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ABSTRACT 
Currently, the Republic of Kazakhstan is creating a new standard 
for symmetric data encryption. Qamal encryption algorithm 
developed by the Institute of Information and Computer 
Technologies (Almaty, Republic of Kazakhstan), which is one of 
the candidates to be approved as a standard, is the subject of our 
study. We analyze in detail the basic cipher transforming work 
principles, approaches to its quick implementation and the 
results of the implementation experiments in several 
programming languages. The encryption algorithm under study 
uses the round subkeys generating procedure, which seems to be 
several times more complicated than the single block processing 
procedure.  

The software implementation approaches suggested can 
significantly reduce computation time by using logic operations 
instead of accessing data arrays.  

Our article is the first step to a comprehensive research of Qamal 
properties; its resistance to different cryptanalysis types is yet to 
be analyzed. 

CSS CONCEPTS 
• Security and privacy → Block and stream ciphers; 
Cryptanalysis and other attacks;  

• Social and professional topics→ Computer science education; 

KEYWORDS 
Cryptography, Block Cipher, Standard, Secret Key, 
Implementation Speed, Logical Operations, Array Access 

1 Introduction 
People have always been interested in protecting their personal 
information. As soon as a number of different ciphers emerged, 
the countries started to think about the need to have a reliable 
data protection tool that would be proven to be persistent, have 
no loopholes and be used at various levels of trust. 
The first standard to become known was DES [1]. Although the 
DES algorithm has been accepted for five years, it has 
maintained its standard status for more than 20 years and has 
never been compromised. However, the computing power had 
increased so much by 2000, that it became possible to pick up a 
secret key using powerful supercomputers of the time. DES was 
replaced by AES, a new cipher, that had been approved by the 
whole world, literally. 
The GOST 28147-89 [2] standard of encryption is known to have 
been operated in Russia since 1989. It was classified till 1994, 
though. The new GOST R34.12-2015 encryption standard, which 
includes two ciphers, Magma and Kuznyechik [3], came into 
force in the Russian Federation in 2016. 
The former Soviet Union countries are gradually switching to 
their own symmetric encryption standards. Thus, the STB 
34.101.31-2007 "Information technologies and security. 
Cryptographic encryption and integrity control algorithms" [4] 
standard is used in the Republic of Belarus; and the standard 
based on the Kalina encryption algorithm was adopted in 
Ukraine in 2015 [5]. 
The Republic of Kazakhstan is also working on the symmetric 
data encryption state standard in the framework of the “Software 
and hardware development for cryptographic data protection in 
its transmission and storage in info communication systems and 
general purpose networks” targeted funding program of the 
Ministry of Education and Science of the Republic of Kazakhstan 
Committee of Science[13]. The Qamal cipher, proposed for the 
research in this article is one of the design encryption 

Full or partial copying of materials for personal use or teaching is permitted free 
of charge with mandatory reference to the source indicated on the first page. You 
need to seek the authors’ permission for any third party copyright. Please contact 
the owner(s)/author(s) for any other questions. 
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algorithms. Nowadays, the symmetric encryption algorithms 
being developed are subject to several requirements, including 
requirements for key parameters, strength, and software and 
hardware cipher implementations. Even though during the AES 
competition all the applicants were tested according to various 
evaluation criteria for software implementations, computing 
technology is developing at an amazing rate. That is why the 
research on the high-speed implementation remains actual, 
which has been confirmed by a few implementation studies and 
experimental tests for the AES cipher. 
Thus, the authors presented the results for the use of the high-
performing Cell broadband engine and NVIDIA graphics 
processing units research in [6]. 
In [7] they considered a version of high-speed implementation of 
the AES standard using Xilinx system generator implemented on 
Nexys-4 DDR FPGA development board and simulated using 
MATLAB Simulink. A 64-bit FPGA implementation of the 128-
bit block and 128-bit-key AES cipher was presented in [10]. 
All this indicates the increased public interest the high-speed 
modern ciphers implementation[8, 9, 11, 12].  That is why our 
article is aimed at studying the Qamal cipher and its properties 
when performing various software implementations using 
different encryption algorithms. 
The paper is organized as follows. The first chapter describes the 
Qamal project cipher, provides examples of the basic cipher 
transformations implementation that can be used as control 
points when performing a software cipher implementation. The 
second chapter discusses approaches to creating a high-speed 
implementation for the Qamal cipher. The third chapter presents 
the main experimental results obtained using different 
approaches to implementation and various programming 
languages. 

