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Abstract— We report on the experimental investigation of
gluing bifurcations in the electronic circuit.

I. INTRODUCTION

For most of scenarios of transition from order to chaos in
low-dimensional dynamical systems theoretical investigations
were followed by accurate experimental verification which not
only recovered the qualitative picture of the transition but were
also able to resolve its quantitative details. Universal sequence
of period-doubling bifurcations, as well as transitions to chaos
via the breakup of the quasiperiodic state and via different
kinds of intermittency have been objects of numerous me-
chanical, hydrodynamical, optical, chemical etc. experiments
(see references e.g. in [1], [2]).

A scenario which, albeit well understood theoretically, has
received less attention from the experimentalists, is the route to
chaos via the sequence of the so-called gluing bifurcations. In
the course of these bifurcations, the stable periodic orbits come
together, recombine and form the new periodic orbits which
are more complicated than the original ones. Recombination
occurs via the formation in the phase space of the system of
two orbits, homoclinic to a saddle point. Homoclinic bifur-
cations are well-known in chaotic dynamics: in the famous
Lorenz equations [3], the birth of the chaotic set in the phase
space occurs via the so-called “homoclinic explosion” [4],
[5]. The main difference between the homoclinic explosion
and the gluing bifurcation lies in the number of newborn
periodic orbits as well as in their stability. The explosion
creates simultaneously the countable set of unstable periodic
orbits which form the kind of “skeleton” of the emerging
chaotic attractor. In contrast, a gluing bifurcation, taken alone,
produces just one or two stable periodic orbits; however, in the
course of the sequence of such bifurcations the periodic orbits
get more and more complicated, until the whole development
culminates in the birth of the chaotic attractor.

Unlike limit cycles, homoclinic trajectories in generic dy-
namical systems are structurally unstable. Furthermore, the
accomplishment of the gluing scenario requires either the
perfect mirror symmetry of the system, or the ability to track
in the parameter space the sequences of codimension-two
phenomena. For this reason, the gluing bifurcations pose a
difficult object for experimental studies: they are sensitive to
fluctuations, as well as to imperfections of the experimental
setup. Most occurrences of gluing bifurcations were reported
in theoretical and numerical studies in the context of hydrody-

namics [6]–[8], nematic liquid crystals [9], [10] and optother-
mal nonlinear devices [11]. In the experiments, separate gluing
bifurcations were detected in the Taylor-Couette flow of the
viscous fluid between two concentric cylinders [12]. Here, we
report on our experimental investigation of the sequence of
gluing bifurcations in the electronic circuit.

II. THEORETICAL PREDICTIONS

A. General theory

The main ingredient of the gluing bifurcation in the contin-
uous dissipative dynamical system is the equilibrium point of
the saddle type with one-dimensional unstable manifold. We
restrict ourselves to the situation when two components of
this manifold are symmetric (like in the case of the Lorenz
equations). When the parameters of the system are varied,
the unstable manifold of the saddle can return back along its
stable manifold: the homoclinic orbit is formed. Symmetry
ensures that every such orbit possesses a twin. Phenomena
which accompany the birth/destruction of homoclinic orbits,
depend on the leading eigenvalues of the Jacobian of the
equations at the saddle point. In the considered situation, there
is just one positive eigenvalue, denoted below as λ+. Let the
closest to zero negative eigenvalue λ− be real. Stability of
the bifurcating solutions depends on the “saddle index” ν =
|λ−|λ+ that indicates which of the two properties – contraction
or expansion – dominates the phase space in the neighborhood
of the fixed point. In the absence of symmetry, destruction
of the single homoclinic trajectory creates the unique periodic
orbit which is stable if ν > 1 and unstable otherwise. Presence
of the second, symmetric homoclinic trajectory enriches the
dynamics: in this case, under ν < 1 the countable set of
unstable periodic orbits, as well as a continuum of recurrent
trajectories is born from the pair of homoclinic orbits [5]; this
is a decisive step in the subsequent formation of the Lorenz
attractor. The situation for ν > 1 is less complicated: here two
stable periodic orbits approach the saddle point, swell into the
homoclinic orbits and are “glued together”. When the pair of
homoclinic trajectories breaks up, the new stable symmetric
periodic orbit is left in the phase space: it is obtained by
concatenation of the previously existing ones. The number of
loops (turns) of the trajectory in the phase space is doubled,
like in the case of the period-doubling bifurcation. Notably,
the temporal period gets unbounded near the bifurcation and
becomes infinite when the homoclinic trajectories are formed.



