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Abstract

Among the many different factors that influence blood pressure, activity was once thought to be
the major determinant of the circadian variation in blood pressure. Whereas the endogenous nature
of the circadian rhythm in blood pressure is no longer disputed, there is great interest in monitoring
activity concomitantly with blood pressure. Herein, we reanalyze a dataset on weeklong ABPM
records obtained concomitantly with actigraphy from 20 clinically healthy young adults. The purpose
of this investigation is to review different approaches available for the characterization of the circadian
variation in physiological variables such as blood pressure, heart rate, and activity. Topics covered
include rhythm detection, the estimation of rhythm parameters, and the visualization of their waveform.
Methods to examine how circadian rhythms of different variables may relate to each other are also
discussed.
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Introduction

Most, if not all, physiological variables undergo predictable circadian variations [1]. Circadian
rhythms are genetically anchored [2, 3], including that of blood pressure, which was long thought to be
no more than a direct response to activity [4].

The endogenous nature of the circadian rhythm in blood pressure is apparent from its persistence
during continued bedrest [5, 6], from its ability to free-run [7, 8], and more recently from the discovery
of clock genes in the periphery as well as in the suprachiasmatic nuclei [4].

Many factors affect blood pressure [9]. Among them, activity plays an important role and can be
easily monitored. Interest in measuring activity concomitantly with blood pressure stems in part from
the merit of defining more precisely the active and resting spans, which may differ greatly among
individuals.

Herein, we re-analyze a dataset of weeklong ABPM and actigraphy records from clinically healthy
young adults [10], with the aim to illustrate different approaches to characterize the circadian variation
in variables such as blood pressure, heart rate, and locomotor activity.

Subjects and Methods

Study participants were 20 clinically healthy volunteers (14 women and 6 men), 20 to 54 years
of age (mean + SD: 26.5 + 9.2). They were students and researchers, with mostly a sedentary work
schedule, following mostly similar regular diurnal sleep-wake schedules. Four were overweight and
one was obese. On the average, body mass index (BMI) ranged from 18.2 to 36.4 (mean + SD: 22.7
+4.6).

Each study participant provided concomitant weeklong records of blood pressure and activity.
Blood pressure and heart rate were automatically measured around the clock at 30-min intervals
by ambulatory blood pressure monitoring (ABPM), using the TM-2421 device from A&D (Tokyo,
Japan). Wrist activity was recorded every minute using the MicroMotion Logger from AMI (Ardsley,
NY). We use the zero-crossing mode (ZCM) to assess activity. ZCM measures movement frequency,
which is represented by the number of times the voltage fluctuations of the analog signals exceed
a predetermined threshold value. In addition to ZCM, the device also measures wrist temperature,
light exposure, and sleep (0 or 1, representing awake or asleep, respectively). Of the 20 participants,
15 completed the 7-day/24-hour monitoring. Records from the other 5 were shorter, covering
approximately 6 days.

Blood pressure and heart rate measurements were taken at the hour and half-hour. Occasional
missing values were linearly interpolated. Records that were slightly shorter than 6 or 7 full days
were extrapolated in order for the records to cover an integer number of days. When gaps exceeded 90
minutes, interpolation was done by averaging data obtained at the same clock hour on other days. Data
from the MicroMotion Logger were averaged over consecutive 30-minute intervals, and assigned to
the midpoint, which matched the times of blood pressure and heart rate measurements.

A template was prepared in Excel where the 30-min pre-processed data from both devices were
entered in a specified cell range. In the same Excel sheet, formulae were entered to approximately
compute the autocorrelation function of each variable, as well as the cross-correlation function of
pairs of variables. Simple Pearson product moment correlation coefficients were computed instead of
the exact autocorrelation and cross-correlation formulae. While not exact, they provide a good first
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approximation of these functions. Plots of each autocorrelation and cross-correlation function were
prepared in separate Excel charts. This template was saved, so that it could be copied onto another
file and data from a different study participant entered in the specified cell range to replace those
of the template file. This way, the autocorrelation and cross-correlation functions are automatically
computed and all corresponding graphs are generated without effort.

The pre-processed data were analyzed by least squares spectra [11, 12], using a fundamental period
of 7 days and a frequency range from one cycle in 7 days to one cycle in 1.1 hour. Another sheet in the
template Excel file accommodates the results from the least squares spectra in specified cell ranges for
each variable. Noise levels are estimated, and plots are prepared of each spectrum in separate Excel
charts. Results from least squares spectra from study participants were entered into the designated
cell ranges of copies of the template Excel file to automatically obtain all plots. While it would have
been preferable to use a fundamental period of 6 days instead of 7 days for those records that only
covered 6 days, results related to the circadian variation are not affected by the choice of a 7-day
fundamental component for all 20 records.

Population-mean cosinor spectra were computed by averaging results from the individual least
squares spectra. Since spectral analyses of all variables showed prominent about 24-hour and 12-hour
components, 2-component models were used to reconstruct the circadian patterns of each variable.

Stability (IS) and fragmentation (IV) are two indices that have been proposed to characterize the
circadian variation in activity [13, 14]. IS is a signal-to-noise measure, calculated as the ratio between
the variance of the average 24-hour pattern around the mean and the overall variance. I'V estimates the
intra-daily variability and gives an indication of the fragmentation of the rhythm (i.e., the frequency of
transitions between rest and activity) and is calculated as the ratio of the mean squares of the difference
between consecutive hours (first derivative) and the mean squares around the grand mean (overall
variance). IS and IV are calculated based on hourly averages. IS and IV were computed from all study
participants.

