Piotr Drygaś, Vladimir Mityushev, Barbara Sobek, Mirosława Zima (Eds.)

The 3rd International Workshop

Boundary Value Problems, Functional Equations and Applications

Rzeszów, Poland, April 20-23, 2016 Abstracts

University of Rzeszów

Editors

Piotr Drygaś Vladimir Mityushev Mirosława Zima Barbara Sobek

Faculty of Mathematics and Natural Sciences University of Rzeszów Rzeszów Poland

ISBN 978-83-7996-267-9

Cover design: Magdalena Rej and Łukasz Kuśnierz under the supervision of Karolina Niwelińska – Faculty of Art, University of Rzeszów

Table of Contents

I Plenary Lectures

Modeling swarms: from micro to macro Mirosław Lachowicz	3
The Riemann-Hilbert problem on multiply connected domains Mohamed M. S. Nasser	4
Main differences between state-dependent and fixed-time impulsive BVPs Irena Rachůnková	5
Analogue Keldish-Sedov formula in plane elasticity Alexander Soldatov	6
Calculation of thermal stresses of the blades with and without TBC based on FEM method	7

II Contributed talks

Controllability of the process described by system of ODE with constraints	11
Immersion principle for boundary value problem for ordinary differential equations	12
The behavior of weak solutions to the Dirichlet problem for second order elliptic quasi-linear equation with constant and variable nonlinearity exponent in a neighborhood of a conical boundary point Yury Alkhutov, Mikhail Borsuk	13
Boundary stabilization of a flexible beam with a tip rigid body without dissipativity	14
Random-field solutions for linear hyperbolic stochastic PDEs with variable coefficients	15

Immersion principle for boundary value problem for ordinary differential equations

Serikbai Aisagaliev, Zhanat Zhunussova

Al-Farabi Kazakh National University, Almaty, Kazakhstan e-mails: Serikbai. Aisagaliev@kaznu.kz, zhzhkh@mail.ru

A constructive solution method for boundary problem for ordinary differential equation is supposed on the base of constructing a general solution of the Fredholm integral equation of the first kind. We consider the following boundary value problem

$$\dot{x} = A(t)x + B(t)f(x,t) + \mu(t), t \in I = [t_0, t_1],$$
 (1)

with boundary conditions $(x(t_0), x(t_1)) \in S \subset \mathbb{R}^{2n}$ and phase restrictions $x(t) \in G(t) : G(t) = \{x \in \mathbb{R}^n | \gamma(t) \leq F(x,t) \leq \delta(t), t \in I\}$, where A(t), B(t) are prescribed matrixes with piecewise-continuous elements of the orders $n \times n, n \times m$ correspondingly, $\mu(t), t \in I$ is prescribed n-dimensional vector-function with piecewise-continuous components, f(x,t) is m-dimensional vector-function, defined and continuous by variables $(x,t) \in \mathbb{R}^n \times I$ and satisfied to the conditions: $|f(x,t)-f(y,t)| \leq l|x-y|, \forall (x,t), (y,t) \in \mathbb{R}^n \times I, l = const > 0, |f(x,t)| \leq C_0|x| + C_1(t), C_0 = const \geq 0, C_1(t) \geq 0, C_1(t) \in L_1(I, \mathbb{R}^1)$. Here S are prescribed convex closed sets. The problem is formulated: Find necessary and sufficient conditions for existing a solution of the problem (1).

- A. N. Tikhonov, A. B. Vasileva, A. G. Sveshnikov, *Differential equations*, M.: Science, 1985, p. 231.
- S. A. Aisagaliev, General solution of a class integral equations, Mathematical Journal, Institute of Mathematics MES RK 5 (2005), 7–13.