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The laser-induced or heavy-ion-induced implosion of fusion fuel pellets
starts from normal solid-state conditions and leads to the extreme conditions of
inertially confined plasmas in a distinct domain of warm dense matter (WDM)
of high densities and temperatures. Usually, the plasma stopping power is
defined as the magnitude of the mean energy loss per unit path length:
S =-AE/ Ax. Clearly, the treatment of the stopping power of these manmade
plasmas require a quantum-mechanical formulation in all ranges of plasma
coupling and degeneracy. The quantum-mechanical description of the energy
loss in a way that can be immediately applied to plasmas under various
conditions was obtained and discussed in detail in /1, 2, 3/ to name a few. The
polarizational contribution to the stopping power S of an electron one-
component plasma relates it to the system loss  function

L(k,w)=—-Ime " (k,w)/ @, where & '(k,w) is the plasma inverse dielectric
function:
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where v, Z e are the projectile velocity and charge. A contemporary discussion
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of the topic can be found in /4/. The stopping power is also an important tool of
plasma diagnostics. Particularly, the "minus first" (projectile) velocity power
moment of the stopping power /5/ or the stopping high-velocity asymptotic form
16/,
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where @, is the plasma frequency. Usually, the interaction of target electrons

with the plasma 1ons is neglected in the stopping power. Nevertheless, the target
plasma electron-ion static structure factor influences the plasma polarizational
stopping power. This effect has been studied using the Feynman-like form for
the plasma loss function /7/:
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2. Transport, optical, and thermodynamic properties of plasma

L(k,0) _ o, (k) - o (k) o (k)
zC, (k) @ (k) 207 (k)
stemming from the canonical solution of the moment problem of reconstruction
of the system inverse dielectric function & '(k,) /8/. Here, the characteristic

o [
a)j = Czj_z(k) ) J=L 4

C()=r"[o'Lw)do, v=0,1, ..

o(w)+ o(w—-w,k)+o(w+aw,k), (3)

frequencies

and

are the power frequency moments of the loss function. Due to the parity of the
latter, all odd-order frequency moments vanish. The even-order frequency
moments are determined by the static characteristics of the system. After a
straightforward calculation one obtains:

Cy(k)=(1-¢"'(k,0)), C,(k)=w,

C,(k)y=w,(1+K(k)+U(k)+H),
with K(k)= <v§>kz+I‘12k4/(2rrz)2 /a)f), <v2> being the average squared
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characteristic velocity of the plasma electrons. The last two terms in the fourth
moment stem from the interaction contribution to the system Hamiltonian and
can be expressed in terms of the partial structure factors S, (k), a,b=e,i and
plasma is modelled as a H-like system with n, =Zn, /9/. The Nevanlinna

formula of the theory of moments expresses the dielectric function which

. 2
satisfies the known sum rules C,, 0?

o) (z+q)
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in terms of a function g =¢q(k,z), which is analytic in the upper complex half
plane Imz >0 and possesses there a positive imaginary part. It must also satisfy
the limiting condition:(g(k,z)/z) >0 as z—> o for Imz>0. In an electron
liquid this Nevanlinna parameter function plays the role of the dynamic local-
field correction (LFC) G(k,®). In particular, the Ichimaru visco-elastic model
expression for G(k,) is equivalent to the Nevanlinna function approximated as
i/t , 7, being the effective relaxation time of the Ichimaru model /9/. In a

m? m

multi-component system the Nevanlinna parameter function stands for the
species’ dynamic LFC’s. In general, we do not have enough phenomenological
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conditions to determine that function ¢(k,®) which would lead to the exact

expression for the loss function. One might benefit /10/ from the Perel’-
Eliashberg /11/ expression for the high-frequency asymptotic form of the
imaginary part of the dielectric function of the system considered here,

Ime(k,0[) (B)")(4/3)"r" 3w,/ )", where r,=(4zn/3)""me’/n’
is the Brueckner parameter. This result also implies that higher even-order
frequency moments, C,,(k), />3, diverge. The model (3) corresponds to the
limiting case with g(k,®)=0. It was shown in /7/ using (3) that in a hydrogen-
like two-component plasma, (2) is substituted by

Zpea)p ? 2m v
Srcp(v > 0) = Lip—t (5)

n .
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The second quantity of interest to characterize the slowing down process is
the energy-loss straggling Q”(v), which describes the statistical fluctuations of

the energy loss of the particle and is defined /2/ as the square of the standard
deviation of the energy-loss distribution per unit pathlength, i.e.,

(AE *)-(aE)
=

The polarizational contribution to the straggling is also defined by the
system loss function:

Q*'(v)=

2(Z e)’hedk ™
Qz(v)=£ dk afL(k,a))coth@da), (6)
v’ k 2
0 0

where ' is the target plasma temperature. Now, the same procedure which led
to (5) for the straggling asymptotic form give the following expression:

Z Zh 2mv/h
—( ”eaj"’) I a)z(k)coth(—ﬂh%(k)]ﬁ.
v

Q?’(‘P(V —> ) = p

o, N1+H v
It is well-known that in classical systems (8 — 0), Q*(v) =2S(v)/ . Similarly,
when f— 0and 7 — 0,
25(v > o)
p

We have calculated both the stopping and straggling and their asymptotic
forms. The NPF was chosen to satisfy the Perel’-Eliashberg asymptotic form.

Ime(k, 0l (BR)") 1 (4/3)"“r 130,/ ),
The target plasma static structure factors were calculated in the hyper-

netted approximation. The results are presented in Figs. 1-2, where the stopping
power and straggling, and their asymptotic forms for very fast projectiles are

Q’(v o> o) =
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2. Transport, optical, and thermodynamic properties of plasma

displayed for r, =2.5256 and two different values of the coupling

parameter I = Be”3[47xn, / 3. These numerical data tentatively confirm the above
analytic results, which might serve for the WDM diagnostics.
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Fig. 1. The stopping power (red line) and Fig. 2. Asin Fig. 1, but for I'=0.11

straggling (blue line), and their
asymptotic forms (dashed lines of respective
colors) for I'=1.077
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