

15th Dusty Plasma Workshop

May 29 – June 1, 2018 The Westin Baltimore Washington Airport – BWI Baltimore, Maryland, USA

Program Committee

Giovanni Lapenta, KU Leuven Carlos A. Romero-Talamás, UMBC Edward Thomas, Jr., Auburn University Zhehui (Jeph) Wang, LANL Jeremiah Williams, Wittenberg University

Hosting and Logistics

Carlos A. Romero-Talamás, UMBC Jackson Stefancik, UMBC Zhehui (Jeph) Wang, LANL William F. Rivera, UMBC Diane Zeenny Ghorayeb, UMBC

Sponsors

MECHANICAL ENGINEERING

Oral Presentations	7
Recent Results from Complex Plasma Laboratory PK-4 on the International Space Station	11
Experimental Studies of Phase Separation in Dusty Plasmas under Microgravity	
Structures of Coulomb crystals in cylindrical discharge plasmas under gravity and microgravity	
Complex Plasmas under Compression - Capabilities of the Next Generation Complex Plasma Space Experiment	
"Ekoplasma"	
2D Complex Plasma Crystal Experiments in the Large Chamber	
Field-Aligned Chains within the PK-4 Environment	
Experimental FCC-BCC Transitions in Plasma Crystals visualized using Machine Learning	
High precision operando size measurement of microparticles	
Variation of ion wake field inside a glass box	
Fluctuation Theorem Confirmed in a Dusty Plasma [*]	
Ion Wake Influence on Dust Chain Formation	
Anomalous diffusion in 1D dusty plasma structures: A fractional Laplacian model for strong correlations	
Experimental observation of cnoidal wave structures of dust acoustic waves [*]	
Thursday, May 31, 2018	
Dust charging and heating models: high magnetic fields and strong electron emission	
Emergent Bistability and Switching in a Nonequilibrium, Dusty Plasma Crystal	
Nanodusty plasma - the real dusty plasma	
Nonlinear responses of a strongly coupled dust particle pair under the influence of an ion wake	
Measurements of Thermal Effects in the Dispersion Relation of the Dust Acoustic Wave	
Non-linear effect of a vertical dust chain confined in a glass box	
Interaction between a dust particle pair and the ion flow modified potential in complex plasma	
Overlapped Plasma Sheath in Narrow Space	
Status and future of the Magnetized Dusty Plasma Experiment (MDPX)	
Quantitative analysis of laser forces in binary complex plasmas	
Methods for the characterization of imposed, ordered structures in MDPX	
Friday, June 1, 2018	39
Non-invasive impedance measurements of electron density in a complex plasma	41
Particle Orbits in Combined E and B Fields	
Laser Induced Fluorescence (LIF) in the Caltech Water-Ice Dusty Plasma Experiment	
Blast waves experiments in a 2D dusty plasma	
Interaction of a supersonic particle with a three-dimensional complex plasma	
Inductively Coupled Discharges to Sustain and Rotate Dusty Plasmas at High Magnetic Fields	
Modeling the growth of chondrule dust rims under different plasma conditions in protoplanetary disks	
Poster Presentations	
Poster Session 1	
Wednesday, May 30, 2018	
······································	

