
 AL-FARABI KAZAKH NATIONAL UNIVERSITY 

 

 

 

 

 

 

 

 

Tukeyev U.A. 

 

DATA MINING AND ANALYSIS 

 

Educational manual 

 

 

 

 

 

 

 

 

Almaty 

« Qazaq University » 

2018 



Recommended for publication 

Editorial-Publishing Council of Al-Farabi KazNU (Protocol No. 1 of     

11.10.2018) 

 

Reviewers: 

professor, Doctor of Technical Science Akhmetov B.S. 

professor, Doctor of Technical Science Shukayev D.N. 

Candidate of Physical and Mathematical Sciences, Associate Professor Makashev 

Е.P. 

                                                                                                 

 

 

 

 

Tukeyev U. 

T 90   Data mining and analysis: educational manual. – Second ed., revised and enlarged  / 

Tukeyev U.A. – Almaty: Qazaq University, 2018. – 105 p.   

ISBN 978-601-04-3701-2 

 

The technology of data mining and analysis is used practically in all spheres of human 

activity, where retrospective data are accumulated. The methods of data mining and analysis were 

most widely spread in the following sectors: retail trade; the banking sector; insurance; 

telecommunications; industrial production; stock and currency markets. In this textbook, the tasks 

of prediction, classifying, clustering and association rules on specific examples are discussed in 

more detail. 

The textbook is intended for undergraduate and graduate students of natural and technical 

science specialties. 

 

 
© Tukeyev U.A., 2018 

ISBN 978-601-04-3701-2                                                                       

© Al-Farabi KazNU, 2018 

 

 

 

 



 

CONTENT 

Introduction .................................................................................................... 

Topic 1. Intelligent data analysis ................................................................... 

Topic 2. Model of prediction task ....................................................... 

Topic 3. Predicting using standard functions ................................................. 

Topic 4. Calculation of the determination coefficient for a prediction 

function……………………………………………………………………….  

Topic 5. Calculation of confidence intervals for predicted values................. 

Topic 6. Recovering missing data for the prediction task............................... 

Topic 7. Analysis of data releases for the prediction task.............................. 

Topic 8. Selection of factors for the prediction task....................................... 

Topic 9. Estimation of the quality of the data model for the prediction task.. 

Topic 10. Data smoothing for the prediction task .......................................... 

Topic 11. Trend functions in prediction tasks ...................................... 

Topic 12. Seasonal component in prediction functions................................. 

Topic 13. Decision trees ................................................................................. 

Topic 14. Clustering ....................................................................................... 

Topic 15. Association rules………………………………………………..... 

 

4 

6 

13 

17 

 

23 

28 

31 

37 

43 

52 

61 

70 

79 

93 

105 

116 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

INTRODUCTION 

 

Data mining and analysis is a set of methods for detecting from large 

quantities of data (big data) previously unknown, practically useful knowledge for 

decision-making in various spheres of human activity. The peculiarity of the 

methods of mining and analysis of data, distinguishing them from traditional 

statistical methods are: 

- the discovery of non-obvious regularities: these patterns do not identified by 

standard methods of information processing or expert by way of; 

- the detection of objective laws: the knowledge obtained will be fully correspond to 

reality; 

- finding practically useful regularities: the found knowledge can be found in 

concrete application in practice; 

- reveal regularities without rigid restrictions to initial data and their distribution. 

The most common tasks of data development and analysis are: 

- classification, 

- predicting, 

- clustering, 

- association. 

The basis of methods of data development and analysis is various methods of 

classification, predicting, clustering, modeling, based on the application of: decision 

trees; artificial neural networks; genetic algorithms; associative memory; fuzzy 

logic, etc. Methods of mining and analysis of data also include multidimensional 

statistical methods: correlation and regression analysis; factor and component 

analysis; variance analysis; time series analysis and etc. 

Data mining and analysis is a multi-stage and very labor-intensive process, which 

can be divided into three main stages: 

- initial research; 

- building a model; 

- implementation of the model. 

The most time-consuming stage of initial data mining involves: 

- data cleaning: removal of duplicate observations from the sample, mistakenly 



entered data with obvious errors, extreme values (outliers), checking logical rules 

and conditions; 

- analysis and restoration, if necessary, of missing values in data; 

- data conversion; 

- setting up data properties; 

- conducting an exploratory analysis of data using graphic and statistical methods; 

- selection of the necessary data for building the model. 

At the stage of the model construction, various models of data mining and analysis 

are considered, and the best of them is selected. 