2 Qamal encryption algorithm 

2.1 Data encryption using Qamal's encryption 
algorithm 

The Qamal encryption algorithm is a symmetrical block 
encryption algorithm, built on the SP-network principle. The 
algorithm supports block and key lengths of 128, 192 and 256 
bits, while the length of the processed block of data and the 
length of the secret key must always match. The number of 
encryption rounds depends on the length of the block and the 
key. The 128-, 192- and 256-bit K keys correspond to eight, ten 
and twelve rounds of encryption, respectively. All rounds except 
the last ones are identical. In the last round, an additional round 
key is added. The scheme of the encryption algorithm is shown 
in Figure 1. 
The encryption algorithm includes developed key imposition 
procedures using the bitwise addition (XOR) operation, the S-
block replacement, the mixing procedures Mixer1 and Mixer2. 
In the first procedure, a key modulo 2 operation (XOR operation) 
is performed in the plaintext block. 
The second procedure to be produced is the bytes using the S-
box replacement. For this, a nonlinear conversion of bytes is 

performed: a nonlinear bijective substitution is applied to each 
byte. The resulting S-box is presented in Table 1. In Table 1, all 
data is given in hexadecimal. Using an S-block here is similar to 
using an S-block for the AES data encryption standard: the 
original byte is divided into two halves, the top 4 bits (left side of 
the byte) indicate the row number in the replacement table, and 
the bottom 4 bits (right side of the byte) indicate the column 
number in the replacement table. 

 

Figure 1 – Qamal Encryption Algorithm Scheme 

The third procedure is the linear formation of the Mixer1 block. 
Bytes of the block are represented in the form of a two-
dimensional array A with the size m*4, where m takes on the 
value of 4, 6 or 8, depending on the size of the initial block: 
 

. 
 
Bytes of each column are added together modulo 256: 
 

  

 
Then, the received new byte of the first column replaces of the 
upper byte a00, and the original bytes are shifted down by one 
position. This operation is repeated four times. As a result, we 
get four new bytes in the first column. Further, this operation is 
performed for the three remaining columns (Figure 2). 

 

Figure 2 – Operation of the Mixer1 
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Table 1 – S1-block 

 0 1 2 3 4 5 6 7 8 9 a b c d e f 

0 c9 34 f0 18 55 86 21 6b 87 d2 6e 99 bd 31 98 89 

1 29 73 83 8b 1a 19 e1 e4 f3 5b 72 3f a6 f9 2e a3 

2 7e 10 94 07 ec ad 2f 26 20 93 66 3d dd 64 5f c1 

3 13 e0 80 25 d3 08 75 6a b9 2d d1 cc fd ca 3b fc 

4 d5 da e2 ce a0 7f ae c8 9c 09 3c 95 ba 35 3e 7b 

5 fa 8d 23 ab d9 e8 74 2a c3 a8 d8 52 45 b5 0a 0c 

6 a4 61 9a fb aa f6 78 84 c4 e9 ee 54 50 81 df 90 

7 36 b4 bb 44 c5 96 4b 28 14 e6 8f ff b0 1f 53 47 

8 00 4c 40 2c 9b 9f 4a 01 7d af 92 56 7a db 8e 16 

9 63 24 a9 1d 33 4d e7 1c 70 69 b7 c6 32 e5 57 03 

a 97 a5 eb d4 bc 5d f8 85 06 f2 59 f4 17 22 38 dc 

b 0b fe be cd 41 82 04 0e 48 71 30 ac ef c7 2b cb 

c b8 8c 5a 42 a7 4e d0 46 bf b3 91 e3 11 7c 6f de 

d 88 58 1e 5c 9d 60 c0 62 05 79 ed 76 c2 02 65 d7 

e f1 8a 77 f7 37 b1 0f 67 cf 0d a1 6c 4f 3a 39 1b 

f 27 b6 5e f5 ea 6d 15 9e b2 12 a2 68 43 51 49 d6 
 
 
The formation of the Mixer1 block results in a new B array of 
m*4 size, where m equals 4, 6 or 8 depending on the block size 
(m=4 for a block of 128 bits, m=6 for a block of 192 bits and m=8 
for a block of 256 bits, respectively): 

 
Each row of the array is represented as a polynomial and a 
polynomial multiplication of the form bi(x) * mi(x) mod p(x) 
occurs, where:  
 

p = 1000000000000000000000001001101112 = 0x100000137; 
m0 =  101010000010001010111011101110102 = 0xA822BBBA; 
m1 = 110100100011010111010010011001012 = 0xD235D265; 
m2 = 110110100001100110010110110100102 = 0xDA1996D2; 
m3 = 100100000100101110011110000110112 = 0x904B9E1B; 
m4 = 101000110000010001101111011010102 = 0xA3046F6A; 
m5 = 100101101110110100001101001101012 = 0x96ED0D35; 
m6 = 011000110011101101101000110011012 = 0x633B68CD; 
m7 = 101001110011000111110001100110102 = 0xA731F19A. 

