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Abstract 
 

In this paper we examine the 
problem of the radiation of a vertical 
Hertzian dipole over a lossless medium 
with flat interface in high frequency 
regime. Here the goal is to calculate the 
electromagnetic (EM) field value below 
the flat interface. For this purpose, a 
novel Geometrical Optics (GO) method 
is adopted here, and in this paper the 
first step to the problem solution is 
presented by calculating the position of 
the virtual image for given coordinates 
of the observation point below the flat 
interface. In order to accomplish the 
above, Snell’s law and simple 
trigonometric relations for the given 
geometry of the problem are used. 
 

 

1. Introduction 
 

The problem of electromagnetic (EM) wave 

propagation over the flat terrain (or over a 

lossy medium with flat interface) is well – 

known in the literature as the ‘Sommerfeld 

antenna radiation problem’ [1-23]. Even in 

more cases the interest may be for 

observation points over the flat interface [1-

14], also the problem solution below the flat 

interface can be formulated [see e.g. 15-22], 

and this is performed in an exact EM wave 

formulation [15-22]. On the contrast, in this 

paper we examine the problem of 

calculating the EM field value for an 

observation point below the flat interface 

(z<0), where we assume that the medium at 

the region  z<0  (see Fig. 1) is a lossless and 

non-magnetic medium, that is  εr2 (relative 

dielectric constant) o medium 2 is real (εr2 > 

1) and  μr2 = 1 (μr2 is the relative magnetic 

constant of medium 2, below the interface). 

The source of EM radiation in this paper 

(see also Fig. 1) is assumed to be a vertical 

Hertzian dipole (i.e. dipole of length much 

smaller from the wavelength of EM 

radiation, 2l <<λ).  

   Furthermore, here we assume that the 

frequency of EM radiation from the vertical 

Hertzian dipole is sufficiently high, so that 

in this paper we can use a ‘Geometrical 

Optics’ (GO) approach, i.e. a ‘ray optics – 

high frequency’ approximation method. 

   Finally, in this paper we will just 

concentrate on the calculation of the exact 

position of the ‘virtual image’ for an 

observation point B lying in the region  z<0 

(see Fig. 1). Once the location of the image 

point C has been specified, then the value of 

EM field at the observation point B below 

the interface (Fig. 1)  can be easily 

calculated by standard image theory 

approached (see e.g. [23]).     

 

2. Problem Geometry and 
Snell’s law of refraction 
 

 

 
Figure 1. Geometry of the problem. 

The geometry of the problem is shown in 

Fig. 1, above, where we examine here only 

the two – dimensional (2D) case (i.e. 

calculations only on the yz-plane, or  x=0  

plane / one can easily extend our proposed 

method to the three – dimensional (3D) 

space). The radiating vertical Hertzian 

dipole is at height  z0 = h  above the lossless 

dielectric medium with flat interface [which 

lies in the region  z<0 , i.e. lossless and non 

– magnetic medium for  z<0 , that is  εr2 = 
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dielectric constant = real (εr2 > 1), μr2 = 1, 

index of refraction  n2 = (εr2)
1/2 > 1 ].  

   Considering a particular point of 

refraction D (see Fig. 1) the well – known 

Snell’s law for refraction holds (see e.g. 

[23]) :  

      

𝑠𝑖𝑛𝜃𝑡 =
𝑛1

𝑛2
 ∙ 𝑠𝑖𝑛𝜃𝑖 =  √

𝜀𝑟1

𝜀𝑟2
 ∙ 𝑠𝑖𝑛𝜃𝑖           (1)                                                             

 

   Furthermore, let us consider a second 

incident ray  AD’ at a point  D’ close to 

point  D  , that is :  DD’ << OD . Then, we 

obtain a second refracted ray D’F (besides 

the first one, which is  DBE  ray), which 

intersects the first ray at point  C  (which is 

the location of  the ‘virtual image’. For this 

second ray, also Snell’s law for refraction 

holds, that is :  

 

𝑠𝑖𝑛(𝜃𝑡 + 𝛥𝜃𝑡) =
𝑛1

𝑛2
 ∙ 𝑠𝑖𝑛(𝜃𝑖 + 𝛥𝜃𝑖) =

                      = √
𝜀𝑟1

𝜀𝑟2
    𝑠𝑖𝑛(𝜃𝑖 +  𝛥𝜃𝑖)      (2)                                                              

 

   Next, the geometric problem that we have 

to solve is as following :  

Step 1 : Given the coordinates (yB, zB) of the 

observation point B, we will calculate the 

coordinate  yD  for given coordinates of the 

source  (y = 0, z = z0 = h) and of the 

observation point B. This task will be 

presented at Section 3, below (see Fig. 1, 

and in particular Fig. 2).  

Step 2 : Once the coordinate  yD  of the 

refracting point  D  is calculated (Section 3), 

the coordinates  (yC, zC)  of the ‘virtual 

image’ C can be calculated by simple 

geometry (see Section 4 / that is see Fig. 1, 

and, in particular, Fig. 3). 