The implementation of the selected model implies its application to new data in order 

to obtain predictions or estimates of expected results, as well as subsequent 

monitoring of the quality of the model. 

The technology of data mining and analysis is used practically in all spheres of 

human activity, where retrospective data are accumulated. The methods of 

development and analysis of data were most widely spread in the following sectors: 

retail trade; the banking sector; insurance; telecommunications; industrial 

production; stock and currency markets. 

In this educational manual, the tasks of predicting, classifying, clustering and 

associative rules on specific examples are discussed in more detail. When studying 

the above problems, Excel is used for predicting tasks and the Rapidminer program 

for classification, clustering and associative rules  tasks. Both programs are easily 

accessible: Excel is present in almost all local computers, and the Rapidminer 

program for educational purposes is freely available. 

 

 

 

 

 

 

 

 

 



TOPIC 1 

INTELLIGENT DATA ANALYSIS 

 

1.1. Methodology of data mining 

 

Data mining (data mining (DM) - Intelligent data analysis) is a process of 

discovering meaningful new relationships and dependencies by processing large 

amounts of data stored in repositories, using pattern recognition technology, 

statistical and mathematical methods. 

There are various methods of data mining, among which is considered the de facto 

standard methodology CRISP-DM (CRoss-Industry Standard Process for DM) [1]. 

According to a survey in 2014 methodology CRISP-DM holds a leading position. 

What main methodology are you using for your analytics, 

data mining, or data science projects ? [200 votes total]  

 2014 poll    2007 poll 

CRISP-DM (86)  43%  

 42% 

My own (55)  27.5%  

 19% 

SEMMA (17)  8.5%  

 13% 

Other, not domain-

specific (16) 

 8%  

 4% 

KDD Process (15)  7.5%  

 7.3% 

My organizations' (7)  3.5%  

 5.3% 

A domain-specific 

methodology (4) 

 2%  

 4.7% 

None (0)  0%  

 4.7% 

Fig. 1.1. The results of the survey on the use of the methodology of data mining 

(http://www.kdnuggets.com/) 

 



The methodology CRISP-DM has a life cycle that includes six phases (Figure 1.2.) 

[2]: 

Phase 1. "Business-understanding." At this phase in CRISP-DM standard defines the 

following tasks: 

- The objectives and requirements of the project in terms of business or research 

units. 

- Translating the objectives and constraints in the definition of the problem of data 

mining. 

- Development of the preliminary strategy (plan) to achieve their goals. 

Phase 2. "Understanding the data." The second phase begins with data collection, 

the description thereof. Identify problems with data quality, such as, for errors or 

omissions. A search of interesting data sets that may contain hidden patterns. Thus, 

this phase comprising the following tasks: 

- The collection of baseline data; 

Phase 3. "Preparing data" includes the following tasks: 

- Starting from the raw data is preparing the final data set that must be used for all 

subsequent phases. This phase is very time-consuming; 

- Selected cases and variables to be analyzed, and are suitable for the analysis; 

- Conversion are performed on certain variables, if necessary; 

- Is cleaned original data, so that they were ready for modeling tools. 

Phase 4. "Modelling" includes the following tasks: 

- Selection of appropriate modeling techniques; 

- Calibration of the model parameters to optimize results; 

- Can be used several modeling techniques for the same data mining. 

- If necessary, loop back to the data preparation phase, to bring the shape data in 

accordance with the specific requirements of a particular means of data mining. 

Phase 5. "assessment" includes the following tasks: 

- Evaluation of one or more models are available as modeling phase and the 

effectiveness of their pre-deployment for use in the field; 



- Determine whether the model is actually achieves the objectives set for it in the 

first phase; 

- To establish that some important aspect of the business and research tasks are not 

taken into account adequately; 

- A conclusion regarding the use of the results of data mining. 

6. The phase "deployment (implementation)" includes the following tasks: 

- Creation of a model does not mean the end of the project; 

- An example of a simple deployment: report creation; 

- An example of a more complex deployment: the implementation of parallel data 

mining in another department. 

- For enterprises, the customer deploys often based on the model chosen. 

 

 

Fig. 1.2. The phases of the life cycle methodology CRISP-DM [1] 

 

1.2 Tasks of Data Mining 



The main tasks of the most common tasks of data mining include: 

- classification 

- prediction 

- clustering 

- Association. 

 

Classification task. 