 
The mi(x) values are also presented as polynomials and are 
applied as follows. With an open block length of 128 bits, the 
first four values of m0(x), m1(x), m2(x), m3(x) are used. For the 
block length of 192 bits the first 6 six values of m0(x), m1(x), 
m2(x), m3(x), m4(x), m5(x) are taken. For the third possible block 
length, all the eight mi(x) values are used. 
 

2.2 Data decryption using Qamal's encryption 
algorithm 

To decrypt the ciphertext, all cryptographic transformations 
used for encryption are inverted and exercised in the decryption 
algorithm in reverse order. Round keys are also used in reverse 
order. When decrypting each of these block lengths, 8, 10, or 12 
rounds are performed, respectively, with InvS, InvM1, and InvM2 
inverse conversions performed in each block length. 
The InvS conversion is inverse to the byte change operation 
through the S-block in Table 1. For example, if the 00 byte is 
replaced by the C9 byte, the C9 byte is to be replaced by the  00 
byte  for inverse conversion. 
The InvM1 transform is the reverse of the Mixer1 transform. 
That means that the additional operation 256 modulo must be 
replaced by a sequential subtraction operation modulo 256. 
The conversion of InvM2 is inverse to the procedure for 
obtaining a Mixer2 block. To obtain a block inverse Mixer2, each 
row of the array is treated as a polynomial, which is multiplied 
by fixed modulo p (x) polynomials, where: 
 
p = 1000000000000000000000001001101112 = 0x100000137; 
m0

-1 = 1111 0011 0100 1000 1000 1001 1101 01012 = 0xf3488ad5; 
m1

-1 = 0001 0110 0111 0011 1101 0000 1101 01112 = 0x1673d0d7; 
m2

-1 = 1000 1010 0010 1110 1000 1011 1011 10102 = 0x8a2e8bba; 
m3

-1 = 1100 0000 1010 0010 0011 1100 1011 00002 = 0xc0a23cb0; 
m4

-1 = 1111 1101 1010 0101 0110 0100 0101 00102 = 0xfda56452; 
m5

-1 = 0111 1111 1001 1100 0011 0000 0010 00102 = 0x7f9c3022; 
m6

-1 = 1001 1000 0100 1011 1001 1101 0011 11102 = 0x984b9d3e; 
m7

-1 = 0001 1110 0111 0011 0001 1111 1000 10002 = 0x1e731f88; 
 
The first four values m0

-1(x), m1
-1(x), m2

-1(x), m3
-1(x) are used for 

an open block of 128 bits. For the block length of 192 bits the 
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first 6 six values of m0

-1(x), m1
-1(x), m2

-1(x), m3
-1(x), m4

-1(x), m5
-

1(x) are taken. For the third possible block length, all eight mi
-1(x) 

values are used. 

2.3 Round key generation algorithm 
 
Round keys Ki are generated from the key K cipher using the key 
expansion procedure. As a result, an array of round keys is 
formed, from which the required round key is then directly 
selected. The scheme for obtaining round keys is shown in 
Figure 3. 
The original secret key K is the first round subkey. To generate 
the following secret key, ten rounds of conversions are 
performed: the replacement with the S-box that is different from 
what was used during encryption, the transformation Mixer1 
(Figure 2) and the transformation Mixer2, which is similar to the 
transformation of the same name in the encryption procedure. 
The last procedure of the round is called Module pi(x). It works 
as follows. Let g1(x), g2(x), ..., gs(x) – non-delivable binary 
polynomials used as working bases, where G(x) = 
g1(x)g2(x)...gs(x). The degree of the polynomial G(x) corresponds 
to the value N = m1 + m2 + ... + ms and is equal to the block 
length (i.e.128, 192, 256). The output from the Mixer2 block is 
represented as an N (x) polynomial with binary coefficients. 
k1(x), k2(x), ..., ks(x) – the remains of the division of the 
polynomial N(х) on the corresponding bases pi(x), i = 1,...,s.  
Where pi(x), i = 1,...,s are the secret elements of the key 
deployment procedure. 
The values of the polynomials p(x) for the Module operation are 
secret, that is, in fact, they make up additional key information. 
For the purposes of this study, we use the following polynomial 
values as a secret element pi(x) to obtain round keys: 
 

p1(x) = 100000000001010112 = 0x1002B; 
p2(x) = 100000000001011012 = 0x1002D; 
p3(x) = 100000000001110012 = 0x10039; 
p4(x) = 100000000001111112 = 0x1003F; 
p5(x) = 100000000010001112 = 0x10047; 
p6(x) = 100000000010100112 = 0x10053; 
p7(x) = 100000000100011012 = 0x1008D; 
p8(x) = 100000000101111012 = 0x100BD; 

 
After ten rounds of transformations, the result is added modulo 
two with the value of the round subkey from which the current 
subkey was generated, resulting in a new round key. To get the 
next round key, you need to re-run a cycle of ten 
transformations. 

