurrence relations stemming from the Liouville-Ostrogradsky
(or Schwarz-Christoffel) identity (2.28).

To find the value of the parameter o € (0,1) of the auxiliary func-
tion

tot1

o 1+1tz dt
(2) = Y AT . s=1,2,....p
@ =epd & [ e T s=12

ta—1

(4.51)
we made use of the Shannon entropy maximization procedure [20] (see
Appendix IV) for the Shannon entropy

r+00

S(a)=— (e, t) In (Y(a, b)) dt,

J —oo

where the density ¥ (, t) is the one reconstructed within the algorithm,
it is the imaginary part (divided by 7) of the Nevanlinna model function
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obtained by the Schur-algorithm procedure. The density ¢ («, t) has no
real poles and is positive over the whole real axis, hence it is quite easy
to solve the maximization procedure equation: d&(a)/da = 0.

Numerical data

To check the quality of the reconstruction technique we suggest, we
carried out an extensive study of the present approach as applied to
the simulation data of [32]. To carry out this comparison, we made use
of the classical fluctuation-dissipation theorem to express the dynamic
structure factor, S (k,w) (DSF), in terms of the loss function (2.61):

kK dG(w)
T AnBe?  dw

S (k,w)

so that, like in (4.13),

S(k,w) _ n - - S(k)w% (UJ%Z*DJ%Q)I;HQUC,W) s e
T lw(@? —w) + Re @ (k,w) (w? = w})]" + [Im Q (k, w)]" (w? — o)

)

where

S(k):%/S(k,w)dw

is the static structure factor. Notice that with the space dispersion
taken into account, the moments ¢q (k), c2(k), and ¢4 (k), and the
frequencies

wj = wj (k) = 1/ca; (k) [eag—ry (k),  j=1,2

were calculated numerically directly from the numerical data on the
dynamic structure factor of [32].

The numerical results were compared to the simulation data of [32]
on the dynamic structure factor and are summarized in the following
figures 13-17. In all figures the squares correspond to the data of [32].
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Fig. 13. The OCP dynamic
structure factor at I' = 0.5
and ka = 0.34725.
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Fig. 14. As in Fig. 13, but for
I' =1 and ka = 0.49109.
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Fig. 15. As in Fig. 13, but for
I' =2 and ka = 0.60145.
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Fig. 16. As in Fig. 13, but
for I' = 4 and ka = 0.6945.
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Fig. 17. As in Fig. 13, but
for I' = 8 and ka = 1.389.
The discrepancy is within the
simulation data precision.

The Langmuir mode

To study the characteristics of the plasmon mode we used the data
on the Nevanlinna parameter function Qs (k,w) to solve the dispersion
equation

z (22 = wi (k) + Qa2 (k,2) (2* — wi (k) =0. (4.52)
If the parameter function Q3 (k,w) vanishes, the dispersion reduces to

the frequency
wy (k) = /w2 + Q2 (k), (4.53)

where the contribution € (k) accounts for the coupling in the system
[44]. These results are presented in Figs. 18.
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Fig. 18a. The plasmon dispersion
relation for I' = 0.5, i.e., the real
part of the solution of the
dispersion equation (4.52). The
triangles represent the positions of
the maxima of the DSF, the
squares stand for the solutions of
the dispersion equation (4.52), the
circles correspond to wy (k) /wy,
(4.53), and the solid line was
calculated by the interpolation
formulas of [51].
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Fig. 18b. As in Fig. 18a, but for
I'=1.0.
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Fig. 18d. As in Fig. 18a, but for
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Fig. 18e. As in Fig. 18a, but for
I'=8.0.

The solution of the dispersion equation (4.52) produced also the
decay decrement of the Langmuir mode, the results are displayed in
Fig. 19.
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Fig. 19. The mode decrement, i.e.,
the imaginary part of the solution
of the dispersion equation (4.52)
for I' = 0.5 (squares), I' = 1.0
(triangles), I' = 2.0 (circles),

I' = 4.0 (diamonds), and T' = 8.0
(rectangles).

We can conclude that an algorithm is presented which permits to
obtain, at least in the cases we consider, a quantitative agreement
between the simulation data on the plasma dynamic characteristics
and their non-rational counterparts reconstructed from a few integral
characteristics, the power moments and the local constraints. Further
applicability and convergence properties of the approach are to be con-
sidered elsewhere.



Chapter 5

Two-component plasmas

Let us know broaden the realm of application of the method of moments
to more complex Coulomb systems. Consider the two-component com-
pletely ionized, usually, hydrogen-like plasmas.

The three-moment model vs. the
generalized Drude-Lorentz model

First, if we take into account only the moments {Cy (k),0,Cs}, the
Nevanlinna formula immediately gives for the IDF:
W2

-1 P

v (Bw) =1+ , Imw>0. 5.1

exnn (B, w) W= (1) + w0y (k,w) muw (5.1)
Claim 54 We observe that in the long-wavelength approzimation, when
wy (k — 0) >~ w,, if we choose @y (0,w) = iv (w), this expression (5.1)
reduces to the generalized Drude-Lorentz model

2

-1 wp
0w)=14—® 5.2

o1 (0,%) w? —w? +iwr (w) (5:2)

often used in numerical simulations of dense plasmas, [52, 53]. Notice
that the corresponding internal dynamic conductivity
2
) w iw?/Am
int P
o™ (w) = — (¢ Ow)—1) = —"—
() 47ri(gm‘( w) = 1) w+ v (w)

85
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converts into the classical Drude-Lorentz model if we neglect the fre-
quency dependence of the generalized (complex) collision frequency v (w),
the static conductivity being equal to w2/ (4mv).

Exercise 55 Prove the previous statement.