Under the classification of objects commonly understood classification (observation 

events) to one of the previously known classes. For the classification must be present 

features characterizing the class to which belongs to this or that event or object. The 

classification relates to the learning strategies with the teacher (supervised learning). 

The problem of classification is commonly used categorical prediction of the 

dependent variable (ie, the dependent variable is the category) based on a sample of 

continuous and / or categorical variables. 

Various methods are used for classification. The main ones are: 

• Classification using decision trees; 

• Bayesian (naive) classification; 

• classification using artificial neural networks; 

• classification by support vector machines; 

• statistical methods such as linear regression; 

• classification by using the nearest neighbor method. 

Prediction task. 

Prediction is classification similar, except that for the prediction, the results are in 

the future. Examples in the field of business studies and predicting tasks include: 

- Predict the stock price for three months in the future; 

- Prediction of the percentage increase in the incidence of accidents in traffic next 

year, if the speed limit is increased. 

For prediction may be used as a traditional statistical evaluation methods and 

evaluation points, the confidence interval simple linear regression and correlation, 



and multiple regression techniques and Data Mining and Knowledge Discovery, 

such as neural networks, k-nearest method for neighbor. 

Clustering task 

Clustering refers to the grouping of records, observations or instances into classes 

of similar objects. A cluster is a set of records that are similar to each other and 

different from the entries in other clusters. Clustering differs from classification in 

that there is no target variable for clustering. The clustering problem is not trying to 

classify, evaluate or predict the value of the target variable. Instead, clustering 

algorithms searching the initial set of data segmentation in a relatively homogeneous 

subgroups or clusters, where the cluster records maximized similarity and the 

similarity of the records of the cluster is minimized. 

Clustering is often performed as a preliminary step in the process of data mining, 

and the resulting clusters are used as additional materials in a variety of technical 

methods in the following stages, such as neural networks. 

Association 

The task of association for the mining operation is located, which attributes "go hand 

in hand." Association Tasks are most common in the business world, where it is 

known as market basket analysis [2]. Association rules have the form of production 

rules: "if« A », and then« B »" with a measure of support and confidence of the rule. 

Support call the number or percentage of records containing a particular set of data. 

The reliability of the rules shows what is the likelihood of that event A implies event 

B. For example, a particular supermarket can find that out of 1,000 customers in 

stores Thursday, 200 customers have bought diapers, and of those 200 customers 

who bought diapers, 50 customers bought beer . Thus, the right of association will 

be "If you buy diapers, and then buy a beer" with the support of 200/1000 = 20% 

and reliability rules 50/200 = 25%. 

Examples of problems in business and research associations include: 

- Study the proportion of cell phone subscribers in the company's plan to respond 

positively to the proposal to upgrade services; 

- The study of the percentage of children whose parents read to them are themselves 

good readers; 

- To find out what items are purchased at the supermarket together and that the 

details have never purchased together 



- Determination of the proportion of cases in which a new drug will exhibit 

dangerous side effects. 

 

1.3 The phases of "Business Understanding" and " Data Understanding" 

 

As it was said above, the following tasks are defined in the "Business-

understanding" phase in the CRISP-DM standard: 

- presentation of the objectives and requirements of the project in terms of business 

or research unit. 

- translation of goals and limitations into the definition of the problem of data 

mining. 

- development of a preliminary strategy (plan) to achieve the set goals. 

In the " Data Understanding " phase, data are collected, described, analyzed and 

evaluated. This phase includes the following tasks: 

- collection and description of source data; 

-preliminary, semantic analysis of data on hidden patterns; 

- evaluation of data quality. 

Let's consider more in detail the tasks of these phases of data mining. 

Let's consider on an example of maintenance of quality of cars for manufacturers of 

cars. Quality assurance is in a top priority for car manufacturers. 

The goal of any car company is to reduce the costs associated with warranty claims 

and improve customer satisfaction. Through interviews with employees of the 

automotive company, who are technical experts in the production of vehicles, 

researchers can formulate specific business problems such as: 

- Are there interdependencies between warranty claims? 

- Are there any previous warranty claims related to similar requirements in the 

future? 

- Is there a link between a certain type of claim and a specific garage? 

The data mining plan consists in applying the appropriate data mining techniques to 

try and identify these and other possible associations. 

In the "Understanding Data" phase, the collection and description of the initial data 

of a particular domain are performed. For the example in question, this is the 

database of the car manufacturer. How this database is used by consumers, how 

much this database and its elements are understood by end users. Is it possible to 

find answers to the questions identified in the previous stage of business 

understanding on this basis? Preliminary assessment of the quality of the data: the 

completeness of the data, if there are missing data, if there are data bursts, than what 

is explained. 