2.4 Data conversion example 
Consider, for example, how message X will be encrypted on the 
K key, where: 

Х = 0x81754b8c671be306adee86fc52174dcd 
K = 0x904b9e1bd6eaa64db9a9c168a5e5f92d 

Let us start the process with the development of round subkeys. 
To generate the first round subkey, you must perform ten 

rounds of conversion. The initial value to which the 
transformation will be applied is the secret encryption K key = 
0x904b9e1bd6eaa64db9a9c168a5e5f92d. 
The first conversion is the replacement of bytes in accordance 
with Table 3. Thus, the high 0x90 byte is converted to 0x5, the 
next byte 0x4B to 0x2, and so on. As a result, the value K = 
0xa5a2d21f5af9d99b18e364890a8503f1 is obtained. The next 
transformation is mixing the data using the Mixer1 conversion. 
In order to perform it, let us present the value K = 
0xa5a2d21f5af9d99b18e364890a8503f1 as a square matrix, as it is 
shown in Table 2. 

 

Figure 3 – Round key Ki expansion, where i = 0,1,…,8 
(10,12) 

Table 2 – Presentation of key data as a matrix 

A5 A2 D2 1f 

5a F9 D9 9b 

18 E3 64 89 

0a 85 03 F1 
 
We are working with the first (left) column of table 2. It is 
necessary to perform addition of all bytes modulo 256, write 
them to the topmost cell, and move the remaining cell values 
down by one. We need to repeat this action four times until all 
cells change their values (Table 3). 
Let us perform the same actions with the remaining three 
columns and get a new state (Table 4). 
As a result of Mixer 2 we get the following transformations: 
 

(0x5645e32f * 0хa822bbba) mod 0х100000137 = 0x3c0d7d49 
(0x581fde65 * 0xd235d265) mod 0х100000137 = 0xafeeb61e 
(0x38812177 * 0xda1996d2) mod 0х100000137 = 0x6627b56f 
(0x21031234 * 0x904b9e1b) mod 0х100000137 = 0x24c7ed8f 
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Collecting the results of conversions in one block, we get the 
result of the conversion Mixer2: K = 
0x3c0d7d49afeeb61e6627b56f24c7ed8f. 

Table 3 – Result of the first column conversion using 
Mixer1 

The 
initial 
state 

First 
change 

Second 
change 

Third 
change 

Fourth 
change 

a5 

(a5+5a+ 
+18+0a) 

mod 256 = 
21 

(21+a5+5a+
+18) mod 
256 = 38 

(38+21+ 
+a5+5a) 

mod 256 = 
58 

(58+38+21+
+a5) mod 
256 = 56 

5a a5 21 38 58 
18 5a a5 21 38 
0a 18 5a a5 21 

Table 4 – Mixer1 conversion result 

56 45 e3 2f 

58 1f de 65 

38 81 21 77 

21 03 12 34 
 
The last round of conversion is the Module conversion. To 
perform it, the value K = 0x3c0d7d49afeeb61e6627b56f24c7ed8f 
must be sequentially taken over eight different modules and a 
new block must be created from the obtained values: 
 

0x3c0d7d49afeeb61e6627b56f24c7ed8f mod 0х1002b = 0x0ccf 
0x3c0d7d49afeeb61e6627b56f24c7ed8f mod 0х1002d = 0x5463 
0x3c0d7d49afeeb61e6627b56f24c7ed8f mod 0х10039 = 0xb236 
0x3c0d7d49afeeb61e6627b56f24c7ed8f mod 0х1003f = 0xa02f 
0x3c0d7d49afeeb61e6627b56f24c7ed8f mod  0х10047 = 0x338f 
0x3c0d7d49afeeb61e6627b56f24c7ed8f mod 0х10053 = 0xd5c2 
0x3c0d7d49afeeb61e6627b56f24c7ed8f mod 0х1008d = 0x7714 
0x3c0d7d49afeeb61e6627b56f24c7ed8f mod 0х100bd = 0xf02f 

