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MATERIALS ENGINEERING | RESEARCH ARTICLE

High sensitive NH3 sensor based on 
electrochemically etched porous silicon
B.A. Khaniyev1*, Y. Sagidolda1, K.K. Dikhanbayev1, A.O. Tileu1 and M.K. Ibraimov1

Abstract:  In the current study, porous silicon (por-Si) samples were fabricated by 
electrochemical etching at different times (20 min, 40 min, 60 min). Scanning 
electron microscope (SEM) images of horizontal cross-sections of the samples 
showed the formation of pores. The etched samples’ porosity was determined by 
the gravimetric method and amounted to 59.5%, 72.7%, 83.3%, respectively. 
Optical characteristics such as Raman spectra and photoluminescence (PL) spectra 
were obtained. The current-voltage and capacitance-voltage characteristics were 
also measured to calculate the sensitivity of the samples. The study results show 
that sample, which is etched for 40 minutes has a maximum response value to 
ammonia (NH3) gas than others, and the sensitivity is 33.25. The results demon
strated that it is possible to develop a high sensitive sensor device based on por-Si 
for determining NH3 gas in concentrations below 0.1 ppm at room temperature.

Subjects: Physics; Matter & Solid State Physics; Semiconductors  

Keywords: porous silicon; ammonia sensor; optical characteristics; electrical 
characteristics

1. Introduction
Nowadays environmental pollution with noxious gases negatively affects both the human body 
and the ecosystem as a whole (Desai et al., 2005). Therefore, it is important to monitor the excess 
of harmful gases and determine how many molecules of poisonous gases are contained in the 
environment (Kayahan, 2018; Yamazoe, 2005). The detection of ammonia (NH3) gas is as of great 
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interest in areas such as agriculture, industrial chemistry, environmental orientation, mechanical 
engineering, and medicine. Gaseous NH3 is very dangerous, flammable, poisonous gas that can 
damage the skin, eyes, and respiratory system even in small concentrations. At present, metal 
oxide semiconductors are widely used as NH3 and other gas sensors (ZnO, SnO2, TiO2, WO3, etc. 
(Berger et al., 2009; Jeevitha & Mangalaraj, 2019; Karunagaran et al., 2007; Matsubara et al., 2005; 
X. Wang et al., 2006)). Naderi et al. developed a high-stability sensor device capable of detecting 
NH3 gas up to a concentration of 212 ppb at 150°C from the V2O5/CUWO4 heterostructure, and also 
chemically explained sensitivity mechanism (Naderi et al., 2020). Bin Yang et al. showed that 
sensitivity and selectivity of the sensor device to NH3 gas increase at high temperatures using the 
ZnFe2O4 structure as sensitive material and adding gold to it (Yang et al., 2020). Weiwei Gong et al. 
found that the structure Bi0.95Ni0.05VO3.975 obtained by hydrothermal method is good at detecting 
NH3 gas at a high temperature of 500–600°C (Meng et al., 2018). Although these sensors have 
a high coefficient of sensitivity to NH3 gas, usually sensors based on metal oxides have a high 
operating temperature, which can increase the power consumption (Yuan et al., 2016), as well as 
have complex and expensive production technologies.

Due to the large surface area and the chemically active surface of the material, porous materials 
(Hoseinzadeh et al., 2019), namely, silicon (por-Si) can be used as a gas sensor (Baratto et al., 2000; 
H.J. Kim et al., 2010). Hee-Kyung Min et al. used por-Si for sensing the concentration of ethanol 
solutions (Min et al., 2000). S.M. Manakov et al. developed a structure based on por-Si for detecting 
of acetonitrile and chloroform (Manakov et al., 2019). In fact, por-Si can be obtained by electro
chemical etching in an electrolyte with hydrofluoric (HF) acid by applying an electric current to the 
silicon wafer (Zhang & Braun, 2012). Such parameters as the current density of the electrochemical 
process, the etching time, and also the correctly selected concentration of liquids in the electrolyte 
make it possible to precisely control the structure of silicon and the thickness of the nanostruc
tured layer (Ahmed & Mehaney, 2019; Zhanabaev et al., 2016).

The main purpose of this work is to determine the optimal parameters for preparing inexpensive 
sensor device based on por-Si, which is highly sensitive to ammonia gas and does not require 
complex technology of manufacturing, as well as to explain the reasons of changing the electrical 
characteristics of por-Si under the influence of the gas.