In the following sections, the remaining phases of data mining are discussed in 

detail. 

 

 



1.2 PRACTICAL LESSON 1 AND IWS (INDIVIDUAL WORK OF 

STUDENT) 1 

Subject. Methodology and objectives of data mining. 

Lesson plan. 

1) Study the lecture material and methodology problems of data mining, above. 

2) Setting the IWS. Make a detailed description of one of the objectives fo intelligent 

data analysis with examples. 

3) A comparative analysis of this problem. 

Literature. 

1. Marbán Ó., Mariscal G. and Segovia J. A Data Mining & Knowledge Discovery 

Process Model. Data Mining and Knowledge Discovery in Real Life Applications, 

Book edited by: Julio Ponce and Adem Karahoca, ISBN 978-3-902613-53-0, pp. 

438, February 2009, I-Tech, Vienna, Austria 

2. Larose D.T. Discovering knowledge in data - an introduction to data mining. 

Wiley-Interscience, Hoboken, New Jersey, 2005 

 

 

 

 

 

 

 

 

 

 

 

 



 

TOPIC 2 

MODEL OF PREDICTION TASK 

 

2.1. The lecture material 

 

The prediction task is solved in two stages:  

1) from the observable data 𝒀, 𝒕, 𝑿𝟏 , 𝑿𝟐, … 𝑿𝒎  determine the form of the 

function F;  

2) knowing the form of the prediction function to make a prediction, that is, 

to find the values of the variable Y for new values of independent variables and the 

time factor.  

Solving the prediction task means making a prediction, which consists in finding the 

value of the variable Y, for which there are no values in the original data set. 

The task of a prediction can be presented in the following form [1]: 

𝒀 = 𝑭(𝒕, 𝑿𝟏 , 𝑿𝟐, … 𝑿𝒎;  𝜺), 

where the variable Y is a predictable variable, the variables 𝑿𝟏 , 𝑿𝟐, … 𝑿𝒎  are 

independent variables, t is the time factor, and ε is a random variable indicating that 

Y is also a random variable. A random variable determines the inaccuracy in the 

measurement of the values of the variable Y, as well as the incompleteness of 

knowledge about the effects of the time factor and factors  𝑿𝟏 , 𝑿𝟐, … 𝑿𝒎  on the 

variable Y. If the original data is presented in the form of a table (function graph) 

then 𝒚𝒊  are the values of the function F for the specific values of its arguments 

𝒕𝒊, 𝒙𝟏𝒊 , 𝒙𝟐𝒊, … 𝒙𝒎𝒊, where i = 1,2, ..., n. 

The determination of the form of the function F, which is unknown to the prediction 

problem, is performed on the basis of the available initial data, as well as some a 

priori considerations on the possible form of the function. The function is selected: 

𝒀 = 𝑭(𝒃𝟏, 𝒃𝟐, … , 𝒃𝒌; 𝒕; 𝑿𝟏 , 𝑿𝟐, … 𝑿𝒎), where the parameters 𝒃𝟏, 𝒃𝟐, … , 𝒃𝒌  are 

chosen so that the values of the function 𝐹 for given The values of the arguments 

𝒕𝒊, 𝒙𝟏𝒊 , 𝒙𝟐𝒊, … 𝒙𝒎𝒊   correspond to the values 𝒚𝒊 as best as possible. Thus, the selected 

function 𝐹 approximates the observed data, that is, the function 𝐹 can be called an 

approximating function, since it approximates the observed data. 

The constructed function 𝑭 can be used for the second stage, the step of predicting 

a  data of the dependent predicted variable for future periods of time for which there 



are not yet observable data values. In this aspect, the approximating function 𝑭 is 

called the prediction function. 

The influence of the random variable 𝜺 is usually determined by adding a random 

effect to the value of the function 𝐹, i.e. The scheme of the random action 𝐹 + 𝜀, or 

the product of the random action and the value of the function 𝐹, is assumed. A 

scheme for the random action 𝑭 ∗ 𝜀 is adopted. 

The predicted value of the predicted variable is calculated as the value of the 

prediction function for the values of the arguments 𝑡𝑛+1, 𝑥1𝑛+1, 𝑥2𝑛+1, … 𝑥𝑚𝑛+1.  If 

the prediction function does not explicitly contain the time argument t, then such 

data models are called cause-and-effect or casual. If the prediction function does not 

contain factor arguments 𝑋1 , 𝑋2, … 𝑋𝑚 and depends only on time, then this model is 

called a time series model. 