The Nevanlinna parameter function @y (k, w) for any moment prob-
lem of construction of a response function which satisfies 2N + 1 sum
rules {Cy (k),0,C5,0,...,Caxn}, as well as the response function, i.e.,
the IDF, belongs to the Nevanlinna class of functions (i.e., it is an-
alytic in the half-plane Imw > 0 and possesses there a non-negative
imaginary part) and, additionally, it is such that in the same half-plane
limy,—.00 Qn (k, w) /w = 0. By virtue of the latter property of @, (k,w),
the model €3/, (k,w) satisfies the sum rules {Cy (k) ,0,Cy} irrespec-
tively of our choice of the parameter function Q; (k, w):

2
—1 ) P
51»11»11(k=7bﬂ00)21+w7+“'=

but, this cannot be said @ priori about the model expression like
(5.2). Certainly, for a constant collision frequency or with Q1 (k,w) =
Q1 (k,w=0) = ih(k), h(k) > 0, the fact that the loss function
Ly (k,w) = Imeyy, (k,w) /w has finite moments {Cj (k) , 0, Cy} can be
easily checked by direct integration, but it is not clear from ([52, 53]) if
with the Born dynamic collision frequency (??) the model (5.2) would
satisfy these sum rules. In any case, neither (5.2), nor (5.1) satisfies
the fourth sum rule Cy (k).
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The five-moment model

The loss function which corresponds to the IDF [6]

w2 (w+ Qg (k,w))

P
(@ =) T Qo (hyw) (0 — ) O

(5.3)
possesses all five convergent power moments {Cy (k),0,C>,0,Cy (k)}
by construction. Besides, without violating these sum rules, in a two-
component plasma we can make use of the exact asymptotic form of
the DF imaginary part obtained by Perel’ and Eliashberg [28], and to

model the parameter function Qs (k,w) as !

€z (kyw) =1+

Qs (k,w) = B (k) Vw (1 +14) +ih (k), (5.4)
with
B(k) = wg(:lgi% >0,
52 Z%e5
Ay = QTneniW,

2 2, 21.2,.2
w3 — Wl wyka

h(k) = 3rTwi s(k,0)"

Observe that by virtue of the Cauchy-Schwarz inequality (see Appendix
IV) w? — w? > 0 and that

s(k,0) = %S(k,o) (5.5)

is the dimensionless charge-charge dynamic structure factor at w = 0;
the values of s(k,0) can be computed numerically, other approxima-
tions for the static contribution & (k) can be constructed as well, e.g.,
if we know the static conductivity o (0,0) [6].

The expression (5.3) is virtually an interpolation (in the class of
response functions) between the asymptotic expansion

2 2,,2
-1 . ~ wp w11w2 (k) 471'140 . 1
Catnra (b0 = 00) = 1k 5 =2 7 = (U040 s )+

(5.6)

!Notice that (5.4) maintains the parity of the papameter function on the real
axis:

Q2 (k,w € R) = B (k) /|w| (sign (w) + i) + ih (k).
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which satisfies the asymptotic form [28] (see also [21]):

4T A
Ime (k,w > (Bh)") =~ %’

(5.7)
and some static characteristic of the system like s(k,0) 2. This interpo-
lation is carried out by the Nevanlinna parameter function Qy (k, 2) .
The validity of the moment-generated models (5.3, 5.4) has been suc-
cessfully compared to virtually all available real and simulation data
as well as some theoretical approaches, see [6] and references therein.

Neither the extended RPA nor the extended Mermin model satisfy
the asymptotic form (5.7), no fractional terms like (w /wp)fg/ % can ap-
pear within these approximations. Notice also that the real correction
of the order (w/ wp)_g/ % is negligible with respect to other real contri-
butions in the asymptotic form (5.6), while the same order imaginary
contribution is the largest.

Notice also that this exact asymptotic form implies the divergence
of higher-order moments Cy (k) with [ > 2 and that the interpolation
form suggested in [54] for the dynamic local-field correction at 5 = oo
and employed in [55] complies with it.

Finally, observe that, generally speaking, only the positivity of the
loss function constructed by the moment method is guaranteed. The
positivity of the loss function based on the Mermin model expression
for the IDF is to be studied elsewhere. The violation of the positiv-
ity condition might produce erroneous conclusions with respect to the
plasma stopping power.

2In a completely ionized plasma for w > (Bﬁ)71 the microscopic acts of the
electromagnetic field energy absorption become the processes inverse with respect
to the bremsstrahlung during pair collisions of charged particles. As it was shown by
L. Ginzburg ([25], and also, e.g., [27]) this circumstance permits to use the detailed
equilibrium principle to express the imaginary part of the longitudinal dielectric
function, Im e (k,w) of a completely ionized plasma, in terms of the bremsstrahlung
cross-section.
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Collective and static properties of
model two-component plasmas

Let us employ now the method of moments to study the classical molec-
ular dynamics [22] data on the charge-charge dynamic structure factor
of two-component plasmas modelled in [56]. The convergent power
moments of the imaginary part of the model system dielectric func-
tion are expressed in terms of its partial static structure factors and
the latter are computed by the method of hypernetted-chains using
the Deutsch effective potential, see below. High-frequency asymptotic
behavior of the dielectric function is specified to include the effects of
inverse bremsstrahlung [28].

Introduction

Classical molecular dynamics (MD) simulations of model two-component
plasmas (TCP) were carried out in [56] many years ago. The system
modelled in this pioneer work was a fully ionized strongly coupled hy-
drogen TCP of temperature T' consisting of electrons (a = e, Z, = —1)
with the number density n and protons (a = i, Z; = +1) with the
same number density. The dynamic and static characteristics studied
were the charge-charge dynamic structure factor, the species partial
static structure factors and the static radial distribution functions, etc.
Classical statistical averages were computed on the basis of the ergodic
hypothesis while the quantum delocalization preventing the collapse
were taken into account through the use of the Deutsch pair effective
potential [57] arising from the quantum-diffraction effects,

2
O (r) = ZaZbﬁ— (1 —exp(—kwr)), ab=ce,i, (5.8)
r

271y, _ 1y -1
Rab = J;}h2b7 Hap = (mal +mb 1) 5

where g, is the reduced mass of an a — b pair, without including the
exchange or symmetry contribution, and 37! is the temperature in
energy units. The fact that the potentials (5.8) remain finite as r — 0
is a consequence of the uncertainty principle and prevents the collapse
to which we have already referred to. In the temperature range of
interest

3
kia>1, a= 0 —
4mn
being the Wigner-Seitz or the "ion sphere" radius. Thus the effective
ion-ion interaction is virtually identical to the bare Coulomb potential

at all separations.
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The potential (5.8) was also employed to determine the static prop-
erties in the hypernetted-chain (HNC) approximation [22].