 
By combining the obtained results, we get the result of the 
Module conversion: K = 0x0ccf5463b236a02f338fd5c27714f02f. 
This completes the conversion of the first round. The further 
nine rounds of conversion are required to obtain the second 
round key. Each round consists of four operations: replacing 
with the help of S-block, transformation Mixer1, transformation 
Mixer2, transformation Module. Transformations from the 
second to the tenth round are presented in table 5. 
In order to get the result of the second round subkey, we need to 
add the result from table 5 modulo two with the value of the first 
round subkey K = 0x904b9e1bd6eaa64db9a9c168a5e5f92d. Thus, 
we get: 
K = 0x270d01b891fbd94d7433cad069ba874d  
0x904b9e1bd6eaa64db9a9c168a5e5f92d =  
=  0xb7469fa347117f00cd9a0bb8cc5f7e60 

As a result of all the transformations, we get nine round subkeys, 
presented in Table 6.  
Once the round subkeys have been developed, you can start 
encrypting the text. As a test vector, which should be encrypted, 
the value Text = 0x81754b8c671be306adee86fc52174dcd was 
chosen. The first transformation of the round is the addition of 
data from the first subkey round: 

Text = 0x81754b8c671be306adee86fc52174dcd  
0x904b9e1bd6eaa64db9a9c168a5e5f92d = 
0x113ed597b1f1454b14474794f7f2b4e0. 

Table 5 – Developing a second round subkey (rounds 2-10) 

Operation Result 
S-box: K = 0x278ab713d1708dacc7d7569fab7bc5ac 
Mixer1: K = 0x4556abb68b639c31291df9686a4c5f0a 
Mixer2: K = 0x7c6df73a33debe79be69fa62595adff8 
Module P 1  K = 0x4f83630ba1bb2d74bab883a5adc0532f 
S-box:  K = 0xfd151351c4ccf1f2e083150a0fe1ebac 
Mixer1:  K = 0xc0d25912c2cf258251a91d46b04504f9 
Mixer2:  K = 0x23520af35fb22e94774387edd0e2e37d 
Module P 2 K = 0x2dffe89209aae42b90f41363fc93e67e 
S-box K = 0xf16c86a72cf053a6a5b6ce13f4fa6e16 
Mixer1 K = 0x6a1c018c4b86aa99781ebcd6b60c1576 
Mixer2 K = 0x5c4c8ca13c893231108af639d3a61920 
Module P 3 K = 0x9f42de86ee6a1de488ff40fc656ea045 
S-box: K = 0x62300b8f2a73cb534a6c88f42fd88d35 
Mixer1 K = 0xae8d49496c800acedbf649e105e7eb0b 
Mixer2 K = 0x807c17bc323f3a64b0a07f48d23bc9e9 
Module P 4 K = 0xc46a252a7f8eda5748168ee6a3c4f418 
S-box K = 0x4c73df900e7563afb484756e264cb6bf 
Mixer1 K = 0x921343d9d0c4d3c44224241934b86d6c 
Mixer2 K = 0x4a3278ae78d112bf629d456ff0dbf334 
Module P 5 K = 0x18a1f69e77e8cb29739948b9f636282b 
S-box K = 0xbfc437d2ab86c157239db418377091a6 
Mixer1 K = 0x53387b197fdf1e38513ee928c4573de7 
Mixer2 K = 0x8190f1574c00ce5a5019f844d04a43a9 
Module P 6 K = 0xbe2e0f5e481937a89d323c37ee83904c 
S-box K = 0xd541c2a9b4e6e9f758cb0e92a15a560 
Mixer1 K = 0x5aee23ff876a06fb467b5b72b8c800e9 
Mixer2 K = 0xeb45c1be3db33e4590ef823d3e0770db 
Module P 7 K = 0xdc5165e3ecfbc1e18157f4b19704365f 
S-box K = 0x93c62f5b81d664c81afb6a361c370f3 
Mixer1 K = 0xa93038ee15034e5b8b59027f760eb9b9 
Mixer2 K = 0xccca3a6555d21719fd3d640d52286c23 
Module P 8 K = 0x8406a687d232289ad32fefec9d0360a 
S-box K = 0xe7b1d907008c91322d8cf8f808e87009 
Mixer1 K = 0x66444f8a336870de307a346b1cb1d23a 
Mixer2 K = 0x3f342d47be4ec33d5f8367efad24ff02 
Module P 9 K = 0x270d01b891fbd94d7433cad069ba874d 
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Table 6 – Received round subkeys 