Models of time series are characterized by a number of concepts, such as a step or 

projection period, time horizon, the trend in seasonal changes. The prediction period 

- is the time step, which presents the data in the original data set table 

𝑡, 𝑋1 , 𝑋2, … 𝑋𝑚 , 𝑌. Prediction horizon - is the amount of the prediction period, which 

will make the prediction. Prediction horizon can be short-term (several periods), 

medium (about ten periods) or long term (more than ten periods). General trend is a 

trend in the data table changes the original data set according to the time. Seasonal 

changes - it is repetitive (periodic) change the values of the factors that influence the 

behavior of the entire system. Trend and seasonal changes are the components of the 

prediction function. There are additive model prediction function, when seasonal 

variations are added to the trend, i.e. 𝑓(𝑡) = 𝑇(𝑡) + 𝑆(𝑡), where T and S represent, 

respectively, the trend and seasonal components of the function f, and the 

multiplicative model, where the trend and seasonal variations are multiplied, i.e. 

𝑓(𝑡) = 𝑇(𝑡) ∗ 𝑆(𝑡). 

 

2.2 PRACTICAL CLASSES 2 AND IWS 2 

Subject. Building a data model and a trend line for the prediction task. 

Lesson plan. 

1) Formulate the problem of prediction and, by analogy with the table below, make 

a table of data for its prediction task. 

The period Time t 

(Months) 

Estimated variable Y 

(sales) 



 

1 January  89390 

2 February  95970 
3 March  97850 

4 April  80940 
5 May  114760 

6 June  89190 
7 July  105235 

8 August  108920 
 

2) Using Excel tools, build a trend line for this prediction task. It is shown below 

how to do it. Analyze the results. 

To build in Excel charts or diagrams for a given set of input data must be: 

 - Select the required set of data; 

- Using the tab "Paste" option in the "Chart" to find the "Graphics" section; 

 - Click on the desired type of graphics. 

It should be noted that the trend line cannot be added in bulk, petal, circular, annular 

and stacked charts. For the original data table above chart will look like: 

 

To construct a trend line for this set of data, follow these steps in Excel: 

1) Click on the chart to select it; 

2) Right-click on the chart, click on the pop-up menu option "format trend line" or 

"Add trend line"; 

0

20000

40000

60000

80000

100000

120000

140000

0 2 4 6 8 10

Ряд2

Линейная (Ряд2)



3) in the Properties window of the trend line, specify parameters such as: the type of 

trend line forecast (forward or backward) to the desired number of periods, display 

the equation on the chart, showing squared (coefficient of determination). 

The figure below shows a diagram of the forecast values of the predicted variable 

trend line. 

 

 

However, the predicted values on the chart gives us a general idea, but not the exact 

values, i.e., schedule can determine the approximate values of the predicted values 

predicted variable. 

The following topic will be considered standard features predicting and how to 

obtain specific values of the predicted variable. 

Literature. 

1. Minko A.A. Prediction in business using Excel. M .: Eksmo, 2007, -208 p. 
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TOPIC 3 

PREDICTING USING STANDARD FUNCTIONS 

 

3.1. Lecture material 

In Excel, there are a number of standard functions that allow to solve the prediction 

problem using known mathematical functions, such as: linear function, logarithmic 

function, polynomial function, power function, exponential and other functions. 

Excel features allow you to select any function from the standard functions available 

in Excel to approximate the original data set of a specific task. Further, based on the 

selected function, it is possible predict the value of the dependent variable for a 

certain number of periods in the future. The use of standard Excel functions for 

solving the prediction problem is discussed below with a specific example. 

The initial data set with the predicted "sales" variable is set: 

Period(month) Sales 

1 89390 

2 85970 

3 97850 

4 80940 

5 114760 

6 89190 

7 135235 

8 158920 

 

When selecting a trend line in Excel, you can specify the following types: 

- Linear. The linear trend line is described by the equation  𝑌 = 𝑚𝑋 + 𝑏, where 𝑋- 

is the variable-factor, 𝑚 and 𝑏 are the computable parameters of the trend line, where 

𝑚 - determines the slope of the line, 𝑏 - defines the point of intersection of the line 

with the vertical coordinate axis (ordinate). 

The diagram of the linear trend line is shown below in the figure. 



 

Fig. 3.1. Linear trend line. 

