
### 2018 International Symposium and Annual Meeting of the KSABC

June 18(Mon) -20(Wed), 2018 ICC JEJU, Korea

Applied Biological Chemistry for the Fourth Industrial Revolution

1960



#### 2018 International Symposium and Annual Meeting of the KSABC



| PNB-6  | Differential Regulation of TLR Signaling Pathways by Andrographolide<br><u>Hyun-Jin Shim</u> , Ah-Yeon Kim, Su Yeon Kim, Sunghye Heo, Hyung-Sun Youn <sup>*</sup><br>Department of Biomedical Laboratory Science, College of Medical Sciences, SoonChunHyang University                                                                                                                                                                                                                                                                                                                                                                                                                   |
|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| PNB-7  | Phytochemical Investigation of <i>Ligularia Narynensis</i><br><u>A. K. Nurlybekova<sup>1</sup></u> , Ye Yang <sup>2*</sup> , M. A. Dyusebaeva <sup>1</sup> , Zh. A. Abilov <sup>1</sup> , J. Jenis <sup>1*</sup><br><sup>1</sup> Faculty of Chemistry and Chemical Technology, Al-Farabi Kazakh National University, Almaty, Kazakhstan,<br><sup>2</sup> Shanghai Institute of Materia Medica, Chinese Academy of Science, Shanghai, China                                                                                                                                                                                                                                                |
| PNB-8  | Neuroprotective effect of hydrolysable tannins from <i>Terminalia chebula</i> against glutamate-induced apotosis in HT22 cells<br><u>Tuy An Trinh<sup>1</sup></u> , Ji Hoon Song <sup>1</sup> , Myoung-Sook Shin <sup>1</sup> , Dahae Lee <sup>2</sup> , Do Hwi Park <sup>1</sup> , Ji Yun Baek <sup>1</sup> , Ji Young Song <sup>1</sup> ,<br>Gwi Seo Hwang <sup>1</sup> , Noriko Yamabe <sup>1</sup> , Ki Sung Kang <sup>1*</sup><br><sup>1</sup> College of Korean Medicine, Gachon University, <sup>2</sup> School of Pharmacy, Sungkyunkwan University                                                                                                                               |
| PNB-9  | EGCG derivatives show anti-metastatic activity in human breast cancer cells by controlling the expression of plasminogen activator inhibitor-1 and urokinase plasminogen activator <u>Sunhye Shin</u> , Taewoong Ha, Youhoon Chong Department of Integrative Bioscience and Biotechnology, Konkuk University                                                                                                                                                                                                                                                                                                                                                                              |
| PNB-10 | (-)-Epigallocatechin (EGC) inhibits formation of advanced glycation end product (AGE) by trapping<br>methylglyoxal (MGO)<br><u>Eunryeol Shin</u> <sup>1</sup> , Mi Kyong Kim <sup>2</sup> , Youhoon Chong <sup>1*</sup><br><sup>1</sup> Department of Integrative Bioscience and Biotechnology, Konkuk university, <sup>2</sup> Bio/Molecular Informatics<br>Center, Konkuk university.                                                                                                                                                                                                                                                                                                   |
| PNB-11 | Epigallocatechin Gallate (EGCG) derivatives enhances autophagy in human hepatocellular carcinoma<br>cell<br><u>Yongmin Lee<sup>1</sup></u> , Taegum Lee <sup>2</sup> , Mi Kyong Kim <sup>3</sup> , Youhoon Chong <sup>4*</sup><br><sup>1</sup> Department of integrative Bioscience and Biotechnolgy, Konkuk university, <sup>2</sup> Department of Integrative Bioscience<br>and Biotechnology, Konkuk university, <sup>4</sup> Bio/Molecular Informatics Center, Konkuk university, <sup>4</sup> Department of<br>Integrative Bioscience and Biotechnology, Konkuk university                                                                                                           |
| PNB-12 | Anti-inflammation Activity Extracts from Saururus chinensis by Elicitor Treatment<br><u>Young-le Cho</u> <sup>1*</sup> , Eun-Ho Lee <sup>1</sup> , Jun-Hyo Cho <sup>1</sup> , Hye-Jin Park <sup>1</sup> , Myung-Uk Kim <sup>2</sup> , Hee-Young Jung <sup>3</sup><br><sup>1</sup> School of Food science & Biotechnology/Food & Bio-Industry Research Institute, Kyungpook National University,<br>80 University Street, Bukgu, Daegu 41566, Republic of Korea, <sup>2</sup> Gyeongbuk Institute for Marine Bioindustry, Uljin<br>36315, Korea, <sup>3</sup> School of Applied Biosciences, Kyungpook National University, 80 University Street, Bukgu, Daegu<br>41566, Republic of Korea |

