АНАЛИЗ ЗАГРЯЗНЕНИЯ АТМОСФЕРЫ ГОРОДА НУР-СУЛТАН С ПРИМЕНЕНИЕМ ГЕОИНФОРМАЦИОННЫХ ТЕХНОЛОГИИ.

¹Керімбай Нұржан Нұрбергенұлы, профессор кафедры космической техники и технологии, ЕНУ им. Л.Н.Гумилева, Нур-Султан, Казахстан. <u>n.kerimbay@mail.ru</u>

Аннотация: Загрязнение атмосферы является одним из основных факторов риска для здоровья и проблем санитарного состояния окружающей среды. В работе изучены возможности применения ГИС-технологии для задач мониторинга качества атмосферного воздуха. В настоящее время проведение экологического мониторинга считаются финансовозатратными. Поэтому эффективное использование ГИС технологии на основе программной продукции способствует более выгодному проведению контроля за качеством воздуха. Приведены результаты расчетов взвешивания обратно расстоянию (Inverse distance weighted), в сочетании с возможностями ГИС. Новизна работы обусловлена возможностью обновления применяемого метода с целью определения уровня загрязнения атмосферы. Поэтому, рассматриваемый в этой работе метод интерполяции является не только односторонним, но и предлагается новая методика, используемая для повышения ее точности. Определена температура поверхности земли (Land surface temperature) по городу Нур-Султан в интерфейсе программы с помощью метаданных спутника Landsat 8; смоделирован уровень загрязнения атмосферного воздуха производственных территории в рамках программы ArcGIS в 2018 году; составлена схема распределения загрязняющих веществ с учетом температуры поверхности Земли через метод взвешивания обратно расстоянию.

Ключевые слова: загрязнение атмосферы, GIS-технология, IDW, ИЗВ, загрязняющие вешества.

ANALYSIS OF ATMOSPHERE POLLUTION OF THE CITY OF NUR-SULTAN USING GEOINFORMATION TECHNOLOGY.

Annotation: Atmospheric pollution is one of the main risk factors for health and environmental health problems. The paper explores the possibility of using GIS technology for monitoring air quality. Currently, environmental monitoring is considered financially costly. Therefore, the effective use of GIS technology based on software products contributes to a more favorable conduct of monitoring air quality. The results of calculations of weighing back to distance IDW (Inverse distance weighted), in combination with the capabilities of GIS, are given. The novelty of the work is due to the possibility of updating the method used to determine the level of air pollution. Therefore, the interpolation method considered in this paper is not only one-sided, but a new technique is also used, which is used to increase its accuracy. The Earth surface temperature was determined in the city of Nur-Sultan in the program interface using the Landsat 8 satellite metadata; the level of air pollution in the production areas was modeled as part of the ArcGIS program in 2018; A map has been drawn up of the distribution of pollutants taking into account the temperature of the Earth's surface through the method of weighing back to distance.

Keywords: air pollution, GIS-technology, IDW, API, pollutants.

²Керімбай Баян Сүлейменқызы, докторант кафедры физической и экономической географии,ЕНУ им. Л.Н.Гумилева, Нур-Султан, Казахстан.

³Мақаш Клара Керімбаевна, ст.преп. кафедры географии, землеустройства и кадастра КазНУ им.аль-Фараби, Алматы, Казахстан.

Методы и материалы: Цель работы: наглядное представление атмосферного Нур-Султан. Применялись ГИС-технология, состояния города взвешивания обратно расстоянию IDW (Inverse distance weighted). ГИС-технология проводит сбор и анализирует данные для контроля процесса загрязнения, а моделирование загрязнения воздуха в большей степени может достигать определенных результатов на основе решения множественных численных алгоритмов и дифференциальных уравнений с помощью компьютерных программ. Эффективность ГИС также включает: возможность отображения и длительного хранения данных в его структуре. В начале работы следует уточнить температурные изменения в городе Нур-Султан. Для достижения этой цели необходимо рассмотреть космическое изображение 2018 года, полученное из спутника Landsat 8. Изображение можно загрузить с общего сайта Earth Explorer или USGS (United Stated geological survey) (табл.1)

Табл. 1. Характеристика спутника Landsat 8 [1]

Применяемые инструменты						
OLI	TIRS					
OLI и TIRS каналы						
Каналдары	длина					
1 (поверхностный)	0,435-0,451					
2 (синий)	0,452-0,512					
3 (зеленый)	0,533-0,590					
4 (красный)	0,636-0,673					
5 (БИК)	0,851-0,879					
6 (SWIR-1)	1,566-0,651					
7 (SWIR-2)	2,107-2,294					
8 (панхром.)	0,503-0,676					
9 (Cirrus)	1,363-1,384					
10 (TIR-1)	10,60-11,19					
11 (TIR-2)	11,50-12,51					

В первую очередь, для изображения Нур-Султан 2018 будет использоваться Десятый канал, то есть температурный канал. Удобнее использовать этот канал для указания температурных изменений. Все расчеты осуществляются с помощью Raster Calculator.

