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Abstract The classical problem of three bodies of variable masses is considered in the case when two of the
bodies are protoplanets and all the masses vary non-isotropically at different rates. The problem is analyzed in
the framework of the planetary perturbation theory in terms of the osculating elements of aperiodic motion on
quasi-conic sections. An algorithm for symbolic computation of the disturbing function and its expansion into
power series in terms of the eccentricities and inclinations is discussed in detail. Differential equations describing
the long-term evolution of the orbital parameters are derived in the form of Lagrange’s planetary equations. All the
relevant calculations are done with the computer algebra system Wolfram Mathematica.
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1 Introduction

The three-body problem is one of themost importantmodels of celestialmechanics, and it has numerous applications
(e.g., see [1,2]). Recall that it describes the dynamical behaviour of three bodies P0, P1, P2 of masses m0, m1, m2,
respectively, under their mutual gravitational attraction. Such a model provides good approximation for the motion
of two planets around the Sun, a satellite motion in the Sun-planet and double star systems (e.g., see [3–5]). Using
Newton’s second law, one can easily write out the differential equations of motion but their general solution cannot
be obtained in symbolic form even in the simplest case when the bodies are assumed to be point particles of constant
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mass. This stimulates development of different approximate analytic and analytic-numerical methods for studying
the system motion (see [3,6–11]). Such methods can be also applied to investigation of more complicated models
when some parameters of the system change with time (see [12–14]).

Discovery of the exoplanetary systems [15] revived an interest to the two-planetary three-body problem. Since
parameters of real-life celestial bodies such as mass, size, shape, and internal constitution vary with time (see [16–
20]), it is of interest to investigate the effect of these changes on the dynamical evolution of a system. In the case of
isotropical mass variation the three-body problem was investigated in [21–23]. It was shown in particular that such
changes of mass can modify substantially the long-term evolution of the orbital parameters in comparison to the
case of constant masses but they do not practically affect the spatial orientation of the orbital planes of the bodies.

In the present paper we study a general case of the two-planetary system when the bodies are assumed to be
spherical with a spherically symmetric mass distribution but their masses vary non-isotropically with different
rates and due to this the reactive forces arise. Performing quite cumbersome symbolic calculations, we obtain the
disturbing functions in the form of power series in terms of the eccentricities and inclinations up to the second order
and derive the differential equations determining behaviour of the orbital parameters in the form of Lagrange’s
planetary equations (see [2,3]). Averaging the equations of motion over the mean anomalies of the bodies in the
absence of a mean-motion resonances, we obtain the differential equations describing the evolution of orbital
parameters over long periods of time. These equations are rather complicated and their analysis requires to use
modern computer algebra systems. Here all the relevant computations are performed with the computer algebra
system Wolfram Mathematica (see [24]).

2 Equations of Motion

Let us consider an exoplanetary system consisting of a central body P0 of mass m0(t) and two planets P1 and P2
of masses m1(t) and m2(t), respectively, mutually attracting each other according to Newton’s universal law of
gravitation. Masses of the bodies are assumed to vary non-isotropically at different rates, and

ṁ0

m0
�= ṁ1

m1
�= ṁ2

m2
,

where the dot over a symbol denotes a total derivative of the corresponding function with respect to time.
Using a relative coordinate system with the origin located at the center of the body P0, we can write out the

equations of motion of the bodies P1 and P2 in the form [19,25,26]

�̈r1 + G (m0 + m1)
�r1
r31

− γ̈1

γ1
�r1 = grad�r1W1, (2.1)

�̈r2 + G (m0 + m2)
�r2
r32

− γ̈2

γ2
�r2 = grad�r2W2, (2.2)

where �r j = (x j , y j , z j ), j = 1, 2 are the position vectors of the bodies P1 and P2 with respect to the body P0, G
is the constant of gravitation. The functions W1,W2 in the right-hand side of (2.1), (2.2) may be represented in the
form