Since 1981, little effort was made to simulate this benchmark high-
energy density system and study its static and dynamic properties. We
mention a few related works: (i) the static electrical conductivity was
studied in Refs. [58] and [59], (ii) the TCP dynamic characteristics in
a different range of values of the wavenumber were investigated in [60].

The results of [56] were analyzed in [61] using the sum rules and
other exact relations. An overall agreement with the MD results was
obtained in [61] where the frequency moments of the imaginary part of
the plasma (inverse) dielectric function, e ~(k,w), (the sum rules) were
calculated there for the bare Coulomb potential.

Our aim is to reexamine the simulation data of [56] and the theoret-
ical results of [61] within the moment approach and using the method
of effective potentials to estimate the static characteristics of the TCP.

Mathematical details of the moment approach are provided in the
next Section. A model Nevanlinna parameter function taking into ac-
count the fractional asymptotic form of the imaginary part of the sys-
tem dielectric function is suggested and the convergent power moments
of the loss function — Im ¢~ (k, w) /w of the model system are calculated
using the Deutsch effective potential and are computed by the method
of hypernetted-chains using the same potential; for a recent review
of the method of effective potentials see [62]. Numerical results and
Conclusions are presented as well. The agreement with the MD data
is shown to be good, and, simultaneously, important statistical char-
acteristics of the model T'CP in concern, like the probability to find
both electron and ion at one point [g.; (0)], are determined, direct and
exchange interaction contributions being compared.

The background

The MD results of [56] on the charge-charge dynamic structure factor
S..(k,w) were modelled in [61] using the moment approach which au-
tomatically takes into account the sum rules and other exact relations.

The starting point in the application of the method of moments
[6] to the calculation of the system dynamic correlation function is the
fluctuation-dissipation theorem (FDT) which relates the latter to the
system dissipation characteristic, the Green function, whose power fre-
quency moments, by virtue of the Kubo theory of linear response, can
be directly expressed in terms of the static correlators of the time deriv-
atives of the system observables. The latter can be related, using the
system model Hamiltonian, to the system structural static correlation
functions like the radial distribution functions or the static structure
factors, and this is the only step of our approach where the system
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model interferes. Otherwise the relations we use are model-free. They
are based on mathematical results which are not related to the phys-
ical details, i.e., the interaction potential. This permits to apply the
moment approach to non-perturbative systems which lack small para-
meters, like the one we deal with here.

Indeed, in a classical Coulomb system the characteristic perturba-
tion parameter is the potential energy of two charges at an average
distance, i.e., the Wigner-Seitz radius a, divided by the characteristic
kinetic energy or the system temperature:

I = Be?/a.

The achievement of the work by Hansen and McDonald [56] was that
the values of T" 2 1 (precisely, I' = 0.5 and I' = 2) and r, = 0.4 and
rs = 1, where
_a _ amé
s = ap B h?

and ap being the Bohr radius, were considered, which correspond to
strongly coupled Coulomb systems or high-energy density (HED) mat-
ter. Under these conditions the Landau length, the Wigner-Seitz ra-

dius, and the Debye radius

are of the same order of magnitude, so that no effective screening takes
place: there is only one or less particles in the Debye sphere. Hence,
standard theoretical treatments, e.g., the kinetic theory are not ap-
plicable, and we need alternative approaches like the one we make use
of in the present work.

There is an additional dimensionless parameter which is commonly
used to characterize the kind of statistical systems we deal with here.
This is the so-called degeneracy parameter,

0'=D=pFEp= 1.84159E
Ts

which compares the Fermi energy of the system, Ep, to its thermal
energy. For the thermodynamic conditions considered in Ref. [56] and
here D Z 1, which means that strongly coupled two-component plas-
mas are intrinsically quantum statistical systems, and we might expect
their physical properties to be greatly influenced by their quantum
mechanical nature.

Nevertheless, due to the significant difficulties encountered in the
analytical and computational modelling of these systems, it is a com-
monplace to use classical statistical approaches to investigate multi-
component plasmas. These classical approximations, like MD or HNC
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calculations, do require the application of potentials which effectively
take into account the quantum mechanical nature of these systems,
especially the quantum diffraction preventing the classical Coulomb
collapse.

As we have said, the only step where the physical model under
consideration appears explicitly in the method of moments is the mod-
elling of the system Hamiltonian required to compute the frequency
moments of the Green function (see Sect. 5). Strictly speaking, these
calculations can be carried out following the laws of quantum statistical
mechanics, and therefore no effective potential is needed. This means
that the potential appearing in the Hamiltonian must be understood as
the real interaction among charged particles at the microscopic level,
which is, of course, the Coulomb potential.

However, our main aim here is to compare the static and dynamic
characteristics obtained for the TCP with those of Ref. [56].

The mathematical background is that of the general framework of
the method of moments. Thus, we work here to better assess the
applicability of our approach. In this sense, the usage of the classical
version of the FDT is justified:

_ L(kw)
SZZ (k,W) - 71'3d) (k)v (59)
where e
o (k)= 5
£k w) = _Im e’;(k,w)

being the loss function of the system, which is assumed to be isotropic.
The sum rules we employ are, as before, the power frequency moments
of this loss function. Hence for the dynamic structure factor we obtain:

o 8 (k) — w} ()] Qs (k) _
36 (k) |w [w? — w3 (k)] + Qs (k,w) [w? — w? ()]*]
(5.10)
where the Nevanlinna parameter function is taken as in (5.4), instead

of

Szz (kw) -

. w2 owiow?

Qalk.2) =ik (k). hk) = g o 5 (ko0
This is the approximation which was used as a basis of the analysis
carried out in [61]. We wish to use it now combined with more precise
values for the power moments calculated using the Deutsch potential
[57], The approximation (5.11) is shown to be insufficient, i.e., within
this approximation we fail to predict the values of the Langmuir collec-
tive mode frequency or the position of the lateral peak of the dynamic

(5.11)
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structure factor, and its width. The static values of the dynamic struc-
ture factor S, (k,0) can be taken from Table IV of [56].