Для этой цели Landsat 8 температурный радиус поверхности атмосферы с помощью специфических метаданных (top of atmosphere radiance) является следующим образом [2]:

$$L_{\lambda} = M_{L}Q_{cal} + A_{L}, \tag{1}$$

Где L_{λ} -температурный радиус поверхности атмосферы;

 M_L -отдельная множительная величина для канала в метаданных (radiance_mult_band_x);

 Q_{cal} -отдельная соединительная величина для канала в метаданных (radiance_add_band_x); A_L - стандартная величина пиксель.

Температура поверхности земли в программе записывается следующим образом (Рис.1):

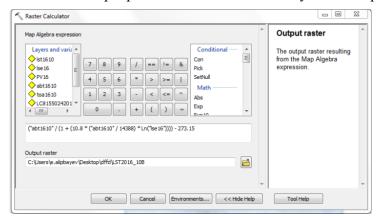


Рисунок 1. Определение температуры поверхности земли в интерфейсе программы.

Тогда при пространственном анализе космического снимка можно наблюдать ежегодное изменение t-ры города Hyp-Cyлтан к 2018 году (Puc. 2)

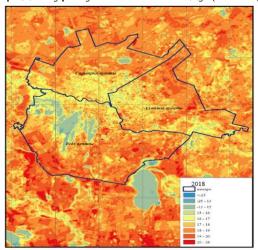


Рисунок 2. Изменение температуры города Нур-Султан.

На основании полученного выше результата для определения вероятности распространения общей концентрации загрязняющих элементов города Hyp-Cyлтан за 2018 год используется метод Interpolation на панели оборудования Spatial Analyst программы ArcMap. IDW (Inverse distance weighted) — взвешивание обратно расстоянию — алгоритм пространственной интерполяции, в котором интерполируемое значение вычисляется как взвешенная сумма известных значений, и если расстояние от исходной точки до интерполируемой равно R,то ее вес принимается равным 1/R [3,4,5].

Внутри IDW (Inverse distance weighted) для характеристики уровня загрязнения применяется любой эффективный метод. IDW-это самый главный способ интерполяции. То есть, если каждая ячейка имеет определенную величину, то у ближайших к ней ячеек будет больше размеров. Это также дает вес в зависимости от числового значения ячейки. Условия применения данного метода [3]:

- Иметь набор определенных точек максимальных и минимальных величин;
- Интерполяция осуществляется только между точками;
- Достаточность характеристик точек.

В целом, метод IDW дает правильные результаты как при рассмотрении другого метода интерполяции, так и по определенной настройке (default setting) [4,5]. В целом за эти годы наблюдались особенности на уровне загрязнения атмосферного воздуха. В частности, индекс загрязнения атмосферы (ИЗА) поднялся в несколько раз выше (Рис.3).

Рисунок 3. Диаграмма изменения ИЗВ в течение 2009-2018гг. [4].

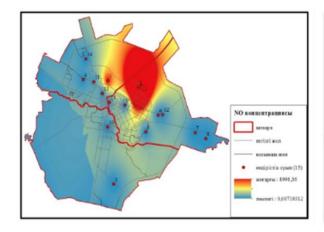
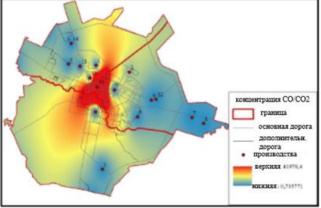
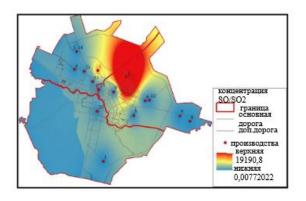

С применением данного подхода, на основе таблицы был проведен анализ по объемам четырех загрязняющих веществ за 2018 год. Величина данной таблицы получена по ежегодному информационному бюллетеню организации Казгидромет. Следует отметить, что эта таблица была построена в Excel, а затем экспортирована в программу Агстар (версия на английском языке) (Таблица 2).

Таблица 2. Концентрация загрязняющих веществ, выбрасываемых с производственных мест города Нур-Султан в 2018 году [6].