2. Experimental details
Por-Si layers were formed by electrochemical etching of <100 > p-type boron-doped silicon wafers 
(1015 cm−3) having resistivity of 10 Ω·cm with dimensions of 1 × 1 cm2. The electrochemical 
etching process was carried out in a special Teflon bath and was controlled by a special power 
source. The silicon wafers were immersed in HF acid for 5 seconds and then cleaned with ethanol. 
An aluminum plate, the silicon wafer, and the O-ring were collected horizontally in the Teflon bath 
in the form of a sandwich (Figure 1). The electrolyte solution used was consisted of HF acid and 
ethanol in 1:1 volume ratio. Formation current was chosen as 5 mA and etching time was set to be 
20, 40, and 60 minutes for samples 1, 2 and 3, respectively. To obtain electrical characteristics, two 
ohmic contacts of InGa alloy were deposited on their surface by thermal installation. The etched 
samples’ porosity was determined by the gravimetric method using the formula (1): 

p ¼
m1 � m2

m1 � m3
� 100%; (1)  

The current-voltage characteristics of por-Si samples were taken by the NI ELVIS II + module in 
the voltage range U = —2.5–2.5 V and the capacitance-voltage characteristics were measured using 
the Agilent E4980A LCR-meter at 1 MHz frequency. Photoluminescence (PL) and Raman spectra were 
studied on NT-MDT Solver Spectrum and excited by a laser with a wavelength of 473 nm. The 
morphology of por-Si was investigated from images of the scanning electron microscope (SEM) 
Quanta 200i 3D. To determine the sensitivity of por-Si to NH3, samples were placed in a cubic sealed 
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box with a volume of 19x19x19 cm3 for 2 hours, and, finally, by measuring the current and capacity 
values at constant voltage and various gas concentrations, the sensitivity was calculated.

3. Results and discussion
SEM images were used to determine the size, the shape, and the thickness of the fabricated por-Si 
samples. Figure 2 shows cross-section SEM images of por-Si samples, which were etched for 20, 40, 
and 60 minutes, respectively. According to the theory of pore formation, the size, the porosity, and 
the thickness of the pores increase with increasing the etching time (Choi et al., 2019). In Figure 2 
one can see that due to electrochemical etching in hydrofluoric acid, the pores were formed in the 
vertical direction and their thickness are 6.27 microns, 10.52 microns, 18.82 microns, respectively.

The porosity values of the samples were calculated by formula (1) and amounted to 59.5%, 
72.7%, and 83.3% for three samples, respectively.

Figure 3 shows the Raman and PL spectra of the samples. In Figure 3A it can be noted that the 
Raman spectra of all three samples exhibit a peak intensity at 520 cm−1 band. This is the main 
combination scattering band that occurs from the action of monochromatic light with a crystal 
lattice. Raman spectra indicate that the size of the crystal structures of sample 3 is larger compared 
to the others (Kadlečíková et al., 2018). The small spectral hump for all samples at the band of 
940 cm−1 is the result of the scattering of transverse optical phonons (Harraz et al., 2016).

Figure 1. The electrochemical 
etching process (A) and obtain
ing the electrical characteris
tics of por-Si (B).

Figure 2. Cross-section SEM 
images of por-Si samples.
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As can be seen in Figure 3B, sample 2 has the highest PL intensity, with a porosity value of 72.7 
(625 nm). High PL intensity is associated with an increase in the total volume of nanocrystallites on 
the surface of por-Si (D.A. Kim et al., 2004).

The current-voltage and the capacitance-voltage characteristics of the samples were measured 
at various concentrations of NH3 gas at room temperature using the special sealed box. The 
desired concentration of gas in the sealed box is determined by the following formula (2): 

C ¼
ρ� T� V1 � R

M� V2 � P
; (2) 

where C (ppm) is the concentration of gas, ρ (g/cm3) is the density of NH3, T (К) is the absolute 
temperature, V1 (μl) is the volume of liquid (NH3), R (8,31 J/mol*К) is the universal gas constant, 
P (Pа) is the pressure inside the box, V2 (L) is the volume of the box, M (g/mol) is the molecular 
weight of the liquid (Naderi et al., 2020).

The sensitivity of por-Si samples at a constant voltage value (in our case U = 2 V) was calculated 
by the following formula (3): 

SR ¼
Igas � Iair

Iair
; (3) 

where Iair and Igas are the currents of por-Si samples, measured in air and under the influence of 
NH3 gas, respectively (Liu et al., 2019). All samples showed that they can react to NH3 gas at room 
temperature even at concentrations below 0.1 ppm. As a result of the study, it was determined 
that the sensitivity of sample 2, obtained by etching for 40 minutes, the porosity of which is 72.7%, 
is higher compared to the other two samples, that is, the sensitivity was 33.25 for 0.1 ppm. In the 
reference (Zhang & Braun, 2012), the authors obtained similar results, and according to them, it is 
related to higher surface area and high enough initial resistance of the sample 2. The results are 
presented in Table 1.

A comparison of several reported NH3 sensors on the sensing performance towards ammonia is 
summarized in Table 2.

