
i

Proceedings of the 12th International Conference
on Security of Information and Networks

September 12-15, 2019 Sochi, Russia

Organized by:

 Southern Federal University, Taganrog, Rostov-on-Don, Russia

 Sochi State University, Sochi, Russia

 Cardiff University, Cardiff, UK

 The University of Glasgow, Glasgow, UK

 Aksaray University, Aksaray, Turkey

 Rutgers University, NJ, USA

 Kennesaw State University, GA, USA

 Malaviya National Institute of Technology, Jaipur, India

 Manipal University Jaipur, Jaipur, India

 Macquarie University, Sydney, Australia

Edited by Oleg Makarevich, Ludmila Babenko, Maxim Anikeev,
Atilla Elçi & Hossain Shahriar

This publication is supported by the Russian Foundation for Basic Research (RFBR),
grant No. 19-47-231001.

ii

The Association for Computing Machinery

2 Penn Plaza, Suite 701

New York New York 10121-0701

ACM COPYRIGHT NOTICE. Copyright © 2019 by the Association for Computing Machinery, Inc.

Permission to make digital or hard copies of part or all of this work for

personal or classroom use is granted without fee provided that copies are not made or

distributed for profit or commercial advantage and that copies bear this notice and the

full citation on the first page. Copyrights for components of this work owned by others

than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, to

republish, to post on servers, or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from Publications Dept., ACM, Inc., fax +1 (212) 869-0481,

or permissions@acm.org.

For other copying of articles that carry a code at the bottom of the first or last page,

copying is permitted provided that the per-copy fee indicated in the code is paid

through the Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923,

+1-978-750-8400, +1-978-750-4470 (fax).

ACM ISBN: 978-1-4503-7242-8

mailto:permissions@acm.org

Table of Contents

 Full Papers

1 Alexander Tselykh, Vladislav Vasilev, Larisa Tselykh

Managing influence in complex systems to ensure safety of their operation

2 Andrey Ragozin, Vladimir Telezhkin, Pavel Podkorytov

Forecasting complex multi-component time series within systems designed to detect

anomalies in dataflows of industrial automated systems

3 Antonina Komarova, Anatoly Korobeynikov

Combined Authentication Schemes with Increasing Level of Resistance and Methods for

Improving the Security of Electronic Signature Schemes

4 Alexey Shniperov, Aleksandra Prokofieva

Steganalysis Method of Static JPEG Images Based on Artificial Immune System

5 Hope Eke, Andrei Petrovski, Hatem Ahriz

The Use of Machine Learning Algorithms for Detecting Advanced Persistent Threats

6 Vyacheslav Zolotarev, Alina Povazhnyuk, Ekaterina Maro

Liveness Detection Methods Implementation to Face Identification Reinforcement in Gaming

Services

7 Igor Kotenko, Igor Saenko, Yury Sineshchuk, Valery Kuvatov, Oleg Chudakov

Optimization of the Cyber Security System Structure based on Accounting of the Prevented

Damage Cost

8 Kunbolat Algazy, Ludmila Babenko, Rustem Biyashev, Evgeniya Ishchukova, Nursulu

Kapalova, Saule Nyssanbayeva

Investigation of the Different Implementations for the New Cipher Qamal

9 Vasiliy Krundyshev, Maxim Kalinin

Hybrid neural network framework for detection of cyber attacks at smart infrastructures

10 Valeriy Osipyan, Kirill Litivnov, Raphael Bagdasaryan, Elena Lukashchik, Sergey Sinitsa,

Arseny Zhuk

Development of Information Security System Mathematical Models by the Solutions of the

Multigrade Diophantine Equation Systems

11 Elena Basan, Oleg Makarevich, Evgeny Abramov, Dmitry Popov

Analysis of the Initial Security of the Robotics System

12 Daoud Mohamed Amine, Dahmani Youcef, Mostefaoui Kadda

IDS-DL: A Description Language for Detection System in Cloud Computing

13 Andrey Krasovsky, Ekaterina Maro

Actual and Historical State of Side Channel Attacks Theory

14 Vitaly Lapshichyov, Oleg Makarevich

TLS certificate as a sign of establishing a connection with the network Tor

15 Karim Lounis, Mohammad Zulkernine

Bad-Token: Denial of Service Attacks on WPA3

16 Igor Kotenko, Nikolay Komashinsky

Combining Spark and Snort Technologies for Detection of Network Attacks and Anomalies:

Assessment of Performance for the Big Data Framework

17 Anil Saini, Shreyansh Sharma, Palash Jain, Vikash Sharma

A Secure Priority Vehicle Movement based on Blockchain Technology for Connected

Vehicles

Short Papers

18 Evgeniya Ishchukova, Ekaterina Maro, Gennady Veselov

Development of information security quest based on use of information and communication

technologies

19 Denis Chernov, Alexey Sychugov

Method of identifying and assessing of automated process control systems vulnerable

elements

20 Stanislav Belyakov, Alexander Bozhenyuk, Olesiya Kosenko, Evgeny Kosenko

Evaluation of Information Reliability of Complex Systems Using Intuitionistic Fuzzy Graphs

21 Kirill Borisov, Irina Lubushkina, Sergey Panasenko

Adaptation of an Authentication Protocol Based on Asymmetric Keys for Use in UAV C2

Link Security Systems

22 Stanislav Belyakov, Alexander Bozhenyuk, Marina Savelyeva, Marina Belyakova

Safety Analysis of the Flow of Cartographic Data with Defects

23 Alexander N. Sokolov, Andrey N. Ragozin, Ilya A. Pyatnitsky, Sergei K. Alabugin

Applying of Digital Signal Processing Techniques to Improve the Performance of Machine