- Logarithmic. The logarithmic trend line is described by the equation 𝑌 = 𝑐 ln(𝑋) +

𝑏, where 𝑐 and 𝑏 are the computable parameters of the logarithmic trend line. 

The diagram of the logarithmic trend line is shown below in the figure. 

 

Fig. 3.2. Logarithmic trend line. 

- Polynomial. The equation of the polynomial trend line is 𝑌 = 𝑐𝑛  𝑥
𝑛 +

 𝑐𝑛−1  𝑥
𝑛−1 + ⋯ 𝑐2  𝑥

2 + 𝑐1  𝑥
1+b, where 𝑐𝑛 , 𝑐𝑛−1 , … , 𝑐2 , 𝑐1 , b are the computable 

parameters of the polynomial trend line. 

The diagram of the polynomial trend line is shown below in the figure. 
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Fig. 3.3. Polynomial trend line. 

 

- Power. The equation of the power trend line has the form 𝑌 = 𝑐𝑋𝑏
 where 𝑐 , b are 

computable parameters of the power trend line. 

The diagram of the power line of the trend is shown below in the figure. 

 

Fig. 3.4. Power line trend. 

- The exponential. The equation of the exponential trend line has the form 𝑌 =

𝑐𝑒𝑏𝑋
 where 𝑐 , b are computable parameters of the exponential trend line. 

The diagram of the exponential trend line is shown below in the figure. 

y = 2498,5x2 - 13667x + 104320

0

20000

40000

60000

80000

100000

120000

140000

160000

180000

0 2 4 6 8 10

Ряд2

y = 77580x0,219

0

20000

40000

60000

80000

100000

120000

140000

160000

180000

0 2 4 6 8 10

Ряд2



 

Fig. 3.5. Exponential trend line. 

 

Let's make a prediction for the exponential trend line. To do this, right-click on the 

trend line you need to open the "trend line format" and specify how many periods to 

make a prediction. In this example, the prediction is for 4 periods ahead. 

 

Fig. 3.6. Forecast by exponential trend line. 

However, the chart does not allow you to see the exact values of the predicted values 

of the predicted variable. You can see only approximate values of the forecast. To 

obtain accurate prediction values, it is necessary to use the obtained trend equation 

in the diagram. For example, this will be the exponential equation 𝑦 =

73753𝑒0,0758𝑥. Substituting the values of the forecast periods for x, we will obtain 

the numerical values of the predicted variable for the given four prediction periods. 
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To do this, you must create columns in other free columns in the Excel workbook 

for the predicted periods and sales. In the first element of the "sale" column, you 

must type the trend equation, then copy it and write (extend) it to the other elements 

of this column. As a result, the following predicted values for the exponential trend 

line will be obtained. 

 

 

 

 

Below are screenshots of obtaining numerical values of the predicted variable for 

exponential and power trend lines. 

 

 

Fig. 3.7. Screenshot of obtaining numerical values of the predicted variable for the 

exponential trend line 

 

Period(month) Sales 

9 145900 

10 157389,2 

11 169783,1 

12 183153 



 

Fig. 3.8. Screenshot of obtaining the numerical values of the predicted variable for 

the power line trend 

 

3.2 PRACTICAL LESSON 3 and IWS 3 

Subject. Construction of a table of predictive values for the prediction task 

Plan of the lesson. 

1) Construct various trend lines for the prediction task formulated in the previous 

lesson. 

2) The task of the IWS. Construct predictive values for different predicted variables. 

Analyze the results. 

 

Literature. 

1. Minko A.A. Prediction in business using Excel. M.: Eksmo, 2007, -208 p. 

 

 

 

 



TOPIC 4 

CALCULATION OF THE DETERMINATION COEFFICIENT FOR PREDICTION 

FUNCTION 

 

4.1. Lecture material 

In Section 2, we showed a scheme for solving the prediction task, consisting of two 

stages: the determination of the approximation function and the determination of 

the values of the predicted variable from the approximation function by the future 

values of the independent variables. Naturally, the quality of determining the 

values of the predicted variable by the future values of independent variables 

essentially depends on the degree of accuracy of the approximation of the input 

data by the prediction function. In this section, one of the tools for determining the 

accuracy of the approximation of the input data by the prediction function is 

considered, namely, the determination coefficient / 1,2 /. The coefficient of 

determination shows the degree of accuracy of the approximation of the initial 

data by the prediction function. The coefficient of determination is denoted as 𝑅2 

and is calculated by the formula: 