 

 

 

 

 

 

 

 

 

 

3. Calculation of position of the 
unique refracting point, given 
the coordinates of the 
observation point.  
 

 
Figure 2. Problem geometry with 

coordinates of the observation 

point (B). 

From simple geometrical considerations of 

Fig. 2, and working along the horizontal 

(Oy – axis) we have :  

 

𝐷𝐵′ =   𝑦𝐵 − ℎ ∙ tan 𝜃𝑖 =   𝑧𝐵 tan 𝜃𝑡       (3) 

 

where    yD = h tanθi . Therefore, from eq. 

(3): 

   

tan 𝜃𝑡 =  
𝑦𝐵−ℎ∙tan 𝜃𝑖

𝑧𝐵
                                 (4) 

 

which is a function between the unknown 

quantities  θt  and  θi  (quantities  h, yB  and  

zB  are considered known, here). Moreover, 

we repeat here (just for our convenience) 

Snell’s law for refraction, eq. (1) :  

 

sin 𝜃𝑡 = √
𝜀𝑟1

𝜀𝑟2
 ∙ 𝑠𝑖𝑛𝜃𝑖                              (1) 

                                                               

Furthermore, since tanθt  appears at eq. (4),  

we can easily transform eq. (1) to a form, 

where  tanθt  (instead of  sinθt) appears (this 
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can be very easily performed, by using 

elementary trignomteric calculus). Then, in 

this way, Snell’s law for refraction, instead 

of eq. (1), takes the form :  

                                                                 

𝐵(𝜃𝑖) = 𝑡𝑎𝑛2(𝜃𝑡) =

=
1

1 −
𝜀𝑟1

𝜀𝑟2
∙ 𝑠𝑖𝑛2(𝜃𝑖)

− 1 

                                                                 (5) 

 

while, by just squaring eq. (4), we obtain : 

 

𝐶(𝜃𝑖) = 𝑡𝑎𝑛2𝜃𝑡 = (
𝑦𝐵 − ℎ ∙ tan 𝜃𝑖

𝑧𝐵
)2 

                                                                 (6) 

 

Note here that  C(θi), eq. (6), is a monotonic 

function, decreasing with  θi . where  DB’= 

=yB – yD = yB – h ∙ tanθi > 0 , then tanθi < 

<(yB / h) ,  and where   0  ≤  θi ≤  π/2, while  

B(θi), eq. (5), is a monotonic function, 

increasing with  θi   

(0  ≤  θi ≤  π/2). Then, by using, e.g. 

MATLAB, we can easily calculate the 

angle  θi (Fig. 2) for which  B(θi) = C(θi), 

yielding the solution   θi = θi
0 . Once  θi

0 has 

been calculated (numerically, as described 

just above), one can easily calculate, 

successively, the following quantities : 

 

  𝑦𝐷 = ℎ ∙ tan 𝜃𝑖
0                                        (7) 

 

  sin 𝜃𝑡
0 = √

𝜀𝑟1

𝜀𝑟2
 ∙ 𝑠𝑖𝑛𝜃𝑖

0                           (8)                                                                       

 

(which is Snell’s law, once again), and  

    

𝐷𝐵′ = 𝑦𝐵 − 𝑦𝐷                                       (9) 

 

[see Fig. 2 and eq. (3)].  

 

 

 

 

 

 

 

 

4. Calculation of the 
coordinates of the image point. 
 

 
Figure 3. Geometry for the 

calculation of the image point 

coordinates (C) 

Finally, given the calculation of the 

quantities mentioned at Section 3, above, 

the calculation of the coordinates (yC, zC) of 

the ‘virtual image’ C can be easily 

performed by simple  trigonometric 

calculations on triangle CC’D (1st refracted 

ray of Fig. 3) and triangle CC’D’ (2nd 

refracted ray of Fig. 3), that is by working 

(simple trigonometric calculations) in half – 

space  z>0. Then, it can be easily proved 

that the coordinates (yC, zC) of the ‘virtual 

image’ C are provided by the following 

equations :  

 

𝑦𝐶 = 𝑦𝐷 −
sin(2𝜃𝑡

0)

2
∙

𝛥𝑦2𝑟𝑎𝑦𝑠

𝛥𝜃𝑡
0                    (10) 

 

and 

 

𝑧𝐶 = 
𝛥𝑦2𝑟𝑎𝑦𝑠

𝛥𝜃𝑡
0 ∙ 𝑐𝑜𝑠2𝜃𝑡

0                            (11) 

 

where 

  
𝛥𝑦2𝑟𝑎𝑦𝑠

𝛥𝜃𝑡
0 ≈ 𝐶𝐷 ≈ 𝐶𝐷′                              (12) 

 

where   Δy2rays = DD’ = chosen small 

quantity (known, DD’ << OD),  θt
0  has 
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been calculated from eq. (8) and  Δθt
0 is θ of 

the 2nd ray, rewritten here for our 

convenience :  

 

sin(𝜃𝑡
0 + 𝛥𝜃𝑡

0) = √
𝜀𝑟1

𝜀𝑟2
∙ sin (𝜃𝑖

0 +  𝛥𝜃𝑖
0)     

                                                               (13) 

 

and where angle   (θi
0 + Δ θi

0)  is calculated 

by (see Fig. 3) :  

 

𝜃𝑖
0 + 𝛥𝜃𝑖

0 = 𝑡𝑎𝑛−1 (
𝑦𝐷 +  𝛥𝑦2𝑟𝑎𝑦𝑠

𝑧0
)

= 𝑘𝑛𝑜𝑤𝑛 
                                                               (14) 

 

Then, from eq. (13),  Δθi
0  is also known. 