Subkey Subkey value 
К1 0x270d01b891fbd94d7433cad069ba874d 
К2 0xb7469fa347117f00cd9a0bb8cc5f7e60 
К3 0x756012f7ba128da67efba084be1b78cf 
К4 0x411ded5410a74f8489d5a891ff54f91f 
К5 0x7a574831d813d72a3360f34b30b9dc06 
К6 0xe808de737d501937f397539aa152bbdf 
К7 0xbf674c851c0bc3ddf5c043d0ca87b4b 
К8 0x72a34ba12595f9cd1b629a163e546836 
К9 0x3d173b7e2961a26293b178bd70c77460 
 
After that we replace bytes using the S-box (Table 1). As a result, 
the data block will look as follows: Text = 
0x733b601cfeb67f951ac8c8339e5e41f1. 
The next transformation is to mix the data using the 
transformation Mixer 1. In order to perform it, let us present the 
value Text = 0x733b601cfeb67f951ac8c8339e5e41f1 as a square 
matrix, as it is shown in Table 7. The result of the Mixer1 
conversion is presented in Table 8. 

Table 7 – Presentation of Text data as a matrix 

73 3b 60 1c 
fe b6 7f 95 
1a c8 c8 33 
9e 5e 41 f1 

Table 8 – Mixer1 conversion result 

9e fa 2d e9 
4e d8 56 3f 
b4 d0 8f b9 
29 17 e8 d5 

 
If we write values from Table 8 line by line, we get the block 
value as a result of the conversion of Mixer1: Text = 
0x9efa2de94ed8563fb4d08fb92917e8d5. 
As a result of using the Mixer2 operation, we get the following 
transformations: 
 

(0x9efa2de9 * 0хa822bbba) mod 0х100000137 = 0xe5d8e3a5 
(0x4ed8563f * 0xd235d265) mod 0х100000137 = 0x5c899c10 
(0xb4d08fb9 * 0xda1996d2) mod 0х100000137= 0x1a5323de 
(0x2917e8d5 * 0x904b9e1b) mod 0х100000137 = 0xad001adf 

 
Collecting the results of conversions in one block, we get the 
result of the conversion Mixer2: Text = 
0xe5d8e3a55c899c101a5323dead001adf. 
This completes the conversion of the first round of encryption. 
Eight rounds of encryption are used for the 128-bit block. All 
intermediate values from the second to the eighth rounds are 

shown in Table 9. You can see that the encryption results in 
encrypted text: Cipher = 0x2040844e82689d9279fd3bce5c67541. 

Table 9 – Transformations of 2-8 rounds of encryption 

R Operation Result 
2 XOR К2 Text = 0x529e7c061b98e310d7c92866615f64bf 

S-box Text = 0x2357b0213f70f72962b32078610caacb 
Mixer1 Text = 0xa12aa923704d5026e900384f2586718d 
Mixer2 Text = 0xa16ce2f0d6b462f612ab4b6ab5d8f998 

3 XOR К3 Text = 0xd40cf0076ca6ef506c50ebee0bc38157 
S-box Text = 0x9dbd276b50f81bfa50fa6c3999424c2a 
Mixer1 Text = 0x5c94ad2cd646e49313a0a866d6f1fac8 
Mixer2 Text = 0x95d27d43bf26a0c7b4ea6b2b072cd3e 

4 XOR К4 Text = 0xd4cf9017af81ef43829b0e234f263421 
S-box Text = 0x9dde63e4dc4c1bce40c698077b2fd310 
Mixer1 Text = 0x5864b12c9a5866fded0fff82341fe9c9 
Mixer2 Text = 0x8f572d43da96805539997736ae66389d 

5 XOR К5 Text = 0xf50065720285577faf9847d9edfe49b 
S-box Text = 0x6dc9f6bbf09f2a476e129b1f57d737c6 
Mixer1 Text = 0xe869549b6c84bff1edcbad082251f2e7 
Mixer2 Text = 0x8df913275ec121504f553da5389c1cc2 

6 XOR К6 Text = 0x65f1cd5423913867bcc26e3f99cea71d 
S-box Text = 0xf6b67cd90724b984ef5adffc696f85f9 
Mixer1 Text = 0x1f843d3093547b5a41d7adab55a39952 
Mixer2 Text = 0x9cb06a2ac7ea32eb92d5498464e0a5c4 

7 XOR К7 Text = 0x97461ee2962a8ed64d894db96848de8f 
S-box Text = 0x1cae2e77e7668ec035af3571c49c6516 
Mixer1 Text = 0x7fc424f63395595b34224766fc5f56be 
Mixer2 Text = 0xca6fc89095a99a73fc4df640e48cf1b3 