Wj = Uj + �Fj · �r j − γ̈ j

2γ j
r2j , (2.3)

and are called the disturbing functions. The force functions U1,U2 in (2.3) are determined by the mutual attraction
of the bodies P1, P2 and are given by

U1 = μ2

(
1

r12
− �r1 · �r2

r32

)
, U2 = μ1

(
1

r12
− �r1 · �r2

r31

)
. (2.4)
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Here the following notations are used

r j = ∣∣�r j ∣∣ =
(
x2j + y2j + z2j

)1/2
, r12 = |�r2 − �r1| ,

γ j = m0 (t0) + m j (t0)

m0 (t) + m j (t)
= γ j (t) , γ j (t0) = 1, μ j = Gm j ,

where t0 is the initial point in time. The reactive forces �Fj (t) = (
Fjx , Fjy, Fjz

)
arising due to non-isotropic

variation of masses of the bodies may be represented in the form

�F1 = �F1(t) = ṁ1

m1

�V1 − ṁ0

m0

�V0, �F2 = �F2(t) = ṁ2

m2

�V2 − ṁ0

m0

�V0,

where �Vj , j = 0, 1, 2, denotes relative velocity of the particles leaving the body Pj . Themassesm j (t) and velocities�Vj are obtained from the observation of motion of celestial bodies and so the forces �Fj are assumed to be given
functions of time.

Note that Eqs. (2.1) and (2.2) are not integrable even in the case of constant masses of the bodies. So we apply
the perturbation theory to investigate the dynamics of the system. One can readily check that in case of W1 = 0,
W2 = 0 Eqs. (2.1) and (2.2) become independent and each of them has an exact solution for an arbitrary twice
differentiable continuous function γ j (t) > 0 (see [19]). These solutions may be represented in the form

x j = γ jρ j (cos( f j + ω j ) cos� j − sin( f j + ω j ) sin� j cos i j ),

y j = γ jρ j (cos( f j + ω j ) sin� j + sin( f j + ω j ) cos� j cos i j ),

z j = γ jρ j sin( f j + ω j ) sin i j , (2.5)

where parameters i j , ω j ,� j are some constants determined from the initial conditions of the motion. The variables
ρ j and f j define a conic section that is given by the polar equation

ρ j = a j (1 − e2j )

1 + e j cos f j
, ( j = 1, 2). (2.6)

It is an ellipse of eccentricity e j and semi-major axis a j in case of 0 < e j < 1, and the true anomaly f j is defined
by the equation∫ f j

0

d f j
(1 + e j cos f j )2

= 1

(1 − e2j )
3/2

(E j − e j sin E j )

= Mj

(1 − e2j )
3/2

=
√
K j0

a3/2j (1 − e2j )
3/2

(� j (t) − � j (τ j )). (2.7)

Here parameter τ j corresponds to the time of perihelion passage,

� j (t) =
∫ t

0

dt

γ 2
j (t)

, K j0 = G(m0(t0) + m j (t0)), ( j = 1, 2), (2.8)

Mj = E j − e j sin E j is the mean anomaly, and the eccentric anomaly E j is determined from the equation

tan
f j
2

=
√
1 + e j
1 − e j

tan
E j

2
. (2.9)

One can readily see that in case of constant masses of the bodies when γ j (t) ≡ 1 Eqs. (2.5)–(2.9) define a
well-known solution to the two-body problem which describes a motion of the bodies P1, P2 around the body
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P0 on conic sections (see [2,3]). Consequently, parameters a j , e j , i j , ω j ,� j correspond to the Keplerian orbital
elements such as the semi-major axis, the eccentricity, the inclination, the longitude of pericenter and the longitude
of the ascending node. The presence of a time-dependent factor γ j (t) in the right-hand side of the expressions (2.5)
for the Cartesian coordinates x j , y j , z j results in deviation of the bodies trajectories from the conic sections while
the orbital parameters a j , e j , i j , ω j ,� j remain constant. Besides, the motion of the bodies is not periodic and
the mean anomaly Mj becomes non-linear function of time depending on γ j (t) [see (2.7), (2.8)]. For that reason,
the solution (2.5) is said to describe aperiodic motion of the bodies on quasi-conic sections and the constants
a j , e j , i j , ω j ,� j , τ j are called analogs of the Keplerian orbital elements (see [19]).