Further variation of parameter can result in the sequence
of secondary gluing bifurcations. Before this can happen, the
symmetry-breaking should take place: the newborn symmetric
periodic orbit loses stability in the course of the pitchfork
bifurcation, and two mutually symmetric orbits bifurcate from
it. These two orbits approach the unstable manifold of the
saddle and coalesce in the next gluing bifurcation. As a result,
the new stable periodic orbit is born, which has four times
more loops than the original ones. The subsequent scenario
consists of the alternating gluing- and symmetry-breaking
bifurcations which eventually end in the formation of the
chaotic attractor which has a two-lobe shape, similar to that
of the Lorenz attractor. It has been demonstrated [6], [13]
that the sequence of the bifurcational values of the parameter
converges at the exponential rate; in contrast to the period-
doubling scenario, this rate is not the unique universal constant
but is predetermined by the value of the saddle-index ν > 1.

Remarkably, the attractor which is formed in the course
of this bifurcation scenario, occupies a certain intermediate
position between order and chaos: the Fourier spectrum of
the trajectory is neither discrete (like in case of the regular
dynamics) nor absolutely continuous (like in case of a chaotic
or stochastic process) but is supported by the fractal set [14].

In the absence of symmetry between the components of
the unstable manifold, the gluing bifurcation becomes a
codimension-two phenomenon; on the plane of two parame-
ters, there are numerous paths which lead from order to chaos
via the formation of homoclinic orbits; each of these paths is
characterized by its own scaling constants [15]–[17].

B. The model set of equations

For experimental modeling by the appropriate electronic
circuit, we seek a dynamical system of the minimal possible
order and with simple algebraic form. Gluing bifurcations can
occur in the three-dimensional phase space, like that of the
Lorenz equations. However, numerical evidence indicates that
in the parameter space of the “canonical” Lorenz system the
homoclinic bifurcations can occur only for ν < 1. Therefore,
we introduce a modification and consider the set of equations

ẋ = σ(y − x) +Ay z

ẏ = Rx− y − x z (1)
ż = x y − b z

Here, σ, R and b are the conventional Lorenz parameters,
whereas A parameterizes the additional nonlinear term in the
first equation. At A=0 Eqs (2) turn into the Lorenz equations.
In fact, the system (2) is the re-parameterization of the model,
employed in [6] for the study of thermal convection in the layer
of fluid subjected to high-frequency modulation of gravity. We
fix the traditional values of the parameters σ=10 and b=8/3 [3],
and vary the remaining parameters R and A.

Equations (2) are invariant with respect to the transforma-
tion {x → −x, y → −y}. The origin x = y = z = 0 is the
equilibrium which is stable for R < 1 and is a saddle with one-
dimensional unstable manifold in the parameter range R > 1.

Like in the original Lorenz equations, variation of parameters
can produce pairs of structurally unstable homoclinic orbits to
this equilibrium; these orbits leave the vicinity of the origin
along the xy-plane and return to it along the z-axis. The saddle
index equals

ν =
2 b

−σ − 1 +
√
(σ − 1)2 + 4σ R

. (2)

Notably, the value of ν is A-independent, which allows to
study the effects of additional nonlinearity under constant
saddle index. It is straightforward to see that ν is smaller than
1 for R > Rν = (b + σ)(b + 1)/σ and exceeds 1 otherwise.
Numerical integration indicates that increase of A lowers the
critical value of R, required for the formation of the pair of
homoclinic orbits. Therefore, at small positive values of A the
homoclinic explosion and the Lorenz scenario of transition to
chaos are observed, whereas the sufficiently large values of A
ensure the inequality ν > 1 and enable thereby the sequence
of gluing bifurcations.

III. EXPERIMENTAL SETUP

Our electronic circuit is a modification of the circuit which
was employed in [18] to mimic the dynamics on the Lorenz
attractor. As seen in Fig. 1, the nonlinear term ∼ yz in the first
equation of (2) is modeled by the additional analog multiplier.

Fig. 1. Electronic circuit for modeling Eqs (2). The values of the resistors
and capacitors are shown on the scheme. The analog multipliers (denoted by
crosses) are of the type AD633AN.