8 XOR К8 Text =  0xb8cc8331b03c63bee72f6c56dad89985 
S-box Text = 0x48112ce00bfdfb2b67c15074ed05699f 
Mixer1 Text = 0xab0dc1615b855ec661a3579da7d4e01e 
Mixer2 Text = 0x3f13333ac1472bbbb42eab0195010121 

 XOR К9 Text = 0x2040844e82689d9279fd3bce5c67541 

3 Approaches to obtaining high-
speed cipher implementation 

Since the speed of cipher implementation is important for 
analysis, it is necessary to consider ways to increase its 
efficiency. The C programming language was chosen to 
implement the cipher faster. In C the maximum size of the 
variable is limited to 64 bits. Since the data block exceeds this 
size for the Qamal algorithm, you need to allocate two to four 
variables (depending on the block size) for data storage. The 
Qamal encryption algorithm is constructed in such a way that it 
often operates with bytes, for example, in a replace using an S-
box and in a Mixer1 transformation. In classic implementation, it 
would be logical to use arrays or lists, saving each byte 
separately and operating with them. But accessing an array is a 
resource-intensive operation which significantly reduces the 
implementation speed. Therefore, we decided to consider 
another way to perform operations in the Qamal cipher, based 
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on the use of simple logical operations such as shifts, 
conjunctions and disjunctions. In this section, all the operations 
are considered in relation to a data block of 128 bits. To store a 
block of 128 bits, you must use two 64-bit unsigned variables 
(unsigned long type). In the formulas indicated below, we use 
operations to convert the key, both parts of which are in two 
variables: KL (most significant bits) and KR (least significant 
bits). This approach can be easily scaled on block 
transformations, including a block of greater length. 
Let us consider the operation of changing bytes using S-block 
replacement. To allocate the next byte to be replaced from a 
large 64-bit variable, you should shift the content of the variable 
to the right so that the byte is in the smallest significant bits and 
then multiply it by the value 0xff. As a result of multiplication all 
the state bits except for the lower byte are zeroed and we get the 
value we need: 
 

buf = (KL >> sdv) & 255; 
buf1 = (KR >> sdv) & 255; 
 

The shift value varies from 56 to 0 in increments of 8 (by the 
number of bits per byte). Then it is necessary to replace the byte 
according to the replacement table. In order not to complicate 
the logic of dividing a byte into two parts and defining the row 
and column of the replacement table, we can rewrite the 
replacement table as a one-dimensional array. For example, the 
S-box for key conversion can be represented as a one-
dimensional array. Replaced bits must be returned to the 
position they were originally located. Therefore, the result of the 
replacement according to the table must be shifted to the left by 
the same number of positions and added to the new variable 
using the addition modulo two: 
 

buf_KL = buf_KL ^ (S_key[buf] << sdv); 
buf_KR = buf_KR ^ (S_key[buf1] << sdv); 
 

Thus, these actions must be performed 8 times. Since two halves 
of the text are changed at once, the result will be a conversion of 
16 bytes. 
The next transformation is the linear mixing Mixer1. It is 
important to note that bytes are written to the array line by line 
and converted by column. So you can see that for the first 
column the first and fifth bytes from variable KL, and also the 
first and fifth bytes from variable KR are required. The second 
column requires the second and sixth bytes of the KL and KR 
variables. For the third column - the third and seventh bytes. 
And finally, for the fourth column, the fourth and eighth bytes. 
Receiving bytes is similar to how it was done for bytes in the S-
block conversion. But now it is necessary to take two bytes from 
one variable, which are exactly 32 positions apart: 
 

a1 = (KL >> sdv) & 255; 
a2 = (KL >> (sdv - 32)) & 255; 
a3 = (KR >> sdv) & 255; 
a4 = (KR >> (sdv - 32)) & 255; 

Let us see how the values of a1, a2, a3, a4 change when applying 
the Mixer1 transformation. To do this, we will refer to Table 10. 
You should bear in mind that Table 10 shows the values of the 
variables, not hexadecimal values, as was done earlier. Our task 
is to determine which variables form the result of the Mixer1 
conversion. When adding, we omit the "mod 256", however, we 
should remember that in the Mixer1 transformation, addition is 
performed by modulo 256. 