The expression for the (inverse) dielectric function and, hence, for
the dynamic structure factor (4.17) with the Nevanlinna parameter
function determined in (5.4), leads to the correct static value S..(k,0)
of the dynamic structure factor, satisfies all three sum rules (4.20), and
also satisfies the exact relation (3.27).

The range of frequencies studied in [56] was about (0,2w,), so that
no data was obtained for the frequencies which satisfy the condition
w > (BR)™" or, equivalently,

A
wp 3r2’

On the other hand, in spite of the classical approximations used here
for comparison with Ref. [56], as we have discussed previously, the
system we consider possesses an inherent quantum mechanical nature,
and we may presume that the asymptotic form (3.27) is applicable to
it.

Thus we reduce the determination of the dynamic structure factor
to the knowledge of the static characteristics - the frequency moments
C, (k), v=0,2,4, see Sect. 5.

The latter were calculated [61] in terms of the static structure fac-
tors of both system species S, (k) beyond the random-phase approx-
imation with the inclusion of both electronic and ionic local-field cor-
rections. These corrections were determined by means of the Ichimaru
algorithm [64] in terms of the electronic one, which was found as an
interpolation satisfying both the Kimball cusp condition and the com-
pressibility sum-rule [65, 66] with the electronic equation of state taken
from the numerical simulations [67]; the static structure factors were
obtained using the method of temperature Green’s functions.

The moments

The explicit form of the power moments C,, (k) , v = 0,2, 4, for the bare
Coulomb potential is known since long [6] (for details see Ref. [63]),
they can be directly deduced fro the general results found in Section 3
when ¢ (k) = 1:

Co (k) = [1 —e! (k,O)} , Cy(k)= wg , Cy(k)= wf, 1+ W (k).
(5.12)
The moment Cj (k), as it was already commented, is related to the
static dielectric function of the system, the second moment is actually
the f-sum rule, which is independent of the system interactions. The
correction in the fourth moment contains different contributions:

W (k) = K (k) + U (k) + H.
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The first contribution stems from the kinetic term of the system Hamil-
tonian. In the classical case, this coincides with the known Vlasov
contribution to the dispersion relation:

k2

K(k) =35, (5.13)

k% = 4mne?B being the square of the Debye wavenumber. Here, as in
(5.12), we only account for the electronic subsystem, due to the large
asymmetry between the masses of electrons and ions. We use expres-
sion (5.13) for comparison with the results of Ref. [56]. Nonetheless,
due to the quantal nature of our system, it would be interesting to
estimate quantitatively how the degeneracy would affect the dispersion

law and the dynamic structure factor of the system through this kinetic
contribution. In the quantum mechanical case, it can be recast as

(w2) k2 ( h )2 ket
K=" 1 (=) =, (5.14)
w? 2m /) w?

where the average of the square of the electron velocity is expressed as

o _ 3F32(n)
() = Do

00 :l,/,V
F,(n) = ——dx
() /0 exp(z—n) +1
being the order-v Fermi integral, and n = Su the dimensionless chem-
ical potential of the electronic subsystem, which should be determined
by the normalization condition

2
F1/2(77) = §D3/2'

The last two terms in the fourth moment correction term stem
from the interaction contribution to the system Hamiltonian and are,
therefore, dependent on the potential used. For the bare Coulomb
potential we write:

_ 1
T 2nn

U (k) / P (See () — 1) £ (0, K) dp,

3 3 ~ 6
where we have introduced
5 P (R-pY)

f(Pak’):E—ka'*‘Wln

H=th.0 = ga-1=_1 / S0 () dp.

p—k

p+k‘
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But for the sake of a better comparison with the MD results of Ref.
[56], we recalculated here these moments using the model Hamiltonian
with the Coulomb potential substituted by the model Deutsch effective
potential. Then, the moment C5 (k) (the f-sum rule) remains intact,
the moment Cj (k) changes together with the model system static di-
electric function, and instead of Cy (k) we have:

Cy (k) = [1 W (k)] , (5.15)

where the "model” 1 (k) has the same kinetic contribution K (k) (ei-
ther classical or degenerate), but the interaction contributions are sub-
stituted by

- 1 o e -
= -1 1
00 =g [ 7 (Su)=1) oty Gao)
and ~
= Ky [*P*Se(p)
H=_¢ : . 1
67r2n/0 P+ K2 dp (5.17)
Here
= K2, (R —p)* |p+k
f(p* k) - 4k2 + 8pk73 In —k -
P+ k)" (k)R KL/3
- n - .
16pk? (p—k)’+r2, P AL

In addition, the model partial static structure factors Sup (k) have
been computed in the hypernetted-chain approximation using the Deutsch
effective potential. This closes the algorithm of calculation of the static
and dynamic characteristics of the system.

The results are discussed in the next two Sections.

Numerical results
Static characteristics

As it was mentioned, we calculated the static structure factors and the
radial distribution functions in the hypernetted-chains approximation
using the Deutsch effective potential (5.8), just as it was done in [56].

We present our data on the partial static structure factors in Ta-
bles I-IV. It is not surprising that the agreement we obtain with the
values of the static characteristics given in Table V of [56], is within
the computational precision. We add the corresponding values of the
charge-charge static structure factor S,.(k). We calculated them from
the static data:

Szz(k) = S’Ll(k) + See(k) - QSze(k) (518)
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and also as

S..(k) = %/w S..(k,w)dw; (5.19)

i.e., as the zero-order frequency moment of the dynamic factor (5.10),
these values coincide to the fourth digit.

The other two dimensionless even-order power moments of the dy-
namic structure factor (5.10) are defined as

S, (k) = 1/w”5zz(k7w)dw, v=24, (5.20)

v
nwp J_o

the latter being provided in Table IV. By virtue of the classical ver-
sion of the FDT used here, the odd-order moments vanish due to the
symmetry of (5.10).

These values may be used to determine the characteristic frequen-
cies wy (k) = 1/ Cs (k) /Co (k) and ws (k) = \/Cy (k) /Cs (k) which vir-
tually coincide with their values calculated from the formulas (5.15),
(5.16), and (5.17), but now differ significantly from the values given in
Table VI of [61].