# Phytochemical investigation of Ligularia narynensis

#### Nurlybekova A.K.<sup>1</sup>, Yang Ye<sup>2</sup>, Dyusebaeva M.A.<sup>1</sup>, Abilov Zh.A.<sup>1</sup>, Jenis J.<sup>1</sup>

<sup>1</sup>Faculty of Chemistry and Chemical Technology, Al-Farabi Kazakh National University, Almaty, Kazakhstan <sup>2</sup>Shanghai Institute of Materia Medica, Chinese Academy of Science, Shanghai, China

## Abstract

In this work, the quantitative and qualitative analysis of phytochemical constituents from the root part of medicinal plant *Ligularia narynensis* from Kazakhstan have been made for the first time. Total bioactive components of *L. narynensis* such as organic acids (0.64 %), flavonoids (0.52 %) and together with moisture content (5.14 %), total ash (13.24 %), and extractives content (27.7 %) were determined. Eleven macro-micro elements from the ash of plant were identified, main contents of them were K (2214.13 µg/ml), Ca (391.31 µg/ml), and Fe (311.73 µg/ml) by using method of multi-element atomic emission spectral analysis. In addition, twenty amino and eight fatty acids were analyzed from the plant. The results showed that major contents of amino acids were glutamate (2452 mg/100g), and aspartate (1238 mg/100g), as well as in fatty acids were oleic (33.5 %) and linoleic acids (41.2 %), respectively. The liposoluble constituents extracted from *L. narynensis* by hexane were analyzed by GC-MS method. Total fifty compounds were separated and their relative contents were determined by area normalization in which the major constituents were 9, 12 – Octadecadienoic acid (Z, Z)- (16.70 %), Linoleic acid ethyl ester (11.13 %), n-Hexadecanoic acid (11.01 %), Lup-20 (29)-en-3-ol, acetate, (3.beta.)-(9.14 %), Olean-12-en-3-ol and acetate, (3-beta.)- (5.10 %), respectively.

#### Introduction

#### **Extraction and isolation**

Ligularia is the genus of perennial herbs of the family Compositae, containing about 180 Eurasian species, 17 species growing in mountains of Kazakhstan. Some species in this genus have been used for a long time as folk remedies for their antibiotic, antiphlogistic, and antitumor activities. More than 27 Ligularia species have been used as traditional Kazakh and Chinese medicinal herbs for the treatment of fever, pain, inflammation, and intoxication, and to invigorate blood circulation. Previous studies confirmed the presence of sesquiterpenes, triterpenes, sinapyl alcohol derivatives, Hexane part (133 mg) lignans, alkaloids, and steroids in Ligularia. Eremophilane sesquiterpenes are considered as the major secondary metabolites and taxonomic markers of Ligularia genus. More than 500 eremophilane sesquiterpenes have been reported from this genus. Additionally, oplopane sesquiterpenes have been reported from L. narynensis.