Learning-based Cyber Attack Detection in Industrial Control System

24 Yaroslav Tarasov, Ekaterina Pakulova, Oleg Basov

Modeling of Low-Rate DDoS-Attacks

25 Dmitriy Levonevskiy, Fedor Novikov, Ludmila Fedorchenko, Irina Afanasieva

Verification of Internet Protocol Properties Using Cooperating Automaton Objects

26 Ekaterina Pakulova, Artem Ryndin, Oleg Basov

Multi-path multimodal authentication system for remote information system

27 Ludmila Babenko, Ilya Pisarev, Elena Popova

Cryptographic Protocols Implementation Security Verification Of The Electronic Voting

System Based On Blind Intermediaries

28 Abdul Ashraf, Ron Poet

Is it Better to Choose Seen or Unseen Distracters for Graphical Passwords

Investigation of the Different Implementations for the New Cipher
Qamal

Kunbolat Algazy
Institute of Information and

Computational Technologies,
Almaty, Kazakhstan
kunbolat@mail.ru

Ludmila Babenko
Institute of Computer Technologies

and Information Security of the
Southern Federal University

Taganrog, Russia
lkbabenko@sfedu.ru

Rustem Biyashev
Institute of Information and
Computational Technologies

Almaty, Kazakhstan

Evgeniya Ishchukova
Institute of Computer Technologies

and Information Security of the
Southern Federal University

Taganrog, Russia
uaishukova@sfedu.ru

Nursulu Kapalova
Institute of Information and
Computational Technologies

Almaty, Kazakhstan
kapalova@ipic.kz

Saule Nyssanbayeva
Institute of Information and
Computational Technologies

Almaty, Kazakhstan
sultasha1@mail.ru

ABSTRACT
Currently, the Republic of Kazakhstan is creating a new standard
for symmetric data encryption. Qamal encryption algorithm
developed by the Institute of Information and Computer
Technologies (Almaty, Republic of Kazakhstan), which is one of
the candidates to be approved as a standard, is the subject of our
study. We analyze in detail the basic cipher transforming work
principles, approaches to its quick implementation and the
results of the implementation experiments in several
programming languages. The encryption algorithm under study
uses the round subkeys generating procedure, which seems to be
several times more complicated than the single block processing
procedure.

The software implementation approaches suggested can
significantly reduce computation time by using logic operations
instead of accessing data arrays.

Our article is the first step to a comprehensive research of Qamal
properties; its resistance to different cryptanalysis types is yet to
be analyzed.

CSS CONCEPTS
• Security and privacy → Block and stream ciphers;
Cryptanalysis and other attacks;

• Social and professional topics→ Computer science education;

KEYWORDS
Cryptography, Block Cipher, Standard, Secret Key,
Implementation Speed, Logical Operations, Array Access

1 Introduction
People have always been interested in protecting their personal
information. As soon as a number of different ciphers emerged,
the countries started to think about the need to have a reliable
data protection tool that would be proven to be persistent, have
no loopholes and be used at various levels of trust.
The first standard to become known was DES [1]. Although the
DES algorithm has been accepted for five years, it has
maintained its standard status for more than 20 years and has
never been compromised. However, the computing power had
increased so much by 2000, that it became possible to pick up a
secret key using powerful supercomputers of the time. DES was
replaced by AES, a new cipher, that had been approved by the
whole world, literally.
The GOST 28147-89 [2] standard of encryption is known to have
been operated in Russia since 1989. It was classified till 1994,
though. The new GOST R34.12-2015 encryption standard, which
includes two ciphers, Magma and Kuznyechik [3], came into
force in the Russian Federation in 2016.
The former Soviet Union countries are gradually switching to
their own symmetric encryption standards. Thus, the STB
34.101.31-2007 "Information technologies and security.
Cryptographic encryption and integrity control algorithms" [4]
standard is used in the Republic of Belarus; and the standard
based on the Kalina encryption algorithm was adopted in
Ukraine in 2015 [5].
The Republic of Kazakhstan is also working on the symmetric
data encryption state standard in the framework of the “Software
and hardware development for cryptographic data protection in
its transmission and storage in info communication systems and
general purpose networks” targeted funding program of the
Ministry of Education and Science of the Republic of Kazakhstan
Committee of Science[13]. The Qamal cipher, proposed for the
research in this article is one of the design encryption

Full or partial copying of materials for personal use or teaching is permitted free
of charge with mandatory reference to the source indicated on the first page. You
need to seek the authors’ permission for any third party copyright. Please contact
the owner(s)/author(s) for any other questions.
SIN 2019, September 12–15, 2019, Sochi, Russian Federation
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-7242-8/19/09…$15.00
 https://doi.org/10.1145/3357613.3357622

SIN’19, September, 2019, Sochi, Russia

K. Algazy et al.

algorithms. Nowadays, the symmetric encryption algorithms
being developed are subject to several requirements, including
requirements for key parameters, strength, and software and
hardware cipher implementations. Even though during the AES
competition all the applicants were tested according to various
evaluation criteria for software implementations, computing
technology is developing at an amazing rate. That is why the
research on the high-speed implementation remains actual,
which has been confirmed by a few implementation studies and
experimental tests for the AES cipher.
Thus, the authors presented the results for the use of the high-
performing Cell broadband engine and NVIDIA graphics
processing units research in [6].
In [7] they considered a version of high-speed implementation of
the AES standard using Xilinx system generator implemented on
Nexys-4 DDR FPGA development board and simulated using
MATLAB Simulink. A 64-bit FPGA implementation of the 128-
bit block and 128-bit-key AES cipher was presented in [10].
All this indicates the increased public interest the high-speed
modern ciphers implementation[8, 9, 11, 12]. That is why our
article is aimed at studying the Qamal cipher and its properties
when performing various software implementations using
different encryption algorithms.
The paper is organized as follows. The first chapter describes the
Qamal project cipher, provides examples of the basic cipher
transformations implementation that can be used as control
points when performing a software cipher implementation. The
second chapter discusses approaches to creating a high-speed
implementation for the Qamal cipher. The third chapter presents
the main experimental results obtained using different
approaches to implementation and various programming
languages.