In the case of W1 �= 0, W2 �= 0 we can also seek the solutions to Eqs. (2.1) and (2.2) in the form (2.5) but the
orbital parameters a j , e j , i j , ω j ,� j , τ j are now considered to be variables. Such approach to solving differential
equations is often used in celestial mechanics and is known as the method of the variation of parameters (e.g.,
see [2]). To obtain the differential equations determining behaviour of the orbital parameters one should substitute
the solution (2.5) into Eqs. (2.1) and (2.2) and resolve them with respect to the time derivatives of the orbital
parameters. However, realization of this approach involves very bulky symbolic computations; so it is much more
convenient to rewrite the equations of motion (2.1) and (2.2) in the Hamiltonian form and to change to the new
canonical variables known as the Delaunay elements which are defined by (see [2,3,7])

l j = Mj , L j = √
K j0a j , g j = ω j , G j =

√
K j0a j (1 − e2j ),

h j = � j , Hj =
√
K j0a j (1 − e2j ) cos i j , ( j = 1, 2), (2.10)

where l j , g j , h j are the coordinates and L j ,G j , Hj are the corresponding conjugate momenta. The corresponding
Hamiltonian is given by

H j = − K 2
j0

2γ 2
j L

2
j

− Wj , ( j = 1, 2), (2.11)

where the disturbing functions W1, W2 defined in (2.3) are expressed in terms of the Delaunay variables. Using
(2.11), one can define the equations of motion in the Hamiltonian form

dl j
dt

= ∂H j

∂L j
= K 2

j0

γ 2
j 	

3
j

− ∂Wj

∂L j
,

dL j

dt
= −∂H j

∂l j
= ∂Wj

∂l j
,

dg j

dt
= ∂H j

∂G j
= −∂Wj

∂G j
,

dG j

dt
= −∂H j

∂g j
= ∂Wj

∂g j

h j

dt
= ∂H j

∂Hj
= −∂Wj

∂Hj
,

dHj

dt
= −∂H j

∂h j
= ∂Wj

∂h j
. (2.12)

Taking into account the expressions (2.10) and resolving the system (2.12) with respect to the derivatives of the
orbital elements, we obtain the following Lagrange’s planetary equations:

da j

dt
= 2

n ja j

∂Wj

∂Mj
,

de j
dt

= 1

n ja2j e j

((
1 − e2j

) ∂Wj

∂Mj
−

√
1 − e2j

∂Wj

∂ω j

)
,

dω j

dt
=

√
1 − e2j

n j a2j e j

∂Wj

∂e j
− cot i j

n j a2j

√
1 − e2j

∂Wj

∂i j
,

d� j

dt
= 1

n ja2j

√
1 − e2j sin i j

∂Wj

∂i j
,
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di j
dt

= 1

n ja2j

√
1 − e2j

(
cot i j

∂Wj

∂ω j
− 1

sin i j

∂Wj

∂� j

)
,

dMj

dt
= n j

γ 2
j (t)

− 2

n ja j

∂Wj

∂a j
− 1 − e2j

n j a2j e j

∂Wj

∂e j
, ( j = 1, 2), (2.13)

where n j = √
K j0/a

3/2
j is called the mean motion.