Notice that the static dielectric function and the moment C (k) is
directly related to the charge-charge static structure factor (5.19) by
the FDT (with subtraction) in the form

k2 00 do k2
S.. (k) = —k—zP.V/ Im e (k, w) Uw = & (1= Rec™ (k,0)),
D —00 D

Thus the moment Cy (k) was estimated as

~ k2
Co (k) = ,7]3
with the static structure factor S, (k) also calculated in the hypernetted-
chain approximation using the Deutsch effective potential (5.8).

Further, we display our results on the values of the partial radial
distribution functions at zero separation, g..(0) and g;.(0), computed
using the effective potential (5.8) and also taking into account the sym-
metry effects in the electron-electron exchange contribution to the ef-
fective potential (while leaving other components unchanged):

S.. (k)

e? In2 2k,
b =S (1= e cnar) + e (1) G2

for comparison we present also the values of g;.(0) calculated analyti-
cally in [68], see Table V.

In addition, we display the graphs for the three partial radial dis-
tribution functions for the conditions I"' = 0.5 and r, = 0.4, calculated
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with the potential (5.8), Fig. 20. The curves in Fig.20 are virtually
indistinguishable from those of Fig. 2 of Ref. [56].

Table 1. Partial static structure factors at I' = 0.5, 4 = 0.4 with the
Deutsch effective potential without exchange (5.8).

a=ka Su(k) S _{ie}(k) See(k) S..(k)"

0.767  0.5804 0.4387 0.6590 0.3620
1.074  0.6257 0.3600 0.7391 0.6448
1.381  0.6824 0.2813 0.8118 0.9316
1.534  0.7118 0.2455 0.8425 1.0634

¢ Calculated from (5.18) or (5.19).

Table II. Partial static structure factors at I' = 0.5, ¢ = 1 with the
Deutsch effective potential without exchange (5.8).

q=ka Sy(k) S_{ie}(k) Sec(k) S..(k)”

0.767  0.6160 0.4606 0.6470 0.3418
1.074  0.6663 0.3943 0.7144 0.5922
1.381  0.7192 0.3275 0.7769 0.8412
1.534  0.7447 0.2952 0.8081 0.9624

@ Calculated from (5.18) or (5.19).

Table III. Partial static structure factors at I' = 2, ry = 1 with the
Deutsch effective potential without exchange (5.8).

g=ka Syu(k) S_{ie}(k) Se(k) S..(k)*

0.767  0.5642 0.5821 0.7197 0.1198
1.074  0.5133 0.5001 0.7385 0.2516
1.381  0.5067 0.4275 0.7769 0.4286
1.534  0.5174 0.3940 0.7993 0.5288

“ Calculated from (5.18) or (5.19).

Table IV. The fourth dimensionless power moment of S,, (k,w), according
to (5.20), with the Deutsch effective potential without exchange (5.8). In
the classical case, the kinetic contribution is approximated by the Vlasov

term (5.13), whereas in the quantal case expression (5.14) is used.

Classical Quantal
I'=05 I'=05 I'=20 I'=05 I'=05 TI'=20
q=ka rs=04 r;=10 ry,=10 r,=04 r,=10 ry=1.0
0.767  0.8845 0.9318 0.1403 1.1175 0.9966 0.1680
1.074  2.6028  2.6943  0.3294  3.6028  2.9856  0.4462
1.381  6.2193  6.3685  0.6644  9.3337  7.3169  1.0217
1.534  9.0728  9.2555  0.9073 14.1572 10.8366  1.4855
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Table V. Zero-separation values of the partial radial distribution functions
compared to the results of Ref. [68].

r 4 Ts Gee (0)a Yie (0)a Gee (O)b Gie (O)b Jie (O)C
0.1 0.1000 0.0184 0.9598 1.0684 0.7309 1.0474 1.0358
0.1 2.0000 0.3683 0.7569 1.5164 0.3868 1.5045 1.3478
0.5 0.4344 0.4000 0.6629 1.9865 0.3897 1.8874 1.4412
0.5 1.0860 1.0000 0.4707 3.5224 0.2500 3.2600 1.8963
1.0 0.1000 0.1842 0.7738 1.4979 0.6159 1.4276 1.2351

@ With Eq. (5.8). * With Egs. (5.8) and (5.21). © Values from Ref. [68].

gz |

o

r/a

Fig. 20. The radial distribution
functions g.(r), a,b = e,i for ' = 0.5,
rs = 0.4, calculated with the potential

(5.8). The solid lines are included to join
the discrete points for a better
visualization.

Dynamic characteristics

With all these efforts we have obtained a fairly good agreement with
the simulation MD data on the dynamic structure factor. This agree-
ment was quantitatively good, and it was better than that achieved
in [61]. The introduction of the non-constant Nevanlinna parameter
function (5.4) not only permitted to obtain better agreement in the
position of the Langmuir peaks, but also lead to the adequate broad-
ening (damping) of the Langmuir mode. In Figs. 21, 22 we present
physically interesting results on the dispersion of the Langmuir mode.
In this sense, it is interesting to calculate the complex solution for the
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dispersion equation € (k, z) = 0 explicitly in order to determine quan-
titatively the damping of the collective mode. From Eq. (5.10) we get
the equation

2 (22 —wh) + Q2 (22 —wi) =0. (5.22)
Due to the fact that the function €1 (k, 2) must be analytic in the upper
half-plane, the solution of the dispersion equation, z(k), must possess
a non-positive imaginary part, i.e., if z(k) = Rez(k) + iIm z(k), then
Imz < 0. In particular, it is clear that for the approximation

Q(k, z) = i0* (5.23)

we get for the (shifted) collective excitation the value of wy. However,
for the model function (5.4), it is shown in Figs. 21 that Rez < ws,
while the damping becomes more notorious, see Figs. 22.

