PARAMETRIC REGULATION ON THE BASIS OF THREE-SECTOR MODEL 
OF ECONOMICAL GROWTH IN WITH STOCHASTIC PHENOMENA

Abstract
Consider the optimal control problem for the three-sector model of economic growth. The control is chosen from the given set of the low of control such that defines its dependence on the state function, control parameters, and stochastic parameters. The problem is the finding of the low of control and the corresponding control parameter such that maximizes with some phase constraints the expectation value of the supply for consumption for the given time interval.
Key words: statistical and probabilistic modelling, optimization, stochastic control, and economics.
1. Introduction

Regulation problems for stochastic economical systems occur widely in practice (see, for example, [1] – [3]). Optimal control problems for stochastic dynamical systems are also an object of the serious mathematical researches (see [6] – [8]).
We consider the three-sector model of economic growth, described by the nonlinear differential equations system; it is based on the Solow economic growth model (see [9] – [11]). The system is described by the nonlinear ordinary differential equations. The control is chosen from the given set of the low of control such that defines its dependence on the state function, control parameters, and stochastic parameters (see [12] – [15]). Particularly bifurcation extremal points for the determinate analogue of this system were founded in [15].

The peculiarity of this paper is the selection of the low of control from the given set of regulation and the resolution of the corresponding economical control problem. The problem is the finding of the low of control and the corresponding control parameter such that maximizes with some phase constraints the expectation value of the supply for consumption for the given time interval. 
2. General problem statement and the algorithm of its resolution

Let us definite the general control problem statement. We consider the dynamical system, described be Cauchy problem
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The vector function 
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 is a state function here, f is a known vector function, and 
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is a given initial state. The vector 
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 characterizes stochastic parameters of the system with known distribution law. The vector function 
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 is a control; it is chosen from the given set 
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The function 
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 is a control parameter vector, which satisfies the following conditions
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with known sets 
[image: image11.wmf]ij

V

.
Suppose the problem (1.1) has a unique solution 
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 for the low of control i, the control parameter 
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, and the concrete implementation ( of stochastic parameters. This solution is the stochastic process because of the randomness of the parameter (.
There are also the phase constraints
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where Е is a expectation value and 
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 is a given set. Let us definite the admissible control parameter set 
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 for the low of control i as the set of the values 
[image: image17.wmf]i

v

such that satisfy to conditions (1.3) and (1.4). Suppose this set is not empty.
We definite 
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where G is a known function. We consider also the functional
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Suppose the problem of its maximization on the set  
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 has a solution. We determine the corresponding optimal functional for the low of control i by the formula
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The problem consists in finding of the optimum law of regulation, i.e. value s such that satisfies to the equality
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Besides it is necessary to search the corresponding optimal value of a control parameter 
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, i.e. the control parameter such that
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We will obtain finally the analytical estimate of the probability density function of the corresponding functional 
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We describe the algorithm for the resolution of this problem. Let us consider the scalar case with a unique control parameter and stochastic one. We propose the following algorithm:
i) Let the low of control i be fixed. The corresponding set of admissible values of parameter 
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,  determined by  condition (1.3) is devised on a part with some step. The subsequent computation will be realized for each value 
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[image: image28.wmf]k

h

 are modeled in the connection of the probability distribution of parameter (.
ii) The control is determinate by the formula
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with using equality (1.2). The state function
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follows from problem (1.1) with control 
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iii) The control parameter 
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 is not admissible whenever the inclusion

[image: image33.wmf]()()

jk

i

xtXt

éù

Î

ëû

E


get broken for some time t then this. Then it will be eliminate.
iv) The state functional is computed by the formula
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for all admissible control parameter 
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v) The value 
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 is found as the mean value with respect to the number k of the functional 
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vi) Denote by 
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 for concrete low of control i according of the equality (1.7).

vii) The optimal low of control s with corresponding optimal control parameter 
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 is chosen from equalities (1.8), (1.9)
viii) We know the distribution of the functional 
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 with respect to the stochastic parameter (. Then the assumption about the type of this distribution is supposed. The analytic formula of an approximate theoretical probability distribution is obtained by means of the known statistical hypothesis verification methods.
2. Parametric regulation problem for the three-sector economical model
We consider the three-sector economical model as an example. It is based on the Solow economic growth model (see [9], [10]). This model considers the pecuniary, investment and consumer funds of the economy. It is proposed that the output goods depend on the production funds and the employment. The obtained funds are consumed by the people and used as the investment. The speed of change of the production funds decreases by the amortization and increases by the investment. The speed of employment increasing is constant. The level of investment is based on the production funds. Then we have the following system of the differential equations [11]:
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with initial conditions
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where L is an employment in the production, 
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 are the production funds of investment and consumer funds, 
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 are the initial values of employment and production funds, ( is the increment of employment, 
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 and 
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 are the amortization parameters, (  and u are the part of the investment distribution into the pecuniary and investment sectors, ( is the part of employment in the pecuniary sector, 
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 is an initial employment in the production, 
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 and 
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 are the production funds of investment and consumer funds. The pecuniary function F is determined by the Cobb – Douglas formula
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 where В is a technologic coefficient, ( is the elasticity coefficient. Therefore the mathematical model of control system is described by Cauchy problem (2.1) - (2.4). The existence and uniqueness of this problem follows from standard differential equations theory.
We choose the part of the investment distribution into the investment sectors u as control. The admissible regulations are determined as disturbances of a basic one. It is found by the following formulas [9] – [12]:
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It conforms to formula (1.2). Here 
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 is a basic control, 
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it realizes restrictions (1.3) for the control parameters. 