Contents

I	An overview of modifying the spatial structure in a complex plasma	. 52
I	Exploration and Comparison of ISS PK4 Data to Ground- and Numerical-based Models	. 53
Ι	Interpretation of dust impact signals detected by RPWS and BMSW instruments	. 54
I	Emergent Bistable Switching in Nonequilibrium Crystal	. 55
Ι	In-situ nanoparticles characterization by Small Angles X ray Scattering (SAXS) during their growth in a dusty plasma	ı 56
5	Study of particles de-agglomeration in non-equilibrium low-pressure radiofrequency plasma	. 57
I	Plasma-dust structures in the DC discharge	. 58
I	Experimental investigation of the properties of plasma-dust formations on pulsed plasma accelerator	. 59
5	Simulation of Dust Dynamics for Various Materials of the Edge Fusion Plasma	. 60
]	The Effect of External Magnetic Field on Dust Particles Charging Processes	. 61
(Obtaining hydrophobic and hydrophilic surfaces in low-temperature atmospheric pressure plasma	. 62
(Coulomb Crystal of Micro-organisms in an RF Plasma	. 63
S	Shear deformations in dusty plasma	. 64
Ι	Diffusive motion in a three-dimensional cluster in PK-4	. 65
	Modeling-challenge paradigm using design of experiments method for spacecraft immersed in nonstationary, between regimes, flowing plasma	
ľ	Microfluidic flow in single-layer dusty plasmas	. 67
I	Filamentation and imposed ordered dust structure in magnetized discharge	. 68
Ι	Ionization waves in the PK-4 neon DC discharge	. 69
1	15 th Dusty Plasma Workshop	. 70
]	Trilayer dusty plasma lattice structure and dynamics 15 th Dusty Plasma Workshop	. 71
Ι	Investigation of Dusty Plasma Effects in Hypervelocity Impacts	. 72
Poste	er Session 2	. 73
Th	ursday, May 31, 2018	. 73
ľ	Molecular dynamic simulation of weakly magnetized dusty plasmas	. 78
1	Novel configuration for creation and study of probe-induced dust voids	. 79
Ι	DC response of dust equilibria to AC signals	. 80
I	Anomalous diffusion in 1D dusty plasma structures: A fractional Laplacian model for strong correlations	. 81
1	Nematic transition in microgravity complex plasma liquid crystals	. 82
Ι	Dust-Plasma Interactions in Extended Field Aligned Dust Chains	. 83
I	PLASMIANTE: A plasma filter for the detection of airborne asbestos	. 84
I	Effects of discrete stochastic charging on the non-spherical growth of water-ice grains in a dusty plasma	. 85
Ι	Dust Lattice Waves and dust influenced Ionization Waves in PK-4 complex plasmas	. 86
I	Ekoplasma – The Future of Complex Plasma Research in Space	. 87
I	Radial confinement of dense dust structure at cryogenic temperature	. 88
	Investigation of carbon nanowalls synthesis by chemical vapor deposition method in the plasma of a radio-frequency capacitive discharge	. 89
ł	High-speed imaging and analysis of a high-temperature microparticle interactions with a magnetron plasma	. 90
S	Synthesis of dust particles by combined discharge at atmospheric pressure	. 91
5	Surface Temperature of the Dust Particle in Cryogenic Conditions	. 92

Thursday, May 31			Location:	
7:00 AM	8:25 AM	Breakfast	All meals and events	
7:30 AM	8:25 AM	Registration	will take place in the	
8:30 AM		Welcoming Remarks	White Oak Room	
8:35 AM	8:55 AM	8:35 am. L. Vignitchouk. Dust Charging and Heating Models: High Magnetic	unless otherwise	
		Fields and Strong Electron Emission	noted.	
9:05 AM	9:25 AM	9:05 am J. Burton. Emergent Bistability and Switching in a Nonequilibrium, Dusty		
		Plasma Crystal		
	9:30 AM			
9:30 AM	9:50 AM	9:30 am. F. Greiner. Nanodusty plasma - the real dusty plasma		
0.55.444	9:55 AM			
9:55 AM	10:10 AM	9:55 am. O. H. Anaz. Two dimensional dust density wave diagnostics (DDW-D)		
10:15	10:30 AM	for the full characterization of a nanodusty plasma Coffee Break		
AM	10.50 AIVI	Conee bleak		
10:35	10:50 AM	10:35 am. Z. Ding. Nonlinear responses of a strongly coupled dust particle pair		
AM		under the influence of an ion wake		
	11:00 AM			
11:00	11:15 AM	11:00 am. J. Williams. Measurements of Thermal Effects in the Dispersion		
AM		Relation of the Dust Acoustic Wave		
	11:20 AM			
11:25	11:40 AM	11:25 am. J. Kong Non-linear effect of a vertical dust chain confined in a glass		
AM		box		
	11:45 AM			
11:50	12:05M	11:50 am. K. Qiao. Interaction between a dust particle pair and the ion flow		
AM		modified potential in complex plasma		
	12:10 AM			
		12:15 pm. M. Chen. Overlapped Plasma Sheath in Narrow Space		
12:35 PM	1:35 PM	Lunch		
1:40 PM	2:50 PM	Poster Session 2:	Salon 3A	
		D. Batryshev, M. Menati, B. Doyle, D. Funk, S. LeBlanc, M. McKinlay, E.		
		Kostadinova, D. Sanford, C. Duée, S. Ashrafi, K. Qiao, C. Knapek, D. Polyakov, V.		
0.55.51.6		Shumova, Y. Yerlanuly, T. Schaub, M. Muratov		
2:55 PM	3:20 PM	2:55 pm. E. Thomas, Jr. Status and future of the Magnetized Dusty Plasma Experiment (MDPX)		
3:25 PM	3:40 PM	3:25 pm. F. Wieben. Quantitative analysis of laser forces in binary complex		
		plasmas		
3:45 PM	4:05 PM	Coffee Break		
4:10 PM	4:25 PM	4:10 pm. T. Hall. Methods for the characterization of imposed, ordered structures in MDPX		
	4:30 PM			
4:35 PM	4:50 PM	4:35 pm. Vyacheslav Lukin. National Science Foundation		
	4:55 PM			
5:00 PM	5:15 PM	5:00 pm. Nirmol Podder. Department of Energy		
5:35 PM	5:50 PM	Board Bus/ Ride to UMBC	Please board one the 2 UMBC buses at the Hotel entry.	
5:55 PM	7:15 PM	Tour of UMBC Labs		
7:20 PM	7:35 PM	Board Bus/ Return to Westin by BWI	Please board one the 2 UMBC buses at the Circle facing the Fine Arts Bldg.	