2 Qamal encryption algorithm

2.1 Data encryption using Qamal's encryption
algorithm

The Qamal encryption algorithm is a symmetrical block
encryption algorithm, built on the SP-network principle. The
algorithm supports block and key lengths of 128, 192 and 256
bits, while the length of the processed block of data and the
length of the secret key must always match. The number of
encryption rounds depends on the length of the block and the
key. The 128-, 192- and 256-bit K keys correspond to eight, ten
and twelve rounds of encryption, respectively. All rounds except
the last ones are identical. In the last round, an additional round
key is added. The scheme of the encryption algorithm is shown
in Figure 1.
The encryption algorithm includes developed key imposition
procedures using the bitwise addition (XOR) operation, the S-
block replacement, the mixing procedures Mixer1 and Mixer2.
In the first procedure, a key modulo 2 operation (XOR operation)
is performed in the plaintext block.
The second procedure to be produced is the bytes using the S-
box replacement. For this, a nonlinear conversion of bytes is

performed: a nonlinear bijective substitution is applied to each
byte. The resulting S-box is presented in Table 1. In Table 1, all
data is given in hexadecimal. Using an S-block here is similar to
using an S-block for the AES data encryption standard: the
original byte is divided into two halves, the top 4 bits (left side of
the byte) indicate the row number in the replacement table, and
the bottom 4 bits (right side of the byte) indicate the column
number in the replacement table.

Figure 1 – Qamal Encryption Algorithm Scheme

The third procedure is the linear formation of the Mixer1 block.
Bytes of the block are represented in the form of a two-
dimensional array A with the size m*4, where m takes on the
value of 4, 6 or 8, depending on the size of the initial block:

.

Bytes of each column are added together modulo 256:

Then, the received new byte of the first column replaces of the
upper byte a00, and the original bytes are shifted down by one
position. This operation is repeated four times. As a result, we
get four new bytes in the first column. Further, this operation is
performed for the three remaining columns (Figure 2).

Figure 2 – Operation of the Mixer1

SIN’19, September, 2019, Sochi, Russia

K. Algazy et al.

 3

Table 1 – S1-block

 0 1 2 3 4 5 6 7 8 9 a b c d e f

0 c9 34 f0 18 55 86 21 6b 87 d2 6e 99 bd 31 98 89

1 29 73 83 8b 1a 19 e1 e4 f3 5b 72 3f a6 f9 2e a3

2 7e 10 94 07 ec ad 2f 26 20 93 66 3d dd 64 5f c1

3 13 e0 80 25 d3 08 75 6a b9 2d d1 cc fd ca 3b fc

4 d5 da e2 ce a0 7f ae c8 9c 09 3c 95 ba 35 3e 7b

5 fa 8d 23 ab d9 e8 74 2a c3 a8 d8 52 45 b5 0a 0c

6 a4 61 9a fb aa f6 78 84 c4 e9 ee 54 50 81 df 90

7 36 b4 bb 44 c5 96 4b 28 14 e6 8f ff b0 1f 53 47

8 00 4c 40 2c 9b 9f 4a 01 7d af 92 56 7a db 8e 16

9 63 24 a9 1d 33 4d e7 1c 70 69 b7 c6 32 e5 57 03

a 97 a5 eb d4 bc 5d f8 85 06 f2 59 f4 17 22 38 dc

b 0b fe be cd 41 82 04 0e 48 71 30 ac ef c7 2b cb

c b8 8c 5a 42 a7 4e d0 46 bf b3 91 e3 11 7c 6f de

d 88 58 1e 5c 9d 60 c0 62 05 79 ed 76 c2 02 65 d7

e f1 8a 77 f7 37 b1 0f 67 cf 0d a1 6c 4f 3a 39 1b

f 27 b6 5e f5 ea 6d 15 9e b2 12 a2 68 43 51 49 d6

The formation of the Mixer1 block results in a new B array of
m*4 size, where m equals 4, 6 or 8 depending on the block size
(m=4 for a block of 128 bits, m=6 for a block of 192 bits and m=8
for a block of 256 bits, respectively):

Each row of the array is represented as a polynomial and a
polynomial multiplication of the form bi(x) * mi(x) mod p(x)
occurs, where:

p = 1000000000000000000000001001101112 = 0x100000137;
m0 = 101010000010001010111011101110102 = 0xA822BBBA;
m1 = 110100100011010111010010011001012 = 0xD235D265;
m2 = 110110100001100110010110110100102 = 0xDA1996D2;
m3 = 100100000100101110011110000110112 = 0x904B9E1B;
m4 = 101000110000010001101111011010102 = 0xA3046F6A;
m5 = 100101101110110100001101001101012 = 0x96ED0D35;
m6 = 011000110011101101101000110011012 = 0x633B68CD;
m7 = 101001110011000111110001100110102 = 0xA731F19A.

The mi(x) values are also presented as polynomials and are
applied as follows. With an open block length of 128 bits, the
first four values of m0(x), m1(x), m2(x), m3(x) are used. For the
block length of 192 bits the first 6 six values of m0(x), m1(x),
m2(x), m3(x), m4(x), m5(x) are taken. For the third possible block
length, all the eight mi(x) values are used.