No.	1	У	name of industrial object	business identification number	address	number of employees	concentration of 340	concentration of CO CO2	concentration of 50 502
1	21,20243056	71,42890306	THE I	41040000811	Астака каласы, Сарыарка аукакы	337	2237,4015	92,99400000	3214,3900000
2	51,19003078	71,50806111	THE	41140000511	Астика каласы, Альяты ауханы	878	8999,500465	1474,240645	19123,245
3	51,04276111	71,43563006	Пригоровный вумактых казаксыем	41140002511	Астана қаласы, Есіп ауханы	122 (warmenst)	8,297548	73,755960	27,755152
4	51,20527222	71,363575	YIIIX symmetric enterprise	41140002511	Астика кальсы. Серыврка вукамы	122 (warmenek)	8,021988	71,14655	26,50716
3	51,12130278	71,50404167	Промишленный кумпастых какаксыем	41140002311	Астана цаласы, Алматы ауханы	122 (wantenat)	5,48061	75,38320	25,40691
6	51,34633833	71,55810556	Жесенгороромный пунктых камерыем	41140002511	Астана цаласы, Алматы ауданы	122 (wannenst)	9,265563	82,36321	29,88313
7	51,11717222	71,63289722	Мичурию аумактык казакрыгы	41140002811	Астака каласы, Алматы аудамы	122 (wannered)	4,11617	36,393910	14,231990
8	51,30748333	71,68032778	Интернациональный вуместик какандағы	41140002511	Астака каласы, Алматы ауханы	122 (warmenst)	5,722656	50,869665	19,151400
9	31,363798	71,470932	АЭС жөөө нунай баналары	70 740 007 123	Астика каласы, Тыран канчыгы, 1	- 6	0,006224	0,01431	0
10	20,330027	71,423944	AX, "Kacressiprepant"	31 040 000 372	Астина каласы. Д. Колале кишесі. 10	1623	8,334762	307,243038	21,35941
11	51,200606	71,391139	AX, "Toxonorus"	31 040 001 799	Астика кальсы. 2. Кольпе хишесі.	20 098	88,5806276	44,1775492	11,70155953
12	30,347303	71,56961	39-й электр кансыкалудыя Асталалық десталцыясы	20040004004	Астина каласы, Степкая кишесі, В	298	8,598319	12,545794	2,3413488
13	51,38305556	71,41333333	АХ; "Астанатранстионысы"	841003652	Астина қаласы, Абай көшесі, 25	251 (wante)	0,312	1,2282	0,22
14	51,25694444	71,37194444	АХ, "Астанапранстионали"	841003632	CYC HCC, Astronamona	251 (warra)	0,0046	0,7565	0,0028
13	31,148904	71,450545	"Канахтуркорчай"	6300	Астана каласы, Абай дангылы, 47	243	86,60694242	41982,1248	3,694341118

По данному графику также измерена концентрация вредных веществ в атмосферном воздухе от отобранных на этот раз производственных мест города. Данные величины также взяты из бюро экологической информации Республики Казахстан. Поэтому, по таблице, были получены основные уровни загрязнения окружающей среды компаниями за год в полном объеме и проанализированы три вида (1 - NO, 2 – SO/SO2, 3 – CO/CO2) [7].


Индекс атмосферного загрязнения также можно наблюдать по карте, составленной в специальной программе ArcGIS. На основе этой карты использовались статистические данные трех загрязняющих веществ NO, CO/CO2, SO/SO2 (Рис.4 а,б,в).

a

б

В

Рисунок 4. a) распространение NO, б) CO/CO2, в) SO/SO₂ в атмосфере города Нур-Султан.

Выводы: В результате проведения анализа загрязнения атмосферы города Нур-Султан с применением геоинформационных технологии в 2018 году:

- 1. Проведено изучение и систематизация опубликованных, картографических и статистических материалов по экологическому мониторингу атмосферного загрязнения за 2018 год, данных ДЗЗ. На основе сбора и систематизации данных создана информационная база данных по загрязнению воздуха, мониторинговым экологическим данным за 2018 год, материалам дистанционного зондирования города Нур-Султан.
- 2. Проанализированы современные методы исследований загрязнения атмосферы, метод взвешивания обратно расстоянию (Inverse distance weighted) IDW.
- 3. На основе применения ГИС-технологии и метода взвешивания обратно расстоянию IDW (Inverse distance weighted) построена диаграмма изменения ИЗВ в течение 2009-2018гг., карта изменения t-ры города Hyp-Султан за 2018г., проведен анализ распространения NO, CO/CO_2 и SO/SO_2 в атмосфере.

Анализ показал, что за эти годы общая концентрация загрязнителей удвоилась и в 2018 году наряду с предыдущими годами от производственных мест ТЭЦ-1, ТЭЦ-2 и их котельных занимают значительное место в загрязнении воздуха. Одной из задач, поставленных в ходе выполнения данной работы, была демонстрация возможностей программы ГИС технологий. А для четкого рассмотрения его характеристики за основу взяты несколько команд, расположенных на панели программы. По результатам полученных результатов, концентрация загрязняющих веществ в производственных помещениях будет максимальной по показателю 2018 года только от установок «Астана - Энергия».

Литература:

- 1.Using the USGS Landsat 8 product [Электронный ресурс]: https://landsat.usgs.gov/using-usgs-landsat-8-product
- 2.Landsat 8 (L8) data users handbook // Department of the Interior U.S. Geological Survey. March 29, 2018.
- 3.Surface Interpolation Methods [Электронный ресурс]: http://www.nrem.iastate.edu/class/asset s/nrem446_546/week9/Surface_interp_tools.doc20
- 4. How Inverse Distance Weighted (IDW) interpolation works https://pro.arcgis.com/r
- 5. Интерполяция обратного взвешивания (IDW) https://gisgeography.com/
- 6.Информационно аналитический отчет по контрольной и правоприменительной деятельности по г. Астана за 1 полугодие 2018 года // Министерство охраны окружающей среды Республики Казахстан. 2018. –87 с.
- 7. Центр по экологическому состоянию по городу Астана. [Электронный ресурс]: http://astana.gov.kz/ru/modules/material/11214