0.5
0.767 1.074 1.381.53¢
ka
0.7
0.6
[o})
30.5
~
<0.4
0.3
o
'0.2
0.1
0.767 1.074 1.381.53¢
ka

Fig. 21. Dispersion, z(k) = Rez(k) +ilmz(k), for the collective ex-
citation mode obtained from Eq. (5.22) in the classical approximation.
The damped solution stemming from the model function (5.4) is com-
pared to the undamped solution corresponding to the approximation
(5.23). For expression (5.4): I' = 0.5, r; = 0.4 (triangles); I' = 0.5,
rs =1 (stars); I' = 2, 7y = 1 (pentagons). For (5.23): I'= 0.5, r, = 0.4
(boxes); I' = 0.5, r, = 1 (diamonds); I' = 2, r, = 1 (circles). The solid
lines are included to join the discrete points for a better visualization.



100 Two-component plasmas

3

2.5

3 2
~
N1.5
T

x 1

0.5
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0.6
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50 .4
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0.767 1.074 1.381.53¢
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Fig. 22. Same as in Fig. 21, but for the quantal case. The degenerate
kinetic term (5.14) is used, instead of the classical one (5.13).

We observe that in all cases, except for I' = 2 and the lowest values
of ¢ = ka, the effects of degeneracy produce stronger positive disper-
sion, i.e., the Langmuir mode frequency become higher than w,. In
addition, degeneracy or quantum mechanical characteristics of the ef-
fective interaction produce also stronger damping of the mode.

Indeed, at higher frequencies, we deal with shorter distances or
shorter times, where the non-Coulomb nature of the effective potential
and the wave nature of electrons become more pronounced.

Notice that these effects are reflected in the MD calculations using
the Deutsch effective potential and are described in our calculations.

Conclusions

The agreement with the MD data on the dynamic structure factor and
other dynamic characteristics of the model system, like the Langmuir
collective mode dispersion, is improved with respect to the results ob-
tained in [61], and, simultaneously, important statistical characteristics
of the model TCP in concern, like the probability to find both electron
and ion at one point [ge; (0)], are determined, importance of direct and
exchange interactions being analyzed. The applicability of (5.14) and
(5.4) are validated.
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Since the static characteristics of the system (the static structure
factors and the radial distribution functions) were computed with high
precision in the way employed in [56], the reliability in the calculation
of the zero- and four-order moments of the dynamic structure factor
or the characteristic frequencies wq(k) and ws(k) is improved. These
quantities are essential to estimate the position and damping of the
plasma collective mode.

Another key ingredient for the good quantitative agreement achieved
with the results of [56] with respect to the dispersion and decay of the
Langmuir mode is the introduction of a non-constant Nevanlinna pa-
rameter function accounting for the exact high-frequency asymptotic
of the system dielectric function. Further specification of this dynamic
characteristic similar to the dynamic local-field correction in a TCP
might be needed further.

We observed that for the Nevanlinna parameter function @ =
Q2(k, 2) considered here, the value of the Langmuir frequency shifts
from wy(k) closer to the plasma frequency, the effect which might be
considered correct from the experimental point of view.

Further extension of the presented approach to model systems de-
scribed by other effective potentials [60, 69] is planned.
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e Exercise 11. Directly from the Kramers-Kronig relations (2.4)
and using the method of residues [1], we have:

1 *° r dw’
n(w) = fP.V./ 3 (w =
™ oo (W —u) T2 —w

, 1 1 B
- QlF{QiF(quiFw) +2((w—u)2+1“2)}_

B 1 ir B
B _wfufil“+(w7u,)2+f‘2
— u—w .

C (w—u)? 4T

certainly, the same result stems from the answer of Exercise (77).
Observe also that the complex response function

1

nw=w+1w) =——————,
( ) w—u+ il
whose limiting value on the real axis w = w equals

U —w n il
w—u)+I2 w—u)’+TI?
( )

n (w = w+i0+) =

can be found also as (close the integration path in the lower half-
plane)

1/°° n’ (w) dw

n(w) = — e w
o0

T,
B 1/°° r dw
T (w—u) +T2w—w
-2 1

2(=0) (u—il —w)  w—u+il

- (5.24)

The formula (5.24) is equivalent to the Kramers-Kronig relations
(2.4). Observe that the unique pole of this complex refraction
index is in the lower half-plane, as it should be for a response
function.

e FExercise 38 We have to prove that

e 1, n=m, -
/_OO D, (2) Dy (x)do (z) = Opm = { 0 ntm n,m=0,1,2.

It is obvious that

/: D2 (w)do (z) = /: do () _ .
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Further, since

Di(z) = %7 and
Vtto (Botta = 115)
2 .2
Hofly — 1) T2+ ([ g — Holts) T + (figfty — [
Dg(m):(02 1) (1t ofts) (13 2)’

(Hotta — 117) Ao

/_ Z D2(2)do (z) =

(Hotts — 1) (uwm u% uo;ﬁ; 13y + 200 pioft)

we have that

(Hotts — 17) (=13 — ko3 — KTty + Hottatty + 21ty tiafis)
/ Do() Da(x)dor (z) =
/°° (otty = 1) @ + (s iy — piotis) & + (papts = 413) (2) =
oo VoV (Hotty — 113) Az
(Hotty = 1) g + 1 (Hatty — Hobts) + po (s = 13) _
Vo (Hotta — 117) Ao
/ Dy(z)Dy(z)do (z) = 0.
e Exercise 39 We start with Do(¢) = 1, then
t.1 * xdo (z
Di(t) = t— {t zlzt,M:t,&7
11 [ do(2) Ho
2 My
py, (B(-8))
R L Gy A
(11 Ht _wm Ho
Ho
2 [ 2o (z) I ('773 - TZZTI]) do (T)f
T Y do(x) e )2 T
[ do (@) s (1 — L—é) do (z)
_ M
— p_H_ Hs “éfzt:tz _ Hoks — /L1M2t Mo . ete.
Ho gy — Z—:] Holty — 13 1o’

Notice that these vectors are all real and that

/ D, (2)Dy,(x)do (z / D,,(z)D,(x)do (), n,m=0,1,2,....



107

We have the orthogonality as well:

<D07D1> = <f, 1) - <t, 1> = 07

(o -2) - 5 ) (o)) -

e Exercise 46 We have:

(D1, Do)

etc.