2.2 Data decryption using Qamal's encryption
algorithm

To decrypt the ciphertext, all cryptographic transformations
used for encryption are inverted and exercised in the decryption
algorithm in reverse order. Round keys are also used in reverse
order. When decrypting each of these block lengths, 8, 10, or 12
rounds are performed, respectively, with InvS, InvM1, and InvM2
inverse conversions performed in each block length.
The InvS conversion is inverse to the byte change operation
through the S-block in Table 1. For example, if the 00 byte is
replaced by the C9 byte, the C9 byte is to be replaced by the 00
byte for inverse conversion.
The InvM1 transform is the reverse of the Mixer1 transform.
That means that the additional operation 256 modulo must be
replaced by a sequential subtraction operation modulo 256.
The conversion of InvM2 is inverse to the procedure for
obtaining a Mixer2 block. To obtain a block inverse Mixer2, each
row of the array is treated as a polynomial, which is multiplied
by fixed modulo p (x) polynomials, where:

p = 1000000000000000000000001001101112 = 0x100000137;
m0

-1 = 1111 0011 0100 1000 1000 1001 1101 01012 = 0xf3488ad5;
m1

-1 = 0001 0110 0111 0011 1101 0000 1101 01112 = 0x1673d0d7;
m2

-1 = 1000 1010 0010 1110 1000 1011 1011 10102 = 0x8a2e8bba;
m3

-1 = 1100 0000 1010 0010 0011 1100 1011 00002 = 0xc0a23cb0;
m4

-1 = 1111 1101 1010 0101 0110 0100 0101 00102 = 0xfda56452;
m5

-1 = 0111 1111 1001 1100 0011 0000 0010 00102 = 0x7f9c3022;
m6

-1 = 1001 1000 0100 1011 1001 1101 0011 11102 = 0x984b9d3e;
m7

-1 = 0001 1110 0111 0011 0001 1111 1000 10002 = 0x1e731f88;

The first four values m0

-1(x), m1
-1(x), m2

-1(x), m3
-1(x) are used for

an open block of 128 bits. For the block length of 192 bits the

SIN’19, September, 2019, Sochi, Russia

K. Algazy et al.

first 6 six values of m0

-1(x), m1
-1(x), m2

-1(x), m3
-1(x), m4

-1(x), m5
-

1(x) are taken. For the third possible block length, all eight mi
-1(x)

values are used.

2.3 Round key generation algorithm

Round keys Ki are generated from the key K cipher using the key
expansion procedure. As a result, an array of round keys is
formed, from which the required round key is then directly
selected. The scheme for obtaining round keys is shown in
Figure 3.
The original secret key K is the first round subkey. To generate
the following secret key, ten rounds of conversions are
performed: the replacement with the S-box that is different from
what was used during encryption, the transformation Mixer1
(Figure 2) and the transformation Mixer2, which is similar to the
transformation of the same name in the encryption procedure.
The last procedure of the round is called Module pi(x). It works
as follows. Let g1(x), g2(x), ..., gs(x) – non-delivable binary
polynomials used as working bases, where G(x) =
g1(x)g2(x)...gs(x). The degree of the polynomial G(x) corresponds
to the value N = m1 + m2 + ... + ms and is equal to the block
length (i.e.128, 192, 256). The output from the Mixer2 block is
represented as an N (x) polynomial with binary coefficients.
k1(x), k2(x), ..., ks(x) – the remains of the division of the
polynomial N(х) on the corresponding bases pi(x), i = 1,...,s.
Where pi(x), i = 1,...,s are the secret elements of the key
deployment procedure.
The values of the polynomials p(x) for the Module operation are
secret, that is, in fact, they make up additional key information.
For the purposes of this study, we use the following polynomial
values as a secret element pi(x) to obtain round keys:

p1(x) = 100000000001010112 = 0x1002B;
p2(x) = 100000000001011012 = 0x1002D;
p3(x) = 100000000001110012 = 0x10039;
p4(x) = 100000000001111112 = 0x1003F;
p5(x) = 100000000010001112 = 0x10047;
p6(x) = 100000000010100112 = 0x10053;
p7(x) = 100000000100011012 = 0x1008D;
p8(x) = 100000000101111012 = 0x100BD;

After ten rounds of transformations, the result is added modulo
two with the value of the round subkey from which the current
subkey was generated, resulting in a new round key. To get the
next round key, you need to re-run a cycle of ten
transformations.

2.4 Data conversion example
Consider, for example, how message X will be encrypted on the
K key, where:

Х = 0x81754b8c671be306adee86fc52174dcd
K = 0x904b9e1bd6eaa64db9a9c168a5e5f92d

Let us start the process with the development of round subkeys.
To generate the first round subkey, you must perform ten

rounds of conversion. The initial value to which the
transformation will be applied is the secret encryption K key =
0x904b9e1bd6eaa64db9a9c168a5e5f92d.
The first conversion is the replacement of bytes in accordance
with Table 3. Thus, the high 0x90 byte is converted to 0x5, the
next byte 0x4B to 0x2, and so on. As a result, the value K =
0xa5a2d21f5af9d99b18e364890a8503f1 is obtained. The next
transformation is mixing the data using the Mixer1 conversion.
In order to perform it, let us present the value K =
0xa5a2d21f5af9d99b18e364890a8503f1 as a square matrix, as it is
shown in Table 2.

Figure 3 – Round key Ki expansion, where i = 0,1,…,8
(10,12)

Table 2 – Presentation of key data as a matrix

A5 A2 D2 1f

5a F9 D9 9b

18 E3 64 89

0a 85 03 F1

We are working with the first (left) column of table 2. It is
necessary to perform addition of all bytes modulo 256, write
them to the topmost cell, and move the remaining cell values
down by one. We need to repeat this action four times until all
cells change their values (Table 3).
Let us perform the same actions with the remaining three
columns and get a new state (Table 4).
As a result of Mixer 2 we get the following transformations:

(0x5645e32f * 0хa822bbba) mod 0х100000137 = 0x3c0d7d49
(0x581fde65 * 0xd235d265) mod 0х100000137 = 0xafeeb61e
(0x38812177 * 0xda1996d2) mod 0х100000137 = 0x6627b56f
(0x21031234 * 0x904b9e1b) mod 0х100000137 = 0x24c7ed8f

SIN’19, September, 2019, Sochi, Russia

K. Algazy et al.

 3

Collecting the results of conversions in one block, we get the
result of the conversion Mixer2: K =
0x3c0d7d49afeeb61e6627b56f24c7ed8f.