3 Computation of the Disturbing Functions

To compute the partial derivatives of the disturbing functions Wj and to write out the Eq. (2.13) in the explicit
form we need to express the disturbing functions W1,W2 in terms of the orbital elements a j , e j , i j , ω j ,� j , Mj .
To simplify the calculations we consider here the case of small eccentricities e j � 1 and inclinations i j � 1 of the
orbits which is often met in celestial mechanics. Then the Kepler equation Mj = E j − e sin E j may be resolved
with respect to the eccentric anomaly E j which is represented in the form of power series in terms of e j that is
rapidly converges for small values of e j (see [2,3]). The corresponding series accurate up to the second order in e j
is

E j = Mj + e j sinMj + e2j
2
sin(2Mj ) + · · · . (3.1)

Using the series solution (3.1) and the built-inMathematica function Series (see [24]), we can obtain the following
expansions:

cos E j = cosMj + e j
2

(
cos(2Mj ) − 1

) + 3e2j
8

(
cos(3Mj ) − cosMj

) + · · · ,

sin E j = sinMj + e j
2
sin(2Mj ) + e2j

8

(
3 sin(3Mj ) − sinMj

) + · · · ,

r j = γ j a j

(
1 − e j cosMj + e2j

2

(
1 − cos(2Mj )

)) + · · · . (3.2)

Consequently, the cosine and sine functions of the true anomalies are represented in the form

cos f j = cos E j − e j
1 − e j cos E j

= cosMj + e j
(
cos(2Mj ) − 1

) + 9e2j
8

(
cos(3Mj ) − cosMj

) + · · · ,

sin f j =
sin E j

√
1 − e2j

1 − e j cos E j
= sinMj + e j sin(2Mj ) + e2j

8

(
9 sin(3Mj ) − 7 sinMj

) + · · · . (3.3)

On substituting the expansions (3.3) into (2.5) and doing quite standard but cumbersome symbolic calculations,
we derive the following expressions for the Cartesian coordinates of the bodies P1 and P2:

x j
r j

= cos(Mj + ω j + � j ) + e j
(
cos(2Mj + ω j + � j ) − cos(ω j + � j )

)

− e2j
8

(
cos(Mj − ω j − � j ) + 8 cos(Mj + ω j + � j ) − 9 cos(3Mj + ω j + � j )

)
+ s2j

(
cos(Mj + ω j − � j ) − cos(Mj + ω j + � j )

)
,

y j
r j

= sin(Mj + ω j + � j ) + e j
(
sin(2Mj + ω j + � j ) − sin(ω j + � j )

)
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+ e2j
8

(
sin(Mj − ω j − � j ) − 8 sin(Mj + ω j + � j ) + 9 sin(3Mj + ω j + � j )

)
− s2j

(
sin(Mj + ω j − � j ) + sin(Mj + ω j + � j )

)
,

z j
r j

= 2s j sin(Mj + ω j ) − 2e j s j
(
sin(ω j ) − sin(2Mj + ω j )

)
, (3.4)

where r j = γ jρ j , and s j = sin(i j/2) � 1 is a small parameter because of the assumption i j � 1. The obtained
expansions (3.4) are accurate up to the second order in small parameters e j and s j .

Note that the force functions (2.4) contains the scalar product

�r1 · �r2 = x1x2 + y1y2 + z1z2 = r1r2 cosψ,

whereψ is the angle between the position vectors �r1 and �r2. Using the expansions (3.4) and doing the corresponding
symbolic calculations, to second order in small parameters e j , s j , we obtain

cosψ = x1x2 + y1y2 + z1z2
r1r2

= cos(ν1 − ν2) + �, (3.5)

where ν j = f j + ω j + � j is the true longitude of the body Pj , ( j = 1, 2), the term cos(ν1 − ν2) depends only on
the eccentricities e j and is given by

cos(ν1 − ν2) = cos(λ1 − λ2)

+ e1(cos(2λ1 − λ2 − ω1 − �1) − cos(λ2 − ω1 − �1))

+ e2(cos(λ1 − 2λ2 + ω2 + �2) − cos(λ1 − ω2 − �2))