Figure 4 shows the current-voltage and the capacitance-voltage characteristics of sample 2, 
measured after saturation of NH3 gas of various concentrations in the sealed box (0.03 ppm, 0.06 
ppm, 0.1 ppm). With the increase in the concentration of NH3 gas, the resistance of the por-Si 
sample decreases, and the current increases. From Figure 4B one can see that with increasıng the 
concentration of NH3 gas, the capacity increases. The capacity has a high value if there is no NH3 or 
presents in a low concentration at a low voltage, and increasing the voltage, it decreases 

Figure 3. Raman spectra(A) and 
PL (B) spectra of por-Si 
samples.
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accordingly, then at a certain voltage value, it acquires a stable value. This behavior of the capacity 
is explained by the absorption of NH3 molecules on the surface of por-Si, completely saturated with 
liquid vapors in the sealed box for 2 hours. As the concentration of NH3 gas increases, its saturation 
time also increases. Therefore, capacitance values are small at low voltage for 0.06 ppm and 0.1 
ppm in the figure, and as the voltage increases, the values will increase. At a constant voltage of 
2 V, capacitance values in the air and under the influence of the NH3 gas concentration of 0.1 ppm 
for all samples are shown in Table 1.

A common mechanism for determining the toxic gases of many gas sensors is a change in 
electrical conductivity or resistance as a result of the adsorption of gas particles (Ibraimov et al., 
2016). When the gas sensor is in the air, oxygen molecules are adsorbed onto the surface of por-Si. 
Then, the adsorbed oxygen molecules are converted into oxygen ions by abstracting free electrons 
from the sensitive layer. The number of electrons decreases under the influence of electron 
abstraction in the outer region, and the number of holes increases, and a hole accumulation 
region is formed for sensitive p-type por-Si materials. Considering that the conductivity in semi
conductors is formed by the action of holes, the resistance in the region of hole accumulation will 
be less than in other internal regions of the sensor.

Table 1. Sensitivity coefficients of por-Si samples at U = 2 V
Sample C, ppm Iair, mA Igas, mA Cair, pF Cgas, pF Sensitivity
1 0.1 0.003 ± 

0.01%
0.057 ± 
0.01%

1.67 ± 0.05% 5.1 ± 0.05% 18

2 0.1 0.004 ± 0.01 0.137 ± 
0.01%

6.81 ± 0.05% 36.94 ± 
0.05%

33.25

3 0.1 0.005 ± 
0.01%

0.135 ± 
0.01%

4.4 ± 0.05% 24.25 ± 
0.05%

26

Table 2. Comparison of ammonia gas sensors
Sensing material Sensitivity Operating 

temperature (ºC)
Concentration 

(ppm)
Reference

Por-Si 33.25 26 0.1 This work

Pt NP/WO3 26.86 250 1 Liu et al. (2019)

TiO2/ZnO 32 573 0.06 Chen et al. (2018), 
Y. Wang et al. 
(2009)

CNFL/SnO2 71 400 10 Chen et al. (2018), 
Lee et al. (2014)

Figure 4. Current-voltage (A) 
and capacitance-voltage char
acteristics (B) at 1 MHz fre
quency of sample 2 at various 
gas concentrations.
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When the por-Si-based sensor is exposed to NH3 gas particles, it is adsorbed on the surface of 
por-Si and the electrons located on the sensor surface are attracted to gas molecules. Accordingly, 
the resistance of the p-type por-Si sensor is reduced, because the number of holes is increased, 
forming a hole accumulation layer. In fact, as the thickness of the hole accumulation layer 
increases, more holes are present in the silicon conductivity and the resistance decreases. The 
higher the gas concentration, the more the number of attracted electrons increases, and the 
higher sensitivity is observed (Choi et al., 2019; Mirzaei et al., 2018).

The sensitivity, determined by the change in the capacitance and conductivity of the por-Si- 
based sensor, depends on several factors (Harraz et al., 2020; Schechter et al., 1995). The combi
nation of the dipole moment and polarization can provide complete information about the overall 
structural interaction (Baker & Gole, 2016; Harraz et al., 2020). The dipole moment of the gas 
induces a local zone, thus displacing the energy levels of surface states, as a result of which the 
space charge zones of the por-Si structure modify. This leads to a change in the conductivity of 
por-Si (Harraz et al., 2020; Schechter et al., 1995).

4. Conclusion
As a summary, the high sensitive por-Si-based gas sensor device was successfully fabricated by 
electrochemical etching method and applied for NH3 gas detection at ambient temperature. 
Optical characteristics such as SEM, Raman spectra, PL spectra, and electrical characteristics 
were investigated. Research results revealed that a sample, which is etched for 40 min has the 
maximum sensitivity among all the three samples. The sensing mechanism of the por-Si-based gas 
sensor was proposed based on the resistance change as a result of the adsorption of gas particles. 
This study shows that it is possible to fabricate a high sensitive, inexpensive gas sensor device 
based on por-Si for determining NH3 gas in concentrations below 0.1 ppm at a room temperature. 
However, it is obvious that many studies are needed before application of por-Si as a NH3 sensor.
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