Table 3 – Result of the first column conversion using
Mixer1

The
initial
state

First
change

Second
change

Third
change

Fourth
change

a5

(a5+5a+
+18+0a)

mod 256 =
21

(21+a5+5a+
+18) mod
256 = 38

(38+21+
+a5+5a)

mod 256 =
58

(58+38+21+
+a5) mod
256 = 56

5a a5 21 38 58
18 5a a5 21 38
0a 18 5a a5 21

Table 4 – Mixer1 conversion result

56 45 e3 2f

58 1f de 65

38 81 21 77

21 03 12 34

The last round of conversion is the Module conversion. To
perform it, the value K = 0x3c0d7d49afeeb61e6627b56f24c7ed8f
must be sequentially taken over eight different modules and a
new block must be created from the obtained values:

0x3c0d7d49afeeb61e6627b56f24c7ed8f mod 0х1002b = 0x0ccf
0x3c0d7d49afeeb61e6627b56f24c7ed8f mod 0х1002d = 0x5463
0x3c0d7d49afeeb61e6627b56f24c7ed8f mod 0х10039 = 0xb236
0x3c0d7d49afeeb61e6627b56f24c7ed8f mod 0х1003f = 0xa02f
0x3c0d7d49afeeb61e6627b56f24c7ed8f mod 0х10047 = 0x338f
0x3c0d7d49afeeb61e6627b56f24c7ed8f mod 0х10053 = 0xd5c2
0x3c0d7d49afeeb61e6627b56f24c7ed8f mod 0х1008d = 0x7714
0x3c0d7d49afeeb61e6627b56f24c7ed8f mod 0х100bd = 0xf02f

By combining the obtained results, we get the result of the
Module conversion: K = 0x0ccf5463b236a02f338fd5c27714f02f.
This completes the conversion of the first round. The further
nine rounds of conversion are required to obtain the second
round key. Each round consists of four operations: replacing
with the help of S-block, transformation Mixer1, transformation
Mixer2, transformation Module. Transformations from the
second to the tenth round are presented in table 5.
In order to get the result of the second round subkey, we need to
add the result from table 5 modulo two with the value of the first
round subkey K = 0x904b9e1bd6eaa64db9a9c168a5e5f92d. Thus,
we get:
K = 0x270d01b891fbd94d7433cad069ba874d
0x904b9e1bd6eaa64db9a9c168a5e5f92d =
= 0xb7469fa347117f00cd9a0bb8cc5f7e60

As a result of all the transformations, we get nine round subkeys,
presented in Table 6.
Once the round subkeys have been developed, you can start
encrypting the text. As a test vector, which should be encrypted,
the value Text = 0x81754b8c671be306adee86fc52174dcd was
chosen. The first transformation of the round is the addition of
data from the first subkey round:

Text = 0x81754b8c671be306adee86fc52174dcd
0x904b9e1bd6eaa64db9a9c168a5e5f92d =
0x113ed597b1f1454b14474794f7f2b4e0.

Table 5 – Developing a second round subkey (rounds 2-10)

Operation Result
S-box: K = 0x278ab713d1708dacc7d7569fab7bc5ac
Mixer1: K = 0x4556abb68b639c31291df9686a4c5f0a
Mixer2: K = 0x7c6df73a33debe79be69fa62595adff8
Module P 1 K = 0x4f83630ba1bb2d74bab883a5adc0532f
S-box: K = 0xfd151351c4ccf1f2e083150a0fe1ebac
Mixer1: K = 0xc0d25912c2cf258251a91d46b04504f9
Mixer2: K = 0x23520af35fb22e94774387edd0e2e37d
Module P 2 K = 0x2dffe89209aae42b90f41363fc93e67e
S-box K = 0xf16c86a72cf053a6a5b6ce13f4fa6e16
Mixer1 K = 0x6a1c018c4b86aa99781ebcd6b60c1576
Mixer2 K = 0x5c4c8ca13c893231108af639d3a61920
Module P 3 K = 0x9f42de86ee6a1de488ff40fc656ea045
S-box: K = 0x62300b8f2a73cb534a6c88f42fd88d35
Mixer1 K = 0xae8d49496c800acedbf649e105e7eb0b
Mixer2 K = 0x807c17bc323f3a64b0a07f48d23bc9e9
Module P 4 K = 0xc46a252a7f8eda5748168ee6a3c4f418
S-box K = 0x4c73df900e7563afb484756e264cb6bf
Mixer1 K = 0x921343d9d0c4d3c44224241934b86d6c
Mixer2 K = 0x4a3278ae78d112bf629d456ff0dbf334
Module P 5 K = 0x18a1f69e77e8cb29739948b9f636282b
S-box K = 0xbfc437d2ab86c157239db418377091a6
Mixer1 K = 0x53387b197fdf1e38513ee928c4573de7
Mixer2 K = 0x8190f1574c00ce5a5019f844d04a43a9
Module P 6 K = 0xbe2e0f5e481937a89d323c37ee83904c
S-box K = 0xd541c2a9b4e6e9f758cb0e92a15a560
Mixer1 K = 0x5aee23ff876a06fb467b5b72b8c800e9
Mixer2 K = 0xeb45c1be3db33e4590ef823d3e0770db
Module P 7 K = 0xdc5165e3ecfbc1e18157f4b19704365f
S-box K = 0x93c62f5b81d664c81afb6a361c370f3
Mixer1 K = 0xa93038ee15034e5b8b59027f760eb9b9
Mixer2 K = 0xccca3a6555d21719fd3d640d52286c23
Module P 8 K = 0x8406a687d232289ad32fefec9d0360a
S-box K = 0xe7b1d907008c91322d8cf8f808e87009
Mixer1 K = 0x66444f8a336870de307a346b1cb1d23a
Mixer2 K = 0x3f342d47be4ec33d5f8367efad24ff02
Module P 9 K = 0x270d01b891fbd94d7433cad069ba874d