+ e21
8

(−8 cos(λ1 − λ2) + 9 cos(3λ1 − λ2 − 2ω1 − 2�1) − cos(λ1 + λ2 − 2ω1 − 2�1))

+ e22
8

(−8 cos(λ1 − λ2) + 9 cos(λ1 − 3λ2 + 2ω2 + 2�2) − cos(λ1 + λ2 − 2ω2 − 2�2))

+ e1e2(cos(2λ1 − 2λ2 − ω1 + ω2 − �1 + �2) + cos(ω1 − ω2 + �1 − �2)

− cos(2λ1 − ω1 − ω2 − �1 − �2)

− cos(2λ2 − ω1 − ω2 − �1 − �2)), (3.6)

where λ j = Mj + ω j + � j is the mean longitude of the body Pj , ( j = 1, 2). The second term in the right-hand
side of (3.5) may be written in the form

� = s21 (− cos(λ1 − λ2) + cos(λ1 + λ2 − 2�1))

+ s22 (− cos(λ1 − λ2) + cos(λ1 + λ2 − 2�2))

− 2s1s2(cos(λ1 + λ2 − �1 − �2) − cos(λ1 − λ2 − �1 + �2)). (3.7)

Thus, to second order in small parameters e j , s j , we obtain that the term � in (3.5) is of second order and is
independent of e j . Since the distances r1, r2 depend only on eccentricities [see (3.2)], to second order in e j , s j , we
can write

r12 =
(
r21 + r22 − 2r1r2 cosψ

)1/2 =
(
�2

0 − 2r1r2�
)1/2 = �0

(
1 − r1r2

�2
0

�

)
, (3.8)

where

�0 =
(
r21 + r22 − 2r1r2 cos(ν1 − ν2)

)1/2
. (3.9)
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Taking into account the expansions (3.2) and (3.6), to the second order in eccentricities e j , we obtain

1

�0
= 1

ρ0
+ 1

ρ3
0

(
e1(γ

2
1 a

2
1 cos(λ1 − ω1 − �1)

+ γ1γ2a1a2
2

(cos(2λ1 − λ2 − ω1 − �1)

− 3 cos(λ2 − ω1 − �1))) + e2(γ
2
2 a

2
2 cos(λ2 − ω2 − �2)

+ γ1γ2a1a2
2

(cos(λ1 − 2λ2 + ω2 + �2)

− 3 cos(λ1 − ω2 − �2))) + e21
8

(2γ 2
1 a

2
1(cos(2λ1 − 2ω1 − 2�1) − 3)

+ γ1γ2a1a2(cos(λ1 + λ2 − 2ω1 − 2�1)

+ 3 cos(3λ1 − λ2 − 2ω1 − 2�1) − 4 cos(λ1 − λ2))) + e22
8

(2γ 2
2 a

2
2(cos(2λ2 − 2ω2 − 2�2) − 3)

+ γ1γ2a1a2(cos(λ1 + λ2 − 2ω2 − 2�2) + 3 cos(λ1 − 3λ2 + 2ω2 + 2�2) − 4 cos(λ1 − λ2)))

− e1e2
4

γ1γ2a1a2(3 cos(2λ1 − ω1 − ω2 − �1 − �2) + 3 cos(2λ2 − ω1 − ω2 − �1 − �2)

− 9 cos(ω1 − ω2 + �1 − �2) − cos(2λ1 − 2λ2 − ω1 + ω2 − �1 + �2)))

+ 3

8ρ5
0

(2e1γ
2
1 a

2
1 cos(λ1 − ω1 − �1) + γ1γ2a1a2(e1(cos(2λ1 − λ2 − ω1 − �1)

− 3 cos(λ2 − ω1 − �1)) + e2(cos(λ1 − 2λ2 + ω2 + �2) − 3 cos(λ1 − ω2 − �2)))