## Results

 Table 1 – Quantitative analysis of bioactive constituents of L. narynensis

#### *Ligularia narynensis* (0.1 kg)

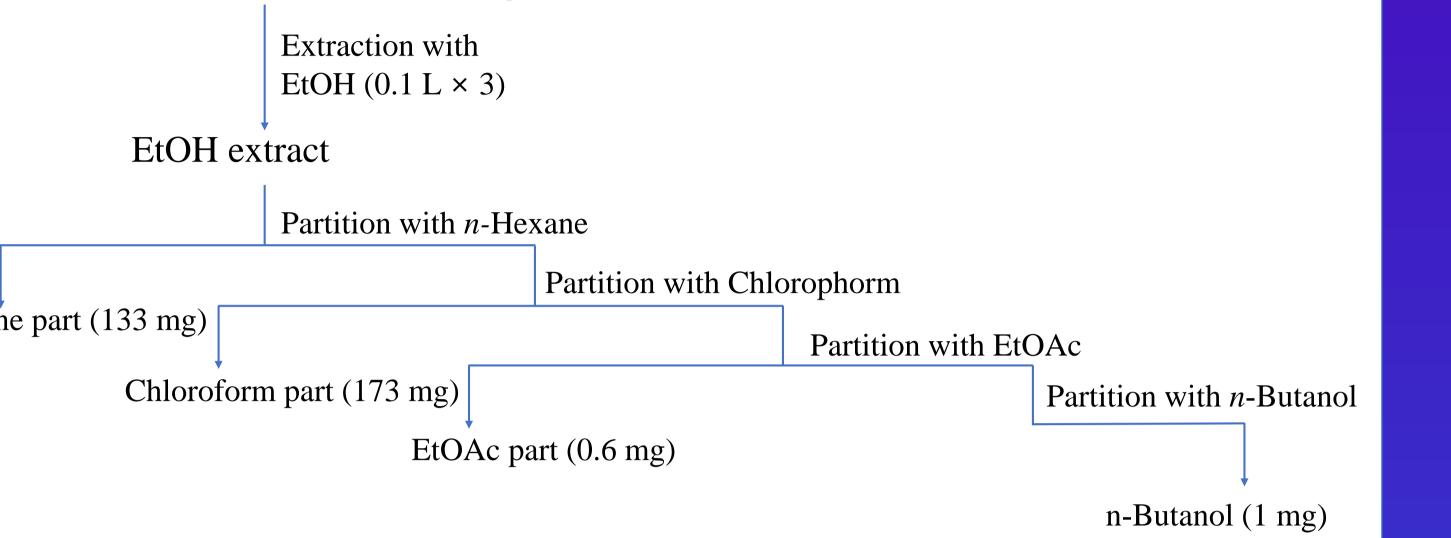



 Table 2 – Composition of macro-micro elements in the ash of plant L. narynensis

| Content, %       |       |             |               | Element    | Cu     | Zn   | Cd   | Pb   | Fe   | Ni     | Mn   | K     | Na      | Mg    | Ca     |        |
|------------------|-------|-------------|---------------|------------|--------|------|------|------|------|--------|------|-------|---------|-------|--------|--------|
| Moisture content | Ash   | Extractives | Organic acids | Flavonoids |        |      |      |      |      | _      |      |       |         |       | 0      |        |
| 5.14             | 13.24 | 27.7        | 0.64          | 0.52       | μg /ml | 1.57 | 2.58 | 0.05 | 0.66 | 311.73 | 0.36 | 11.73 | 2214.13 | 31.74 | 288.08 | 391.31 |