The Student’s t test was used to compare the MESOR and circadian amplitude of each variable
between men and women. Linear regression assessed relationships of the circadian parameters as a
function of age and BMI. A P-value below 0.05 was considered to indicate statistical significance.

Results

Figure 1 illustrates the autocorrelation (ACF) and cross-correlation (CCF) functions of systolic
blood pressure (SBP), ZCM, and wrist temperature (Temp). The presence of a circadian rhythm in each
variable can be clearly seen by the naked eye. It can also be seen from the cross-correlation functions
that systolic blood pressure and ZCM are in phase, but that wrist temperature is out of phase with both
systolic blood pressure and ZCM.
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Figure 1. Left: Autocorrelation functions of systolic blood pressure (top), activity (ZCM, middle), and wrist
temperature (bottom) of one subject. Right: Cross-correlation functions of systolic blood pressure and ZCM (top),
of systolic blood pressure and wrist temperature (middle), and of ZCM and wrist temperature (bottom). Note that
the prominent circadian variation in these three variables is in phase between systolic blood pressure and ZCM,

but that these variables are out of phase with respect to wrist temperature. © Halberg Chronobiology Center

Figure 2 illustrates the least squares spectra of these three variables corresponding to the
autocorrelation and cross-correlation functions shown in Figure 1. A large spectral peak at a frequency
of one cycle per 24 hours emerges from the noise level in each case. Smaller peaks at harmonics of
the circadian variation are also present. Population-mean cosinor spectra summarizing results from all
20 study participants clearly detect with statistical significance the presence of spectral components at
frequencies of one and two cycles per 24 hours, Figure 3.
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Figure 2. Least squares spectra of systolic blood pressure (left), activity (ZCM, middle), and wrist temperature
(right) of one study participant. The circadian variation is prominent, as seen by the large spectral peak at a
frequency of I cycle per 24 hours. © Halberg Chronobiology Center
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Figure 3. Population-mean cosinor spectra of systolic blood pressure (left), activity (ZCM, middle), and wrist
temperature (right), summarized across all 20 study participants. The 24-hour and 12-hour components are
statistically significant. © Halberg Chronobiology Center
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Figure 4. Circadian waveform of systolic blood pressure (top), activity (ZCM, middle), and wrist temperature
(bottom), reconstructed based on 2-component model, shown with the data expressed as a percentage of each
record’s arithmetic mean. © Halberg Chronobiology Center

The circadian patterns of systolic blood pressure, activity, and wrist temperature are reconstructed
in Figure 4 based on a 2-component model, consisting of cosine curves with periods of 24 and 12
hours, derived from results of the population-mean cosinor spectra.
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Discussion

The stability and fragmentation indices averaged (= SD) 0.571 +£0.152 and 0.475 + 0.090, respectively,
reflecting the relatively young population investigated herein. IS depends on the record length. It is
higher in the 7-day (0.620) than in the 6-day (0.426) records (t = 2.922, P=0.009). It also correlates with
activity (MESOR of ZCM) (r=0.461, P=0.041), and with the circadian amplitude of ZCM (r=0.823,
P<0.001). It can be viewed as reflecting the percentage variance accounted for by the circadian variation
in activity. Indeed, IS correlates strongly with the percentage rhythm of the circadian rhythm of ZCM,
whether it is approximates by a single 24-hour component (r=0.890, P<0.001) or a 2-component model
consisting of cosine curves with periods of 24 and 12 hours (r=0.916, P<0.001).

Anticipated gender differences are detected, despite the relative small sample size of this population.
Women have a lower blood pressure than men (SBP: 112.8 vs. 129.4 mmHg, t = 3.996, P<0.001; DBP:
67.9 vs. 76.4 mmHg, t = 3.533, P-0.002). Women have also a smaller circadian amplitude of blood
pressure as compared to men (SBP: 10.2 vs. 16.3 mmHg, t = 4.760, P<0.001; DBP: 7.9 vs. 11.3 mmHg,
t = 2.748, P=0.013). Linear regression analyses as a function of age, BMI, and also accounting for
gender find that the MESOR of heart rate is higher in women than in men (t = 2.441, P=0.027); that it
decreases with advancing age (t = 3.742, P=0.002); and that it increases with BMI (t =2.559, P=0.021).
The model accounts for 57% of the total variance (F = 7.076, P=0.003). A similar model shows that
the circadian amplitude of heart rate is larger in women than in men (t = 2.654, P=0.017) and that it
decreases with advancing age (t = 4.183, P<0.001), accounting for 61% of the total variance (F = 8.379,
P=0.001).

The acrophase of wrist temperature occurring during the night deserves some comment. Core
temperature usually peaks in the afternoon, like activity, heart rate, and blood pressure. Differences
in the circadian acrophase between distal skin temperature and body temperature are mainly related
to counterbalanced physiologic processes of heat production and heat dissipation. Skin temperature
measured on limbs corresponds mainly to distal vasodilation and heat transfer. Its circadian acrophase
occurs approximately 90 to 120 minutes after the circadian acrophase of melatonin. Rectal, oral, and
axillary temperatures are a closer approximation of core temperature and peak in the late afternoon or
evening. They correspond to distal vasoconstriction and parallel heating of internal organs. For these
reasons, the circadian acrophase is inverse to that of melatonin [13-15].

To summarize, the circadian rhythm of blood pressure, heart rate, activity and temperature
accounts for a sizeable portion of the overall variance. These variables can easily be monitored around
the clock. A number of different approaches are available to characterize the circadian variation in
these variables and to explore how they are related to each other. Organizing the data in a systematic
way in Excel facilitates the automatic analysis and graphic visualization of the results when a given
procedure needs to be applied repeatedly to different sets of data that follow a specific protocol.
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