~

. irQ?
. sz (1 + z )
O_mt (Z) — P . .
Az Lk Vi VP
.

iw? T2 T2 Q2 T2 Q2\*
= (14 1- -+ =) - )=
drz z z 22 z 22
iw? 02 O Q7 o2
s T [ T Zo82) ) =
47rz<+z2 Z(z3 z5)+<z4+z4 i
iw? w02 1
_ "% P i
i s 7O (z3) ’
Notice also that thus
4mi [iw? w202 1
= 14— P P - =
€(z = 00) + z (47rz+ drz3 +O(z3>)

wr w02 1
= 17—57 p4 +0(—4).
P z z

e Exercise 52 Directly from the anticommutation relations (5.6 -
??7) we have

o bt — gta bt 1t —
[afau,bfb] = afaublb, —bfbeata, =

= a; (_b:-rau + 6ab6ur) bt - bjbta;au =

—atbtauby + dapdural by — bibrata, =

—bratbiay + Sapdurad by — b byat ay =

= b (7bta;r + (5ab(55t) ay + SapOural by — bfbsatay, =
= bibyatay — Sapdstbl au + Oapdural by — bibral ay =
= 6ab (§ura:bt — 6stb:(lu) .
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e Exercise 53 Take into account that

a 1 +

Ng=—= Zap_qap ,
VV 4

and that

[”:;—k”’q» (";”b—p —dana)] = [a:{—ka‘v ”’;nb—p} =

+ c b e b+
Qg 1 AqNpn’, — NN’ ag 1 aq -

Consider first

c _ L C+ ¢ _
[aq,np] = aq (Wz A r) (

+
r—

—
5
-]
o
T'F
o
2
~__
S
2
|

1
= W Z ((chrtpcr —c pcraq) =
T
1
- W Z ((6006q‘r—p - Cj,paq) Cr — Cjﬁpcraq) =
1
= W Z (6a65q,r,pc, - crtpaqcr - cipcraq) =
r

1
= \W Z (Jacéq,r,pcr + c;[pc,aq — crtpcraq) =

6(1/(3
Waq-%—p

- LS (et - i) =
- \/LV XT: (=6 plgale = G pCelg ) =
Sty (e xg ) ) -
v
= \/LV zr: (—Sacéq,k,rcrtp + Cj‘;pcraqfk - C:lpcr“q) =
ac 4

1 . 1)
7W Z {)ar(sq,kwcip = 7\/Vaq7k7p .
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+ c, b _ + c b c, b + _
[aqfkaq, npn_p] = Gg (npaq+ a ﬂ,) N_p = NpN_L0g_y0q =

b

+ b
\/Vaq_kaq+pn/7p

b
—-P

b

— + c _ 2 C + —
= Qg Nplqn + NpN_p0g_0q =

0,
nCat . — dac + b ac + bo_cb o+ —
(npaqfk Vaqfkfp agn’ ,+ V“q—k“qﬂ’”—p NpN. plg g =

ab 5ac + b
Zplq + —= ) — Waqfkfpaqn,p-ﬁ-

+ b cob ot _
=gy GqrpNp — NpN. LAy 1 0g =

6(117
! a+ +

(50,}7 c
VvV q7k+p> lq + W”paq—kaqu*
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The integral (2.7)

Let us prove that

Z'Zr+1',s

VVrJris (Z) = . - N .
exp (m(r;rzs)) cos (71(7;15))

Observe first that

i 1 oo |:L.|r+is d.’E
Won(e) = [

T) oo T—2

1 xr=—y, 1/°°|$\"+isdav
= = +-] —=
rlde=-dy, «w), x-=z

_ 1/00y'r+isdy+ 1/OQIT+isd:L,_
N TJo Ytz TJg *—2 N

27 [ $T+iSdI

TJo ¥2—22"

Consider the contour integral with the closed integration path I' |
which consists of two segments [p, R] of the real axis on two cut edges
and two open circumferences C,, |z| = p, and Ch, |z| = R, see Fig. #

(1.

AR

Fig. #. The integration path
.

By virtue of the main theorem of the theory of residues, for

C7'+is

®(¢) =

74_2_22;
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I2—22

_ﬁ@(:)dc - (/ﬂRw+/%<b<odc+./Rp¢(<)d<+

+/7<I>(C) d¢ = 2mi {Tes (®(C)), +res(® (C))fz}, (5.25)
C/’

the open circumference Cg is transited in the positive direction, i.e.,
anti-clockwise, while the open circumference C), is transited in the neg-
ative direction.

Let us evaluate each contribution in the r.h.s. of (5.25):

r+isd AIRT
< E < 21RO,
C; C —z R R—00
where
R2

M ,0< 0 <2m;

> ‘R282i0 _ 22|

In the (third) integral over the lower edge of the cut ¢ = xe*™ (z > 0)
and (" = 2"e*". Hence,

P ) ) R, ,T+isd, .
/ P (C) dc _ 7627r7.(r+zs)/ il i
P

R 113272’2.

Finally, since in the vicinity of the point z = 0, for a sufficiently small

radius p,
1

‘pZCZN _ 22| <

JRLIGLS

P

m

)

<mp 27mp = 0.
p—

Now, taking R — oo and p — 0, we obtain:

(1 . 627ri(r+is)) /ooﬂﬁsdf _
0

2 — 22

= 27 {7‘65 (® (C))Z +res(® (())72} =
= 2mi (Zrﬂs - (Z)H“> _ ﬂz”is (1 - c"”.'(TJri,s)) .

2z 2z z
Thus,
00 .r+is _ pmi(r+is)
W 22 o dr o 1—e _
rtis (Z) = — = 2 212 T omitrris) —
T 12—z 1 — e2mi(r+is)
Z‘ZrJris

— —
exp <7rz(r2+1s)) cos (ﬂ(r%»zs))
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The Cauchy-Schwarz inequality in
L2

states, for any pair of distribution densities, f (w) and g (w), that

r ) de </|f(w)\2dw~7\g(w)|2dw4

Choose |g (w)| = /L (k,w) /m and | f (w w2\/L (k,w) /m to get:

3

Il
8\8
IS

o
Y
=
&
A|E
N— —
L)
IN
/(_\
—

I
Q
=
=
Q
—~
=
N

WL (k,w) d:) . (/ﬁ(k,w) d:)
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Shannon entropy maximization

Imagine we want to reconstruct a distribution with the density exp {—® (¢)}
such that

/ Y exp{—0 ()} dt = 1 (5.26)

Let p () > 1 be the approximate density such that

/:p(t)dt:L

e.g., a rational density we want to be as close to e~®®) as possible.
Then we can write:

- /joexp{f@(t)}dt: (5.27)
_ / " exp @ (t) —Inp (1)} p (1) d.