SIN’19, September, 2019, Sochi, Russia

K. Algazy et al.

Table 6 – Received round subkeys

Subkey Subkey value
К1 0x270d01b891fbd94d7433cad069ba874d
К2 0xb7469fa347117f00cd9a0bb8cc5f7e60
К3 0x756012f7ba128da67efba084be1b78cf
К4 0x411ded5410a74f8489d5a891ff54f91f
К5 0x7a574831d813d72a3360f34b30b9dc06
К6 0xe808de737d501937f397539aa152bbdf
К7 0xbf674c851c0bc3ddf5c043d0ca87b4b
К8 0x72a34ba12595f9cd1b629a163e546836
К9 0x3d173b7e2961a26293b178bd70c77460

After that we replace bytes using the S-box (Table 1). As a result,
the data block will look as follows: Text =
0x733b601cfeb67f951ac8c8339e5e41f1.
The next transformation is to mix the data using the
transformation Mixer 1. In order to perform it, let us present the
value Text = 0x733b601cfeb67f951ac8c8339e5e41f1 as a square
matrix, as it is shown in Table 7. The result of the Mixer1
conversion is presented in Table 8.

Table 7 – Presentation of Text data as a matrix

73 3b 60 1c
fe b6 7f 95
1a c8 c8 33
9e 5e 41 f1

Table 8 – Mixer1 conversion result

9e fa 2d e9
4e d8 56 3f
b4 d0 8f b9
29 17 e8 d5

If we write values from Table 8 line by line, we get the block
value as a result of the conversion of Mixer1: Text =
0x9efa2de94ed8563fb4d08fb92917e8d5.
As a result of using the Mixer2 operation, we get the following
transformations:

(0x9efa2de9 * 0хa822bbba) mod 0х100000137 = 0xe5d8e3a5
(0x4ed8563f * 0xd235d265) mod 0х100000137 = 0x5c899c10
(0xb4d08fb9 * 0xda1996d2) mod 0х100000137= 0x1a5323de
(0x2917e8d5 * 0x904b9e1b) mod 0х100000137 = 0xad001adf

Collecting the results of conversions in one block, we get the
result of the conversion Mixer2: Text =
0xe5d8e3a55c899c101a5323dead001adf.
This completes the conversion of the first round of encryption.
Eight rounds of encryption are used for the 128-bit block. All
intermediate values from the second to the eighth rounds are

shown in Table 9. You can see that the encryption results in
encrypted text: Cipher = 0x2040844e82689d9279fd3bce5c67541.

Table 9 – Transformations of 2-8 rounds of encryption

R Operation Result
2 XOR К2 Text = 0x529e7c061b98e310d7c92866615f64bf

S-box Text = 0x2357b0213f70f72962b32078610caacb
Mixer1 Text = 0xa12aa923704d5026e900384f2586718d
Mixer2 Text = 0xa16ce2f0d6b462f612ab4b6ab5d8f998

3 XOR К3 Text = 0xd40cf0076ca6ef506c50ebee0bc38157
S-box Text = 0x9dbd276b50f81bfa50fa6c3999424c2a
Mixer1 Text = 0x5c94ad2cd646e49313a0a866d6f1fac8
Mixer2 Text = 0x95d27d43bf26a0c7b4ea6b2b072cd3e

4 XOR К4 Text = 0xd4cf9017af81ef43829b0e234f263421
S-box Text = 0x9dde63e4dc4c1bce40c698077b2fd310
Mixer1 Text = 0x5864b12c9a5866fded0fff82341fe9c9
Mixer2 Text = 0x8f572d43da96805539997736ae66389d

5 XOR К5 Text = 0xf50065720285577faf9847d9edfe49b
S-box Text = 0x6dc9f6bbf09f2a476e129b1f57d737c6
Mixer1 Text = 0xe869549b6c84bff1edcbad082251f2e7
Mixer2 Text = 0x8df913275ec121504f553da5389c1cc2

6 XOR К6 Text = 0x65f1cd5423913867bcc26e3f99cea71d
S-box Text = 0xf6b67cd90724b984ef5adffc696f85f9
Mixer1 Text = 0x1f843d3093547b5a41d7adab55a39952
Mixer2 Text = 0x9cb06a2ac7ea32eb92d5498464e0a5c4

7 XOR К7 Text = 0x97461ee2962a8ed64d894db96848de8f
S-box Text = 0x1cae2e77e7668ec035af3571c49c6516
Mixer1 Text = 0x7fc424f63395595b34224766fc5f56be
Mixer2 Text = 0xca6fc89095a99a73fc4df640e48cf1b3

8 XOR К8 Text = 0xb8cc8331b03c63bee72f6c56dad89985
S-box Text = 0x48112ce00bfdfb2b67c15074ed05699f
Mixer1 Text = 0xab0dc1615b855ec661a3579da7d4e01e
Mixer2 Text = 0x3f13333ac1472bbbb42eab0195010121