Table 10 – Result of converting a single column using 
Mixer1 

Source 
state 

First 
change 

Second 
change 

Third 
change 

Fourth 
change 

a1 a1+a2+ 
+a3+a4 

a1+a2+ 
+a3+a4+ 
+a1+a2+ 
+a3 = 
2*a1+ 
+2*a2+ 
+2*a3+ 
+a4 

2*a1+2*a2+ 
+2*a3+a4+ 
+a1+a2+a3+ 
+a4+a1+a2 = 
= 4*a1+ 
+4*a2+ 
+3*a3+ 
+2*a4 

4*a1+4*a2+ 
+3*a3+2*a4+ 
+2*a1+2*a2+ 
+2*a3+a4+ 
+a1+a2+a3+ 
+a4+a1= 
=8*a1+7*a2+ 
+6*a3+4*a4 

a2 a1 a1+a2+ 
+a3+a4 

2*a1+ 
+2*a2+ 
+2*a3+a4 

4*a1+4*a2+ 
+3*a3+2*a4 

a3 a2 a1 a1+a2+a3+a4 2*a1+2*a2+ 
+2*a3+a4 

a4 a3 a2 a1 a1+a2+a3+a4 
 
From Table 10, you can see that the final conversion of the 
Mixer1 transformation can be obtained immediately, bypassing 
the intermediate conversions. The only thing to keep in mind is 
that all conversions are performed modulo 256: 
 

b1 = (8*a1+7*a2+6*a3+4*a4) % 256; 
b2 = (4*a1+4*a2+3*a3+2*a4) % 256; 
b3 = (2*a1+2*a2+2*a3+a4) % 256; 
b4 = (a1+a2+a3+a4) % 256. 

 
The result of the conversion should be placed back to the 
positions from which the values a1, a2, a3, a4 were originally 
taken. To do this, the new values should be shifted to the left by 
the same number of positions and the addition modulo two 
operation should be performed with the variable, in which the 
result of transformation is accumulated: 
 

buf_KL = buf_KL ^ (b1 << sdv) ^ (b2 << (sdv-32)); 
buf_KR = buf_KR ^ (b3 << sdv) ^ (b4 << (sdv-32)). 

4 Experimental results 
Our first experiment was aimed at determining the time needed 
to encrypt a single data block and produce round subkeys as well 
as finding out the total time of generating round keys and 
encrypting a single data block. The algorithm operation speed 
was measured by performing the same transformations 10 000 
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times dividing the value by 10 000 then. The algorithm 
implementation was performed in VisualStudio 2017 by using 
the C programming language. The obtained results were 
compared by a program using the array data storage in Python.  
To maintain the experimental integrity all the measurements 
were performed on a single PC having the following technical 
characteristics: Ryzen 5 1500x with 3.5 GHz frequency and 16 GB 
of RAM (DDR4 with a 2400 MHz frequency). Table 11 represents 
the experiment results. 
Comparing the total cipher time for implementations in both C 
and Python shows us that the C implementation speed for a 128-
bit data block is 21.5 times faster; it is also 44 times faster for a 
192-bit block, and 75 times faster for a 256-bit block. It can be 
explained by the fact that the round subkeys development takes 
most of the time and increasing processed block dimension, we 
increase the number of encryption rounds, as well.  
Comparing the round keys generating time with respect to the 
block encryption time, we can see that the round subkeys 
generating takes tens of times longer than one block encryption 
time for both implementations the generation time of round keys 
with respect to the block encryption time (Table 12). 

Table 11 – Implementation Speed Comparison 

Program
ming 
language 

Block 
size 
(bits) 

№ of 
rounds 

Keygen 
speed, 
sec 

Block encr, 
sec 

Total work 
time, sec 

C 128 8 0,00128 0.000026 0.001306 
Python 0,02733 0.0007799 0.02811339 
C 192 10 0,0016 0,0000325 0,0016325 
Python 0.0708 0.0015828 0.07222892 
C 256 12 0,00192 0,000039 0,001959 
Python 0.14594 0.0026801 0.14823825 

Table 12 – Key Generation and Data Block Encryption 
Time Comparison 

Programming 
language 

Block 
size 
(bits) 

Number 
of 
rounds 

Ratio of key generation time 
to data block encryption 
time 

C 
128 8 

49,23 
Python 35,044 
C 

192 10 
49,2307 

Python 44,73 
C 

256 12 
50,01 

Python 54,45 

5 Conclusion 
We have considered the project Qamal symmetric encryption 
algorithm, one of the candidates to become the standard for data 
encryption in the Republic of Kazakhstan. As it has been 
described in the study, the procedure of generating round 
subkeys, used in the encryption algorithm is several times more 
complicated processing a single data block. If we apply it to 

encrypting large files, there seems to be no problem as the once 
developed round subkeys can be then used for encryption. But 
when it comes to on-the-fly key generation, where the 
encryption speed is measured by the speed of generating round 
subkeys, we see that it takes several times longer than the 
encryption itself. The encryption is yet to be thoroughly tested 
using other cryptoanalytic attacks to fully verify its reliability. 
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