мг/100г



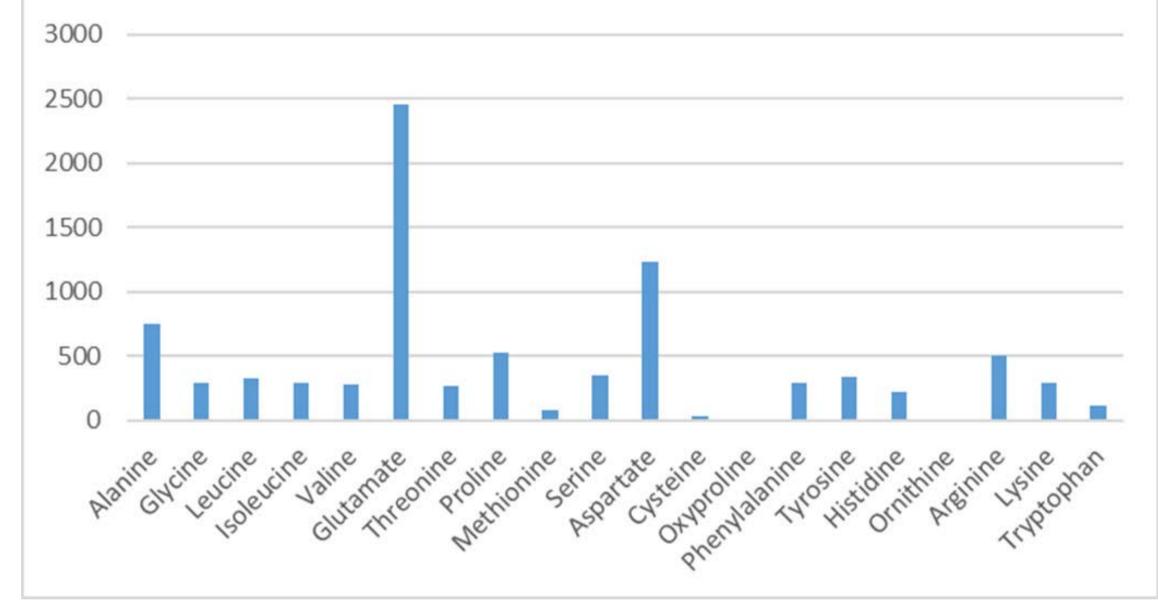



Fig. 1 Amino acids contents of *L. narynensis* 

**Table 3** – The liposoluble constituents from the root parts of *L. narynensis* 

| Peak<br>No. | Constituents                                                                                                                               | t <sub>R</sub><br>(min) | Molecular<br>Formula                           | Structure                             | MW  | Content<br>(%) |
|-------------|--------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|------------------------------------------------|---------------------------------------|-----|----------------|
| 1           | Diphenyl ether                                                                                                                             |                         | $C_{12}H_{10}O$                                |                                       | 170 | 3.41           |
| 2           | n-Hexadecanoic acid                                                                                                                        | 17.59                   | $C_{16}H_{32}O_2$                              | -7~~~~                                | 256 | 11.01          |
| 3           | Hexadecanoic acid, ethyl ester                                                                                                             | 17.76                   | $C_{18}H_{36}O_2$                              | ~~~~~~                                | 284 | 3.10           |
| 4           | Naphtho[1,2-b]furan-2,8(3H,4H)-dione, octah<br>ydro-3,5a,9-trimethyl-, [3S-(3.alpha.,3a.alpha.,<br>5a.beta.,9.alpha.,9a.alpha.,9b.beta.)]- | 18.9                    | C <sub>15</sub> H <sub>22</sub> O <sub>3</sub> |                                       | 250 | 2.48           |
| 5           | 9,12-Octadecadienoic acid (Z,Z)-                                                                                                           | 19.19                   | $C_{18}H_{32}O_2$                              |                                       | 280 | 16.70          |
| 6           | Linoleic acid ethyl ester                                                                                                                  | 19.28                   | C <sub>20</sub> H <sub>36</sub> O <sub>2</sub> |                                       | 308 | 11.13          |
| 7           | Octadecanoic acid                                                                                                                          | 19.43                   | $C_{18}H_{36}O_2$                              | -γ~~~~~                               | 284 | 4.43           |
| 8           | Azulen-2-ol, 1,4-dimethyl-7-(1-methylethyl)-                                                                                               | 19.83                   | $C_{15}H_{18}O$                                |                                       | 214 | 2.48           |
| 9           | .gammaSitosterol                                                                                                                           | 28.78                   | C <sub>29</sub> H <sub>50</sub> O              |                                       | 414 | 2.78           |
| 10          | .alphaAmyrin                                                                                                                               | 29.67                   | C <sub>30</sub> H <sub>50</sub> O              |                                       | 426 | 3.86           |
| 11          | Olean-12-en-3-ol, acetate, (3.beta.)-                                                                                                      | 30.53                   | $C_{32}H_{52}O_2$                              | L Q S P                               | 468 | 5.10           |
| 12          | Lup-20(29)-en-3-ol, acetate, (3.beta.)-                                                                                                    | 31.15                   | $C_{32}H_{52}O_2$                              | L L L L L L L L L L L L L L L L L L L | 468 | 9.14           |
| 13          | 2-Cyclohexyl-1,3-dioxolane-4,5-dicarboxylic acid, dimethyl ester                                                                           | 32.43                   | $C_{13}H_{20}O_{6}$                            |                                       | 272 | 2.77           |