𝑅2 = 1 −
∑ 𝑒𝑖

2𝑛
𝑖=1

∑ (𝑦𝑖 − �̅�)2𝑛
𝑖=1

 

Here  𝑦𝑖  - the observed values of the predicted variable 𝑌; 

 �̅� - the average value of 𝑦𝑖: �̅� =
1

𝑛
 ∑ 𝑦𝑖

𝑛
𝑖=1  . This is the average value of the 

predicted variable for the initial n points of the variable; 

 𝑒𝑖- residuals or prediction errors defined as 𝑒𝑖 = 𝑦𝑖 −  𝑓(𝑋𝑖)and 𝑓(𝑋𝑖) are 

the values of the prediction function at the i-th point of the original data, i.e. 

residuals are the difference between the observed values and the values of the 

prediction function, or in other words are errors of approximation of the observed 

values by the prediction function; 

 The sum ∑ 𝑒𝑖
2𝑛

𝑖=1 = ∑ (𝑦𝑖 − 𝑓(𝑋𝑖))2𝑛
𝑖=1  is the sum of the squares of the residuals, 

or the sum of the squares of the prediction (approximation) errors at each point of 

the original data. Denoted as SSE - the sum of squares of the residuals (sum of 

squares errors); 



 The sum in the denominator  ∑ (𝑦𝑖 − �̅�)2𝑛
𝑖=1 , is called the total sum of squares of 

deviations from the mean of the predicted variable (sum of squares total- SST). 

It should be noted here that there is another component of the measure of the 

accuracy of approximation of the observed values by the prediction function. This 

is the sum of the squares of the regression (sum of squares regression - SSR), this 

is the sum of the squares of the deviations of the prediction function values from 

the average observed values of the predicted variable Y. 

The sum of squares of the regression SSR is determined by the formula 

∑ (𝑓(𝑋𝑖)   − �̅�)2𝑛
𝑖=1 . 

And the sum of SSR and SSE is SST: 

SST = SSR + SSE. 

Then the coefficient of determination can be represented as: 

𝑅2 = 1 −
𝑆𝑆𝐸

𝑆𝑆𝑇
 

However, the coefficient of determination can also be represented as: 

𝑅2 =
𝑆𝑆𝑅

𝑆𝑆𝑇
 

Then the formula for the determination coefficient will be as follows: 

𝑅2 =
∑ (𝑓(𝑋𝑖)  −�̅�)2𝑛

𝑖=1

∑ (𝑦𝑖−�̅�)2𝑛
𝑖=1

   

From the formula for determining the coefficient of determination, it is clear that 

the values of 𝑅2 ≤ 1. The value of the determination coefficient is 𝑅2 = 1 if the 

sum of the squares of the residues is zero, i.e. when all residuals are zero or when 

the original data is accurately described by the data model. 

The coefficient of determination in Excel can be automatically calculated using the 

standard functions LINEST and LOGEST /1, 3/. The LINEST function is used to 

calculate the coefficients of multiple linear or polynomial regressions, and the 

LOGEST function is used to calculate the coefficients of exponential regression. The 

LINEST function calculates the coefficients 𝑏0,, 𝑚1 , … , 𝑚𝑘  in the equation 𝑌 = 𝑏0 +

𝑚1𝑋1 + ⋯ + 𝑚𝑘𝑋𝑘of the linear multiple regression, or the same coefficients in the 



equation 𝑌 = 𝑏0 + 𝑚1𝑋 + ⋯ + 𝑚𝑘𝑋𝑘  of the polynomial regression (from one 

factor). The LOGEST function calculates the coefficients 𝑏0,, 𝑚1 , … , 𝑚𝑘  

In the equation 𝑌 = 𝑏0 ∗ 𝑚1
𝑋1 ∗ … ∗ 𝑚𝑘

𝑋𝑘  of exponential regression. 

The syntax for calling these functions is as follows: 

= LINEST (Values _Y; {Values _X}; Constant; Statistics) 

= LOGEST(Values _Y; {Values _X}; Constant; Statistics) 

The argument "Values _Y" is a one-dimensional array of values for the variable Y 

(or a reference to a range of cells containing this array). The optional argument 

{Values _X} is an array of X factor values (or a reference to a range of cells 

containing this array). If this argument is omitted, then it is assumed that this is an 

array of natural numbers {1,2,3, ...} of the same size as the array "Values _Y". The 

"Constant" argument indicates whether the coefficient 𝑏0of linear, polynomial or 

exponential regression should be equal to 0. If this argument is TRUE, 1 or omitted, 

the coefficient 𝑏0 is calculated as usual. If the argument is FALSE or 0, then 𝑏0is set 

to 0, and the values of the coefficients 𝑚𝑖are selected with this in mind. 