+ 2e2γ
2
2 a

2
2 cos(λ2 − ω2 − �2))

2, (3.10)

where

ρ0 =
(
γ 2
1 a

2
1 + γ 2

2 a
2
2 − 2γ1γ2a1a2 cos(λ1 − λ2)

)1/2
. (3.11)

Therefore, to second order in small parameters, we can write

1

r12
= 1

�0
+ γ1γ2a1a2

ρ3
0

�, (3.12)

where � and 1/�0 are determined in (3.7) and (3.10), respectively.
Performing similar calculations, we obtain

�r1 · �r2
r31

= r2 cosψ

r21
= γ2a2

γ 2
1 a

2
1

(cos(λ1 − λ2) + 2e1 cos(2λ1 − λ2 − ω1 − �1)

− e2
2

(3 cos(λ1 − ω2 − �2) − cos(λ1 − 2λ2 + ω2 + �2))

− e21
8

(4 cos(λ1 − λ2) − 27 cos(3λ1 − λ2 − 2ω1 − 2�1) − cos(λ1 + λ2 − 2ω1 − 2�1))

e22
8

(4 cos(λ1 − λ2) − 3 cos(λ1 − 3λ2 + 2ω2 + 2�2) − cos(λ1 + λ2 − 2ω2 − 2�2))

− e1e2(3 cos(2λ1 − ω1 − ω2 − �1 − �2) − cos(2λ1 − 2λ2 − ω1 + ω2 − �1 + �2))

− s21 (cos(λ1 − λ2) − cos(λ1 + λ2 − 2�1)) − s22 (cos(λ1 − λ2) − cos(λ1 + λ2 − 2�2))

− 2s1s2(cos(λ1 + λ2 − �1 − �2) − cos(λ1 − λ2 − �1 + �2))) , (3.13)
�r1 · �r2
r32

= r1 cosψ

r22
= γ1a1

γ 2
2 a

2
2

(cos(λ1 − λ2) + 2e2 cos(λ1 − 2λ2 + ω2 + �2)
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− e1
2

(3 cos(λ2 − ω1 − �1) − cos(2λ1 − λ2 − ω1 − �1))

− e21
8

(4 cos(λ1 − λ2) − 3 cos(3λ1 − λ2 − 2ω1 − 2�1) − cos(λ1 + λ2 − 2ω1 − 2�1))

e22
8

(4 cos(λ1 − λ2) − 27 cos(λ1 − 3λ2 + 2ω2 + 2�2) − cos(λ1 + λ2 − 2ω2 − 2�2))

− e1e2(3 cos(2λ2 − ω1 − ω2 − �1 − �2) − cos(2λ1 − 2λ2 − ω1 + ω2 − �1 + �2))

− s21 (cos(λ1 − λ2) − cos(λ1 + λ2 − 2�1)) − s22 (cos(λ1 − λ2) − cos(λ1 + λ2 − 2�2))

− 2s1s2(cos(λ1 + λ2 − �1 − �2) − cos(λ1 − λ2 − �1 + �2))) . (3.14)

Note that expansions (3.12)–(3.14) enable to obtain the force functions (2.4) in the form of power series in terms
of eccentricities e j and inclinations s j up to second order. However, these expressions are quite cumbersome and
we do not write out them here.

The force functions corresponding to the reactive forces in (2.3) are derived in a similar way and, to second order
in small parameters, are given by

�Fj · �r j = γ j a j

(
Fjx

(
cos λ j − e j

2
(3 cos(ω j + � j ) − cos(2λ j − ω j − � j ))

− e2j
8

(4 cos λ j − cos(λ j − 2ω j − 2� j ) − 3 cos(3λ j − 2ω j − 2� j ))

− s2j (cos λ j − cos(λ j − 2� j ))
)

+ Fjy(sin λ j − e j
2

(3 sin(ω j + � j ) − sin(2λ j − ω j − � j ))