 XOR К9 Text = 0x2040844e82689d9279fd3bce5c67541

3 Approaches to obtaining high-
speed cipher implementation

Since the speed of cipher implementation is important for
analysis, it is necessary to consider ways to increase its
efficiency. The C programming language was chosen to
implement the cipher faster. In C the maximum size of the
variable is limited to 64 bits. Since the data block exceeds this
size for the Qamal algorithm, you need to allocate two to four
variables (depending on the block size) for data storage. The
Qamal encryption algorithm is constructed in such a way that it
often operates with bytes, for example, in a replace using an S-
box and in a Mixer1 transformation. In classic implementation, it
would be logical to use arrays or lists, saving each byte
separately and operating with them. But accessing an array is a
resource-intensive operation which significantly reduces the
implementation speed. Therefore, we decided to consider
another way to perform operations in the Qamal cipher, based

SIN’19, September, 2019, Sochi, Russia

K. Algazy et al.

 5

on the use of simple logical operations such as shifts,
conjunctions and disjunctions. In this section, all the operations
are considered in relation to a data block of 128 bits. To store a
block of 128 bits, you must use two 64-bit unsigned variables
(unsigned long type). In the formulas indicated below, we use
operations to convert the key, both parts of which are in two
variables: KL (most significant bits) and KR (least significant
bits). This approach can be easily scaled on block
transformations, including a block of greater length.
Let us consider the operation of changing bytes using S-block
replacement. To allocate the next byte to be replaced from a
large 64-bit variable, you should shift the content of the variable
to the right so that the byte is in the smallest significant bits and
then multiply it by the value 0xff. As a result of multiplication all
the state bits except for the lower byte are zeroed and we get the
value we need:

buf = (KL >> sdv) & 255;
buf1 = (KR >> sdv) & 255;

The shift value varies from 56 to 0 in increments of 8 (by the
number of bits per byte). Then it is necessary to replace the byte
according to the replacement table. In order not to complicate
the logic of dividing a byte into two parts and defining the row
and column of the replacement table, we can rewrite the
replacement table as a one-dimensional array. For example, the
S-box for key conversion can be represented as a one-
dimensional array. Replaced bits must be returned to the
position they were originally located. Therefore, the result of the
replacement according to the table must be shifted to the left by
the same number of positions and added to the new variable
using the addition modulo two:

buf_KL = buf_KL ^ (S_key[buf] << sdv);
buf_KR = buf_KR ^ (S_key[buf1] << sdv);

Thus, these actions must be performed 8 times. Since two halves
of the text are changed at once, the result will be a conversion of
16 bytes.
The next transformation is the linear mixing Mixer1. It is
important to note that bytes are written to the array line by line
and converted by column. So you can see that for the first
column the first and fifth bytes from variable KL, and also the
first and fifth bytes from variable KR are required. The second
column requires the second and sixth bytes of the KL and KR
variables. For the third column - the third and seventh bytes.
And finally, for the fourth column, the fourth and eighth bytes.
Receiving bytes is similar to how it was done for bytes in the S-
block conversion. But now it is necessary to take two bytes from
one variable, which are exactly 32 positions apart:

a1 = (KL >> sdv) & 255;
a2 = (KL >> (sdv - 32)) & 255;
a3 = (KR >> sdv) & 255;
a4 = (KR >> (sdv - 32)) & 255;

Let us see how the values of a1, a2, a3, a4 change when applying
the Mixer1 transformation. To do this, we will refer to Table 10.
You should bear in mind that Table 10 shows the values of the
variables, not hexadecimal values, as was done earlier. Our task
is to determine which variables form the result of the Mixer1
conversion. When adding, we omit the "mod 256", however, we
should remember that in the Mixer1 transformation, addition is
performed by modulo 256.

Table 10 – Result of converting a single column using
Mixer1

Source
state

First
change

Second
change

Third
change

Fourth
change

a1 a1+a2+
+a3+a4

a1+a2+
+a3+a4+
+a1+a2+
+a3 =
2*a1+
+2*a2+
+2*a3+
+a4

2*a1+2*a2+
+2*a3+a4+
+a1+a2+a3+
+a4+a1+a2 =
= 4*a1+
+4*a2+
+3*a3+
+2*a4

4*a1+4*a2+
+3*a3+2*a4+
+2*a1+2*a2+
+2*a3+a4+
+a1+a2+a3+
+a4+a1=
=8*a1+7*a2+
+6*a3+4*a4

a2 a1 a1+a2+
+a3+a4

2*a1+
+2*a2+
+2*a3+a4

4*a1+4*a2+
+3*a3+2*a4

a3 a2 a1 a1+a2+a3+a4 2*a1+2*a2+
+2*a3+a4

a4 a3 a2 a1 a1+a2+a3+a4

From Table 10, you can see that the final conversion of the
Mixer1 transformation can be obtained immediately, bypassing
the intermediate conversions. The only thing to keep in mind is
that all conversions are performed modulo 256:

b1 = (8*a1+7*a2+6*a3+4*a4) % 256;
b2 = (4*a1+4*a2+3*a3+2*a4) % 256;
b3 = (2*a1+2*a2+2*a3+a4) % 256;
b4 = (a1+a2+a3+a4) % 256.

The result of the conversion should be placed back to the
positions from which the values a1, a2, a3, a4 were originally
taken. To do this, the new values should be shifted to the left by
the same number of positions and the addition modulo two
operation should be performed with the variable, in which the
result of transformation is accumulated:

buf_KL = buf_KL ^ (b1 << sdv) ^ (b2 << (sdv-32));
buf_KR = buf_KR ^ (b3 << sdv) ^ (b4 << (sdv-32)).