The increment of the employment ( is a stochastic parameter with known probability distribution. Denote by 
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It is a stochastic analogue of the phase constraints using in [9] – [12], and signify the small difference between our state functions (production facilities) and its basic values.
Note that investments are distributed in all sectors of economy. Therefore the control satisfies the inequality
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The control u is defined be one of equalities (2.5), which characterize the given lows of control. Then this inequality conforms to the phase constraints too and can by transformed to the conditions 
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after the choosing of the concrete low of control. Inequalities (2.7), (2.8) conform to conditions (1.4).

Determine the consumer fund for the given time interval
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Bifurcation extremal points for the determinate analogue of the maximization problem for the functional J for system (2.1) – (2.4) with constraints (2.6) – (2.8) were founded in [12]. We choose as the functional (1.5) the integral
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where 
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 is the solution 
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 of system (2.1) – (2.4) with concrete realization (  for the low of control i from equalities (2.5) with control parameter 
[image: image74.wmf]i

v

. The optimal control problem for this low of control is the subject to maximization of functional (1.6)
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using the set 
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 of value of the control parameter such that satisfy to conditions (2.6), (2.7) and the corresponding inequality (2.8). According by equality (1.7) denote the maximum of the functional by
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. We obtain the problem of choosing the best low of control and the corresponding best value of the control parameter.

3. Approximate solution of the problem 

The computing of the given optimal regulation problem is realized in the basis of the defined algorithm. The parameters of the system are conformed to the macro economical characteristics of the Kazakhstan during 2001-2008 years (see the table 1, [16], p. 44). We will apply the sampling for the stochastic parameter ( (increment of the employment) with using of the known information [16]. It is distributed by normal probability distribution with an expectation value 
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; it follows from the testing of statistical hypothesis.
Table 1. Parameters of the system.
	parameter
	denomination
	value
	dimension
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L


	initial value of employment
	6.698
	million person
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	initial value of investment fund 
	4004
	billion tenge
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	initial value of consumer fund
	40000
	billion tenge
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	amortization parameter 

of investment fund
	0.000293967
	-
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	amortization parameter 
of consumer fund
	0.000293967
	-

	(
	part of the investment distribution into the pecuniary sector*
	0.1
	-
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	part of employment 
in the pecuniary sector*
	0.319043
	-
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	technologic coefficient*
	0.265137
	-
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	elasticity coefficient*
	0.41582
	-


*) These parameters are computed in the basic of the dates from [13], p. 44.
The optimal control parameters and the corresponding maximum values of the state functional, i.e. expectation values of the consumer fund for the given time interval for each low of control are computed by means of the defined algorithm (see Table 2). The optimal low of control is the second one by obtained results.
Table 2. Solutions of the optimal regulation problem for the different lows of control.
	low of control
	optimal
control parameter
	maximal
state functional

	i
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	1
	0
	1922090

	2
	17440
	1923240

	3
	0
	1922090

	4
	160
	1922870


We determine now characteristics of the probability distribution of the consumer fund for the given time interval 
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 with best low of control and optimal control parameter. The corresponding probability distribution of stochastic parameter ( is computed for the given sampling of the increment of employment ( (see Figure 1). The obtained sampling of ( with size 
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.  Its probability distribution is similar to normal one. However the verification of its theoretical probability distribution (see for example [14] – [18]) with using of this sampling is lognormal by Anderson – Darling criterion and log Pearson by Kolmogorov one. 
The variate (  has the lognormal distribution with density of distribution
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by Anderson – Darling criterion, where 
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is an expectation value and standard deviation 
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 for the positive values ( and zero density of distribution of for the non positive values (. 
The variate (  has the logpearson distribution with density of distribution

[image: image97.wmf]1

1lnln

()exp

()

K

f

Г

a

xmxm

x

xbabb

-

æöæö

--

=-

ç÷ç÷

èøèø


by Kolmogorov criterion, where
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.  The estimation of the expectation value by the sampling of ( is 
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The serious proximity of the obtained density of distribution
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 was proved by means of the Maple 13.
The received results can be used for an estimation and prognostication of different macro economical characteristics.
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