− e2j
8

(4 sin λ j + sin(λ j − 2ω j − 2� j ) − 3 sin(3λ j − 2ω j − 2� j ))

− s2j (sin λ j + sin(λ j − 2� j )))

+ Fjz(2s j sin(λ j − � j ) − e j s j (3 sinω j − sin(2λ j − ω j − � j )))
)
, (3.15)

where components of reactive forces Fjx , Fjy, Fjz are considered as given functions of time.
At last, to second order in small parameters, we can write the third term of the disturbing functions (2.3) in the

form

γ̈ j

2γ j
r2j = 1

2
γ̈ jγ j a

2
j

(
1 − 2e j cos(λ j − ω j − � j ) + e2j

2

(
3 − cos

(
2λ j − 2ω j − 2� j

)))
. (3.16)

Thus, to second order in small parameters e j and s j , expressions (3.12)–(3.16) define the disturbing functions (2.3)
in terms of the orbital elements of the bodies P1, P2.

4 Secular Perturbations of the Orbital Elements

Differential equations determining the secular perturbations of the orbital elements are obtained if the disturbing
functions Wj in Lagrange’s planetary equations (2.13) are replaced by their quantities averaged over the mean
anomalies Mj of the bodies P1, P2. Note that due to relationship Mj = λ j − ω j − � j , one can perform the
averaging scheme over the mean longitudes λ j , as well.

To second order in eccentricities e j and inclinations s j , the disturbing functions Wj are the polynomials with
coefficients being periodic functions of the mean longitudes λ j . To realize the averaging scheme, one needs to
replace the rational expressions 1/ρ0, 1/ρ3

0 , 1/ρ
5
0 in (3.10) and (3.12) by the corresponding Fourier series given by

(see [3])
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1

ρ0
= 1

2

+∞∑
k=−∞

Ak cos(k(λ1 − λ2)),

γ1γ2a1a2
ρ3
0

= 1

2

+∞∑
k=−∞

Bk cos(k(λ1 − λ2)),

γ 2
1 γ 2

2 a
2
1a

2
2

ρ5
0

= 1

2

+∞∑
k=−∞

Ck cos(k(λ1 − λ2)), (4.1)

where coefficients Ak , Bk , Ck are known as the Laplace coefficients and satisfy the following recurrence relations:

Ak = 2(k − 1)

2k − 1

(
α + 1

α

)
Ak−1 − 2k − 3

2k − 1
Ak−2, k ≥ 2,

Bk = (2k + 1)α(1 + α2)

(1 − α2)2
Ak − 2α2(2k + 1)

(1 − α2)2
Ak+1, k ≥ 0,

Ck = (2k + 3)α(1 + α2)

3(1 − α2)2
Bk − 2α2(2k − 1)

3(1 − α2)2
Bk+1, k ≥ 0.

All the Laplace coefficients can be expressed in terms of two coefficients A0 and A1 given by

A0 = 2

πa2γ2

∫ π

0

dλ

(1 + α2 − 2α cos λ)1/2

= 4

πa2γ2(1 + α)
K

(
4α

(1 + α)2

)
,

A1 = 2

πa2γ2

∫ π

0

cos λ dλ

(1 + α2 − 2α cos λ)1/2

= 2

πa2γ2α(1 + α)

(
(1 + α2)K

(
4α

(1 + α)2

)
− (1 + α)2E

(
4α

(1 + α)2

))
,

where the functions K(4α/(1 + α)2) and E(4α/(1 + α)2) denote the corresponding complete elliptic integrals of
the first and the second kind, respectively, and parameter

α = γ1a1
γ2a2

< 1.

It is assumed here that the trajectory of body P1 is located inside the trajectory of body P2, and the condition r1 < r2
is satisfied for any instant of time.