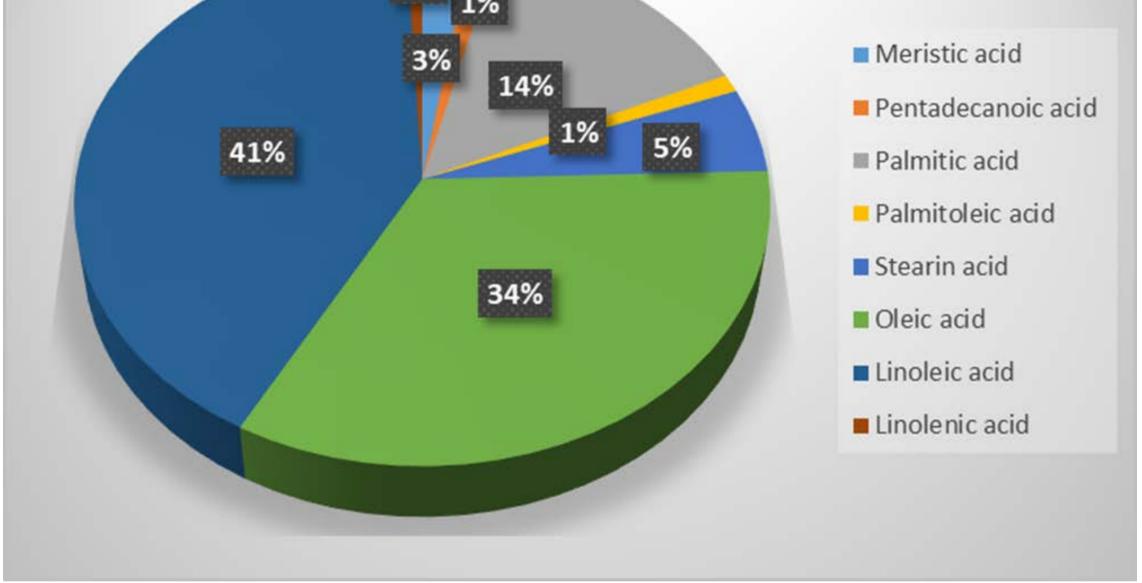



Fig. 2 Fatty acids contents of *L. narynensis* 

## Conclusion

In summary, the quantitative and qualitative analysis of phytochemical constituents from root of medicinal plant L. narynensis of Kazakhstan have been made for the first time. As the results of this study, total bioactive components of L. narynensis were determined, eleven macro-micro elements from the ash of plant were identified together with twenty amino and eight fatty acids were quantified from medicinal plant. In addition, the liposoluble constituents of L. narynensis were analyzed by GC-MS method. Fifty compounds were isolated from hexane extract of the medicinal plant and their relative contents were determined. Presence of these bioactive constituents, may indicative that the plant has substances capable of promote a better brain activity, the contractile function of the cardiac and skeletal muscles. The plant extract has anti-inflammatory, antimicrobial and anticancer activities. From the results we can estimate that L. narynensis extracts poetically useful in medicine. Further and comprehensive investigation is scheduled to be implemented in the next research stage.

#### References

1. Baytenov MS (2001) Flora of Kazakhstan. Gylym, Kazakhstan, Almaty. pp 206.

2. Xue Gaoa, Chang-Jun Linb, Wei-Dong Xiea, Tong Shena, Zhong-Jian Jia (2006) New Oplopane-Type Sesquiterpenes from *Ligularia narynensis*. Helv Chim Acta 89: 1387-1394.

3. Wang Q, Chen TH, Bastow KF, Morris-Natschke SL, Lee KH, Chen DF (2013) Songaricalarins A-E, cytotoxic oplopane sesquiterpenes from *Ligulaira songarica*. J Nat Prod 76: 305–310.

#### Acknowledgements

The work was supported by grants from Ministry of Education and Science of the Republic of Kazakhstan (0118PK00458).