Poster Session 2 Thursday, May 31, 2018

Synthesis of dust particles by combined discharge at atmospheric pressure.

Y.A. Ussenov^{1,2}, A.S. Pazyl², M.K. Dosbolayev³, M.T. Gabdullin¹, T.T. Daniyarov², M.M. Muratov¹, T.S. Ramazanov³

¹NNLOT, Al-Farabi Kazakh National University, Al-Farabi av.71, Almaty, Kazakhstan ²Institute of Applied Science and Information Technology, Shashkina st.,40, Almaty, Kazakhstan

³IETP, Al-Farabi Kazakh National University, Al-Farabi av.71, Almaty, Kazakhstan

mukhit.muratov@gmail.com

Synthesis of nano and micrometer size dust particles from the gas phase in low pressure non thermal plasma is well studied [1-2]. Also, atmospheric pressure plasma is widely used for deposition of thin films, for surface treatment and for the synthesis of nanoparticles [3-4].

In this work the results of experiments on the dust particle synthesis and it's deposition on the surface of a silicon substrate by combining two types of discharge at atmospheric pressure is presented. The experimental setup consists of two pin type copper electrodes connected to the pulsed high voltage source (spark discharge) and two copper tapes wrapped around quartz tube powered by kHz high voltage sinusoidal signal (APP jet). In that case, the spark discharge served as a source of precursor and small-size nanoparticles which in the region of a uniform dielectric barrier discharge of the plasma jet, increased in size (due to coagulation or surface growth) and settled on the surface of the substrate. As a working gas pure Ar and He were used.

The characteristics of the plasma jet and the properties of the deposited nanoparticle contained thin films depend on the material, location and on the geometry of the electrodes of spark discharge and other experimental parameters. Therefore, several types of the location of the spark discharge electrodes have been studied and a dynamic I-V characteristic of a combined discharge was also obtained. The temperature of the substrate surface interacting with a plasma jet flow of combined discharge was investigated by a thermocouple and compared with results of just spark discharge temperature measurements. The particle size distributions were determined as a function of the synthesis time and the spark discharge power. Chemical composition of the of the deposited nanoparticles at different experimental conditions was also obtained by energy-dispersive spectroscopy (EDS).

[1] M. Mikikian , L. Cou^edel, M. Cavarroc , Y. Tessier, and L. Boufendi, Eur. Phys. J. Appl. Phys. 49, (2010) 13106

[2] T.S. Ramazanov, A.N. Jumabekov, S.A. Orazbayev, M.K. Dosbolayev, M.N. Jumagulov, Physics of Plasmas, 19 (2012) 023706

[3] D. Merche, N. Vandencasteele, F. Reniers, Thin Solid Films 13 (2017) 4219-4236.

[4] I. Adamovich et.al. J. Phys. D: Appl. Phys. 50 (2017) 323001.