Using the series (4.1) in the expressions 1/ρ0, 1/ρ3
0 , 1/ρ

5
0 and averaging the disturbing functions Wj according

to the rule

W (sec)
j = 1

(2π)2

∫ 2π

0

∫ 2π

0
Wjdλ1dλ2,

we obtain the secular parts of the disturbing functions in the form

W (sec)
j = U (sec)

j − 3

2
γ j a j e j

(
Fjx cos(ω j + � j ) + Fjy sin(ω j + � j ) + 2s j Fjz sinω j

)
− 1

2
γ̈ jγ j a

2
j

(
1 + 3

2
e2j

)
, (4.2)
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where

2U (sec)
1

μ2
= 2U (sec)

2

μ1
= A0 + K11e

2
1 + K22e

2
2 + K12e1e2 cos(ω1 − ω2 + �1 − �2)

−
(
B1 + 9

16
B3

)
(s21 + s22 ) + 1

8
(16B1 + 9B3)s1s2 cos(�1 − �2),

K11 = 3α2

4
C0 − 3α

32
(8B0 + 16C1 + 9C3) − 1

128
(64B1 + 36B3 − 240C0 + 225C2),

K22 = 3

4α2C0 − 3

32α
(8B0 + 16C1 + 9C3) − 1

128
(64B1 + 36B3 − 240C0 + 225C2),

K12 = −3(1 + α2)

64α
(48C0 − 25C2) + 1

128
(288B0 + 50B2 + 363C1 + 237C3). (4.3)

Note that the secular part (4.2) of the disturbing functions Wj is obtained under assumption that the considered
two-planetary system is not affected by commensurability between the two mean motions n1, n2. In this case
integration over the mean longitudes λ1, λ2 enables to eliminate rapidly oscillating terms in the expansion of Wj

and to retain slowly varying secular terms up to the second order in the eccentricities and inclinations.
Obviously, the secular part (4.2) of the disturbing functionWj does not depend on the mean anomaly Mj and so

the semi-major axes a j do not change with time. Using Lagrange’s planetary equations (2.13), to second order in
eccentricities and inclinations, we can write the following differential equations for the slowly varying variables:

de j
dt

= − 1

n ja2j e j

∂W (sec)
j

∂ω j
,

dω j

dt
= 1

n ja2j e j

∂W (sec)
j

∂e j
− 1

n ja2j i j

∂W (sec)
j

∂i j
,

d� j

dt
= 1

n ja2j i j

∂W (sec)
j

∂i j
,

di j
dt

= 1

n ja2j i j

(
∂W (sec)

j

∂ω j
− ∂W (sec)

j

∂� j

)
, ( j = 1, 2). (4.4)

Note that the variable s j should be replaced in (4.2) by i j/2.

Computing partial derivatives of W (sec)
j in (4.4) with respect to e j , i j , ω,� j , one can easily obtain the system of

differential equations determining secular perturbations of these orbital parameters. Due to dependence of masses
on time and reactive forces this system cannot be solved analytically. However, choosing some realistic model of
masses variation, one can get its numerical solution and investigate the dynamics of the system.

5 Conclusion

In the present paper we have considered a general case of the two-planetary system when masses of the all three
bodies vary non-isotropicallywith different rates and due to this the reactive forces arise.As the differential equations
of motion are not integrable we use the perturbation theory and consider an exact solution to the two-body problem
with variable masses describing an aperiodic motion on quasi-conic sections as initial approximation. Performing
quite cumbersome symbolic calculations, we obtain the disturbing functions in the form of power series in terms of
the eccentricities and inclinations up to the second order and derive the differential equations determining behaviour
of the orbital parameters in the form of Lagrange’s planetary equations. Averaging the equations of motion over
the mean longitudes of the bodies in the absence of a mean-motion resonances, we obtain the differential equations
describing the evolution of orbital parameters over long periods of time. These equations are rather complicated
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and their solution requires application of numerical methods. All the relevant computations are performed with the
computer algebra system Wolfram Mathematica.
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