The cited values of electric characteristics correspond to
fixed values σ = 10 and b = 8/3 in Eqs (2). Variation
of parameters A and R is implemented through variation of
respective resistances R17 and R5; the value of R equals 0.01
of the resistance R5 in kΩ.

To ensure that all voltages in the circuit are inside the
operating range of dynamical multipliers (from -10 to 10 V),



we rescale the original dependent and independent variables:
we assume that the dimensionless variables x, y and z are
measured in volts, and proceed to u = x/5, v = y/5,
w = z/10. For the time measured in “seconds”, we introduce
τ = t/T with T=100. This recasts Eqs (2) into

u′ = T (σ(v − u) + 10Av w)

v′ = T (Ru− v − 10uw) (3)
z′ = T (2.5u v − bw)

where prime denotes differentiation with respect to time τ .

IV. RESULTS

We performed measurements for different values of the
parameters A and R. The equilibrium u=v=w=0 is a saddle-
point in the range R > 1. On the parameter plane of R and
A the pair of principal homoclinic orbits to this equilibrium
exists on the curve which passes through the point A = 0, R =
13.926 . . . [4]. For low values of A this curve corresponds
to the homoclinic explosion of the Lorenz type. According
to the theory, explosion should be replaced by the gluing
bifurcation when the corresponding value of R gets below
Rν=209/45=4.6444. . .; this corresponds to the range A ≥ 4.
Indeed, we observed in the experiment the Lorenz-like chaotic
attractors for A < 4 and gluing bifurcations for A > 4.

We illustrate the bifurcation scenario with the plots which
show the transformation of projections of the phase portraits
which correspond to increase of A at constant values of other
parameters.
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Fig. 2. Principal gluing bifurcation: Evolution of the attracting set.
(a,b): two stable periodic orbits. (c): formation of two trajectories, homoclinic
to the equilibrium. (d): stable self-symmetric orbit with two loops.

By varying initial conditions, we are able to identify in the
phase space of the circuit two attracting closed trajectories
which are almost symmetric to each other (Fig.2a). As the pa-
rameter A is increased, these two orbits come closer (Fig.2b),

approach the invariant manifolds of the saddle equilibrium at
the origin and form the pair of symmetric homoclinic orbits to
this saddle (Fig.2c). As soon as the parameter A gets another
increment, the homoclinic orbits break up and disappear: the
only attractor of the system is shown in Fig.2d: it is the
periodic orbit with two loops which is invariant under the
symmetry transformation {u → −u, v → −v} .

According to our measurements, close to the homoclinic
bifurcation the period T0 of the oscillations reproduces the
known logarithmic asymptotics: T0(A) ∼ log

(
1/(Ahom−A)

)
.

This is visualized in Fig.3.
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Fig. 3. Growth of the period of oscillations close to the homoclinic
bifurcation.

As seen in Fig.4, the oscillations are strongly anharmonic:
the overwhelming part of the period is spent in nearly motion-
less state. This corresponds to long hovering of the trajectory
in the vicinity of the saddle point.
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Fig. 4. Temporal evolution close to the gluing bifurcation.
(a): oscillations on limit cycles with 1 loop prior to the bifurcation;
(b): oscillations on the limit cycle with 2 loops.

Further stages of the evolution of the attracting trajectory are
sketched in Fig.5. The symmetric limit cycle with two turns
(Fig.5a) loses stability as a result of the pitchfork bifurcation.
One of the two resulting stable asymmetric limit cycles is
shown in Fig.5b. As the parameter is further increased, these



two limit cycles approach the equilibrium, coalesce, and the
secondary gluing bifurcation takes place: two orbits with 2
turns produce a single stable orbit with 4 turns (Fig.5c). The
resolution of our measurements as well as the inevitable asym-
metry in the circuit did not yet allow us to resolve the further
stages of the gluing process; the bifurcation sequence rapidly
converges, and the chaotic attractor (Fig.5d) is established.
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Fig. 5. Further volution of the attracting set.
(a): stable symmetric orbit with two turns; (b): asymmetric orbit with two
turns; (c): symmetric orbit with 4 turns born from the secondary gluing
bifurcation; (d): chaotic attractor.

V. CONCLUSION

We have demonstrated in the experiment on the electronic
circuit the first stages of the sequence of gluing bifurcation.
Experimental results match well the theoretical predictions. In
further studies we intend to refine the measurements, resolve
the scaling properties in physical characteristics of oscillations
as well as in the parameter space, and investigate the properties
of the eventual chaotic attractors.
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