4 Experimental results
Our first experiment was aimed at determining the time needed
to encrypt a single data block and produce round subkeys as well
as finding out the total time of generating round keys and
encrypting a single data block. The algorithm operation speed
was measured by performing the same transformations 10 000

SIN’19, September, 2019, Sochi, Russia

K. Algazy et al.

times dividing the value by 10 000 then. The algorithm
implementation was performed in VisualStudio 2017 by using
the C programming language. The obtained results were
compared by a program using the array data storage in Python.
To maintain the experimental integrity all the measurements
were performed on a single PC having the following technical
characteristics: Ryzen 5 1500x with 3.5 GHz frequency and 16 GB
of RAM (DDR4 with a 2400 MHz frequency). Table 11 represents
the experiment results.
Comparing the total cipher time for implementations in both C
and Python shows us that the C implementation speed for a 128-
bit data block is 21.5 times faster; it is also 44 times faster for a
192-bit block, and 75 times faster for a 256-bit block. It can be
explained by the fact that the round subkeys development takes
most of the time and increasing processed block dimension, we
increase the number of encryption rounds, as well.
Comparing the round keys generating time with respect to the
block encryption time, we can see that the round subkeys
generating takes tens of times longer than one block encryption
time for both implementations the generation time of round keys
with respect to the block encryption time (Table 12).

Table 11 – Implementation Speed Comparison

Program
ming
language

Block
size
(bits)

№ of
rounds

Keygen
speed,
sec

Block encr,
sec

Total work
time, sec

C 128 8 0,00128 0.000026 0.001306
Python 0,02733 0.0007799 0.02811339
C 192 10 0,0016 0,0000325 0,0016325
Python 0.0708 0.0015828 0.07222892
C 256 12 0,00192 0,000039 0,001959
Python 0.14594 0.0026801 0.14823825

Table 12 – Key Generation and Data Block Encryption
Time Comparison

Programming
language

Block
size
(bits)

Number
of
rounds

Ratio of key generation time
to data block encryption
time

C
128 8

49,23
Python 35,044
C

192 10
49,2307

Python 44,73
C

256 12
50,01

Python 54,45

5 Conclusion
We have considered the project Qamal symmetric encryption
algorithm, one of the candidates to become the standard for data
encryption in the Republic of Kazakhstan. As it has been
described in the study, the procedure of generating round
subkeys, used in the encryption algorithm is several times more
complicated processing a single data block. If we apply it to

encrypting large files, there seems to be no problem as the once
developed round subkeys can be then used for encryption. But
when it comes to on-the-fly key generation, where the
encryption speed is measured by the speed of generating round
subkeys, we see that it takes several times longer than the
encryption itself. The encryption is yet to be thoroughly tested
using other cryptoanalytic attacks to fully verify its reliability.

ACKNOWLEDGMENTS
The study is supported by the “Software and hardware
development for cryptographic data protection in its
transmission and storage in infocommunication systems and
general-purpose networks” targeted funding program of the
Ministry of Education and Science of the Republic of Kazakhstan
Committee of Science (registration number 0118РК01064).

REFERENCES
[1] History of DES. - http://www.umsl.edu/~siegelj/information_theory/

projects/des.netau.net/des%20history.html
[2] GOST 28147-89: Encryption, Decryption and Message Authentication Code

(MAC) Algorithms // https://tools.ietf.org/html/rfc5830
[3] GOST R 34.12–2015 «Information technology. Cryptographic data security.

Block ciphers» // https://tc26.ru/en/standards/standards/gost-r/gost-r-34-12-
2015-information-technology-cryptographic-data-security-block-ciphers.html

[4] Fault-based Attacks on the Bel-T Block Cipher Family //
https://zerobyte.io/publications/2015-JP-belt.pdf

[5] A New Encryption Standard of Ukraine: The Kalyna Block Cipher -
https://pdfs.semanticscholar.org/7771/8fbf6c2044b6f1aa2e66a1eda99121caa4da.
pdf

[6] Dag Arne Osvik, Joppe W. Bos, Deian Stefan, and David Canrigh Fast Software
AES Encryption// FSE 2010 - https://www.iacr.org/archive/fse2010/61470076/
61470076.pdf

[7] Altaf O. Mulani and Pradeep B. Mane High-Speed Area-Efficient
Implementation of AES Algorithm on Reconfigurable Platform // DOI:
10.5772/intechopen.82434 - https://www.intechopen.com/online-first/high-
speed-area-efficient-implementation-of-aes-algorithm-on-reconfigurable-
platform

[8] Roman-Oliynykov/ciphers-speed // https://github.com/Roman-
Oliynykov/ciphers-speed

[9] Patrick Favre-Bulle Security Best Practices: Symmetric Encryption with AES in
Java and Android Jan 6, 2018 https://proandroiddev.com/security-best-
practices-symmetric-encryption-with-aes-in-java-7616beaaade9

[10] Liberatori, Mіnica & Otero, Fernando & Bonadero, J.C. & Moreira, J. (2007).
AES-128 cipher. High speed, low cost FPGA implementation. 195 - 198.
10.1109/SPL.2007.371748.

[11] Lee, Wai Kong. (2014). High Speed Implementation of Symmetric Block Cipher
on GPU. https://www.semanticscholar.org/paper/High-speed-implementation-
of-symmetric-block-cipher-Lee-
Goi/bbe2efba9e3c48034511b054ad30710e64c0562e

[12] Ishchukova, E., Babenko, L., Anikeev, M. Fast implementation and
cryptanalysis of GOST R 34.12-2015 block ciphers // ACM International
Conference Proceeding Series. - 2016.

[13] Report on the research work "Development of software and hardware for
cryptographic protection of information during its transmission and storage in
info communication systems and general-purpose networks" // Committee of
Science of the Ministry of Education and Science of the Republic of
Kazakhstan, Institute of Information and Computing Technologies, State
Registration No. 0118RK01064.