Due to the positivity of the latter integrand,

1 = /oo exp{—® (¢)} dt =

- /w exp {~ (1) — Inp (1)} p (1) dt >

> eXp{f [ " @)+ np ()] p(t)dt}. (5.28)

e}

Vv

If by definition -
=/ roroa,
we have from (5.27) and (5.28) that
1> exp{—(® (1))} exp{S}, (5.29)

S=—(lnp(t)) (5.30)

being the Shannon information entropy. Thus we have:
(@ (1) = 5, (5.31)

where equality corresponds to the exact coincidence between the re-
constructed and the genuine distributions:

| ewice 0 -mp@ip@oa -1
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if and only if
p= e

We conclude that the Shannon entropy (5.30) maximization is equiv-
alent to the approximation improvement, though we are unable to con-
trol the quality of this improvement.

Notice also that the normalization condition (5.26) constitutes the
first sum rule for the distribution to satisfy.

If the model distribution density p (¢) contains parameters, one can
use different variational methods like the Rayleigh method, or, in case
of having only numerical, not functional, parameters, even the Ritz
method. The latter was used by us to obtain some of the numerical
results described here.
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Calculation of the loss function fourth
power moment

Here we will provide details of calculations leading to (3.25), see Sect.
3. For the second derivative of the charge density operator we get from
(3.10):

1 - 1 - - 1 . 1 R
e Al 8= (6)] =3 o K] B w]
P =5 {Pk, of = 57 |Px +W 7 Pk T [Pe w
Consider first the "kinetic" contribution, using the result (3.21),

7. - 1| eh Z, k? h2p?
- K] - = Za (g k=" af Laq, by | =
ih [”k’ ih [iVV <= m, (q 2 ) Ya-kla }Zp: 2my PP

1 eh R? Zy k?
- - *E a Sk—— - S bihy] =
ihiJV 2 bqp mam;,p (q 2 ) Oab [aq’kaq’ b bp]

79712 2
= m2 ((l'k—?) (q a _xlq — (a4 — k) k%) =

— el Zy A
a,q a

Now,
1 . ~
i e 7] =
1| eh Za ( k2> b
— Z — q-k—— gy = Z W n;nﬂ) — 6(,bm,) =
ih | vV = 2 ) %a- Cbp#)
1 eh 4 k? 1 4me?
_ a k- + - Il c /b _ _
ih Waz‘; My (q 2 ) fa-ica 2c,§0 p? ¢ (@) (npn_p 6Cbnb)}
4me? Za k? Ca () c, b
= — Nid Z . (q . kfg) 2 [a;kaq, (npnfp — )] -

a,b,¢,q,p#0

If we employ now the relation (3.22),

Lr. =7  4nwé Z, E*\ (o (p)
il V=0 8 B (ag) e

4 a,b,c,q,p#0

X (8ab (Mg _xa—p — g sipla) + dac (0_sarpn’ p — a5 s paan’y)) =

4red Za, ( k2> Ca (D)
=— Z —|a-k—+ | % 5ab(n a:; klq-p — Np ;rkﬂ)aq)—
\/v a,b,c,q,p#0 Ma 2 p
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4red Zy k2 ¢ (p
T Y (k) S (o sty — o pant) =

4med Z k? k? Coa (D) 4
- O K=Y gk S _
vV abapro (((q ) 2 ) (q 2 >> P’ "pfaicipa

abap#0 " *

dme? Z, Can (P)
= \/‘7 Z (p k) (a;—k paqn +n7p q+ k— pG‘Q) =
abapro e v’
4red Z, Can (0

Cat (P)
= — — (p-k) e nlLPnLP.

And we are able to calculate the interaction contribution to the fourth
, 4 1 A 47i
Wy 2T p _ am
CV4 (k) - hk2 <|:7h [pk7 W:| 3 p—k:|> th

4med Ca (D) b ieh x— Z. k2
Z P2 . pTictps \/*ZS:E S'k+5 Cols| ) =

me

moment:

u b,p#0
1672e* ZoZe Cop (D) k?
S ZaZe Sab \P) K (s kel
12V ab;p#ﬂ"nam'c p2 (p ) S -+ b X
((5‘“ (nbfp(’;r pls — nlip :+k(5+k+P) + 6””( Cs+k+pCs nkﬂ) :+kCS*Pni+p))> =
a 16m2e? §
K2V
22 G (0 i 2
Z W% < ((p -k) ((s . k+5) - ((s —k—p) k+?>>) nb,pa;[pas> -
a,bs,p£0 ¢
16m2et y
K2V
ZaZiy o (P) k? k? a
ey p? Pk (s k*? —|(s+p) ’k+5 b i plsTicip ) =
a,b,s,p#0
16m2et ZaZiy Ca (P) a
K2V memy P2 { k) by sicipsMicin) =
abspA0

16m2et Z3 Ca (p) 2
- 12172 Z m2 p ((p k) (p k)k) —p ;rpa’
a,b,s,p#A0 @
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Notice that the angular average of (p - k) vanishes! Hence,

16m2et ZaZy Cop (D)
C‘V k) = a ab b+ bond B
o kv abspro’ el P’ {(p- K’ stkip”s nk+p>
167! Z2 G (p) -
T, L (e )
a,b,q,s,p#0
167['2(‘4 Cab YAVAY 9 ZQ ) b -
Z Mammy <(p . k) bs+k+pb 'flk+p> m <(p k) ag ,as > —
a,b,s,p#0
1671'294 Cab ZaZb ZZ - .
> (mamb ((P-K)*n" pnip) — 2 ((p-k)*n’ p>>
a,b,p#0 a
Finally,
1671' et ZoZs Z3 )
o Z as (4 (m my, i qlicra) e <nliq”q>)v
a,b,q#0 a 4

which reduces to (3.26) if we introduce the static partial structure
factors

Sav (q) = % (5.32)
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