 

Finally, note that because of eq. (12) and  

CD ≈ CD’  [for small  DD’ , as explained 

below eq. (11), above], the coordinates (yC, 

zC) are ‘almost independent’ of the chosen 

length  DD’= =Δy2rays ,  provided  DD’ << 

OD , as explained above.  

 

 

 
5. Numerical example : 
calculation of the position of 
the refracting point (D) and of 
the ‘virtual image’ (C) for given 
source and observation point 
coordinates.  
 
Referring to Fig. 2, in this numerical 

example we choose :  z0 = h = 10 m (position 

of the radiating Hertzian dipole, i.e. of the 

source of EM radiation),  (yB  = 10 m, zB = 

= -5 m, hence |𝑧𝐵| = 5 m), i.e. the 

coordinates of the observation point, and εr2 

= 1.6. Then, by calculating at MATLAB  

eqs. (5) and (6), i.e. the quantity  B(θi) 

[Snell’s law for refraction] and quantity  

C(θi)  [equation coming from the geometry 

of Fig. 2], and setting  

 

𝐵(𝜃𝑖) = 𝐶(𝜃𝑖)                                       (15) 

 

we find that eq. (15) holds for  θi = 36.320 

[once again, we emphasize here that we 

look here for angles  θi  in the interval (00, 

900) for which  C(θi) is a decreasing 

function of  θi , see eq. (6) and remarks 

below that].  

Then, from eq. (7) we find  :  yD = OD = 

7.35 m (see Fig. 2), and from eq. (9) : DB’ 

= OB’ – OD = yB – yD = 2.65 m.  

Furthermore, by choosing (see Fig. 3) : 

DD’= Δy2rays = 3 m (which is ‘much 

smaller’ than OD = 7.35 m , that is  DD’ 

<<OD  , while we chose here DD’ = 3m > 

DB’ = 2.65 m , as it is the case in Fig. 3), 

we make the following successive 

calculations : 

Moreover, from eq. (14) :    θi
0 + Δθi

0 = 

45.99o, therefore   Δθi
0 = 9.66o . Further, 

from eq. (8), i.e. Snell’s law :  θt
0 = 27.92o, 

and from eq. (13) : θt
0 + Δθt

0 = 34.65o, 

therefore :  Δθt
0 = 6.73o . Finally, from eqs. 

(10) and (11) we calculate the coordinates 

of the ‘virtual image’ :  yC =  -3.22 m     ,   

zC = 24.01 m .      . 

 

 
 

Figure 4. Graphs of monotonic 
functions B(θi), eq. (5), which is 
variant form of Snell’s law, and 
C(θi), eq. (6), which comes from 

problem geometry. 
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6. Conclusion – Short 
Discussion – Future Research  
 
In this paper we considered the problem of 

a vertical short (i.e. Hertzian) dipole 

antenna in air radiating above a flat 

interface. Below the flat interface a lossless 

dielectric medium lies (unbounded for  

z<0), with dielectric constant  εr  (εr = real). 

   In high frequencies the solution to the 

above EM problem can be solved in an 

approximate fashion by applying the 

‘Geometrical Optics’ (GO) approach, that is 

‘ray representation’ of the EM waves. In 

this paper, as a first step, the refraction of 

rays on the flat interface is considered (by 

applying the well – known ‘Snell’s law of 

refraction’) and for given position 

(coordinates) of the radiating dipole (above 

the flat interface) and of the observation 

point (below the flat interface) the 

coordinates (yC , zC ) of the ‘virtual image’ 

C of the radiating source are calculated.  

   The above solution is based, for given 

coordinates of the observation point below 

the flat interface, on the calculation of the 

position of the unique refraction point D on 

the interface. In this way, by applying our 

proposed method, a unique position (yC , zC 

) for the ‘virtual image’ C is calculated (our 

formulation described above is a 2D 

formulation of the problem, where one can 

easily extend that to a 3D problem 

formulation). 

   Concerning corresponding future 

research by our group to this paper (in the 

near future), the well – known EM radiation 

formula  from a vertical Hertzian dipole will 

be used, so that by applying standard image 

theory techniques an approximate EM 

formula at the receiver position (below the 

flat interface) will be derived (i.e. 

approximate value of the EM field at that 

point).   

   Finally, regarding possible applications 

of this research can be, for example, for the 

calculation of EM field values below the 

surface of the sea or of lakes, when a 

vertical antenna radiates above sea or lake 

surface (the rather small value of sea or lake 

water conductivity can be neglected, as a 

first approximation, provided that the depth 

below sea or lake surface is sufficiently 

small).  
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