The "Statistics" argument indicates whether additional statistical characteristics of 

the regression are to be calculated. If this argument is TRUE or 1, then the function 

calculates and displays additional characteristics. If the Statistics argument is 

FALSE, O or omitted, then the function returns only the values of the coefficients 

mi and b0. Calculated additional statistical characteristics: 

- 𝑠1, 𝑠2, … , 𝑠𝑘- mean-square deviations for the coefficients 𝑚1, 𝑚2, … , 𝑚𝑘; 

- 𝑠𝑏 - mean-square deviations for the coefficient 𝑏0; 

- 𝑅2- coefficient of determination; 

- 𝑠𝜀- residual standard deviation (standard regression error); 

- F - criterial statistics for checking the significance of the regression equation; 

- df is the degree of freedom; 

- SSR - the sum of squares of regression (sum of squares regression); 

- SSE is the sum of the squares of the residuals (sum of squares error). 

 



Additional statistical characteristics of regression are located in the output array of 

standard functions LINEST and LGRF as follows: 

mk  mk-1  ...  m2  m1  Ьо  

Sk  Sk-1  ...  S2  S1  Sb  

𝑅2  S𝜀      
F  df      

SSR  SSE     

 

The remaining cells of the output array of additional statistical characteristics of 

the regression are filled with the values # H / D. 

An example of the calculation of the LINEST function of additional statistical 

characteristics of the regression is shown in Fig.4.1 .  

To perform the calculations by the LINEST function it is need: 

  1) select the range F4: I9 (4 columns according to the number of coefficients 

of the regression equation and 5 lines); 

2) without removing selection, enter the formula = LINEST (D4: D14; A4: C14 

;; 1); 

3) and then Press the keys <Ctrl + Shift + Enter>.  

Additional statistical characteristics of regression for the given example are 

calculated in the field F4: I9. 

The value of the determination coefficient is written in cell F6. 

 



 

Fig. 4.1 Calculation of additional statistical characteristics of regression by the 

LINEST function. 

 

4.2 PRACTICAL LESSION 4 and IWS 4 

Subject: Calculation of the determination coefficient for the prediction problem. 

Plan of the lesson. 

1) Study the calculation scheme for calculating the determination coefficient for 

the prediction task, presented above. 

2) Practice and task of the IWS. Apply the above described calculation scheme of 

statistical characteristics for its prediction task. 

3) Analyze the results. 

Literature. 

1. Minko A.A. Prediction in business using Excel. M.: Eksmo, 2007, 208 p. 

2. Larose D.T. Discovering knowledge in data - an introduction to data mining. 

Wiley-Interscience, Hoboken, New Jersey, 2005 

3. Excel functions. https://support.office.com/ en-us/article/excel-functions. 

 



TOPIC 5 

CALCULATION OF CONFIDENCE INTERVALS FOR PREDICTED VALUES 

 

5.1. Lecture material 

Confidence interval for the predicted value is a random interval, which with a given 

probability α contains an unknown exact value of the prediction function F (X). The 

probability α is called a confidence level. 

The confidence interval is calculated using the following formula /1, 2/: 

𝑦𝑝 ± 𝑡 ∗ 𝑠𝑝, 

where 𝑦𝑝 = 𝑓(𝑥𝑝) is the predicted value of the prediction function 𝑓;  

𝑥𝑝 is the value of the factor X for which it is necessary to calculate the value of the 

predicted variable Y; 

t is the quantile of the order (1 + α) / 2 of the Student's distribution with (n-k-1) 

degree of freedom (k is the degree of the polynomial of the regression function), α 

is the confidence level; 

𝑠𝑝 is the prediction error for the variable Y at the point 𝑦𝑝, defined by the formula 

/1, 2/: 

𝑠𝑝 = 𝑠𝜀√1 +
1

𝑛
+

(𝑥𝑝−�̅�)2

𝑆𝑆𝑥
, 

where 

  𝑠𝜀 - is the standard error of calculating the regression (calculated by the LINEST 

function; 

 𝑥̅ =
1

𝑛
∑ 𝑥𝑖

𝑛
𝑖=1   - is the mean of 𝑥1, 𝑥2, … , 𝑥𝑛   of the factor X variable; 

 𝑆𝑆𝑥 = ∑ (𝑥𝑖 − 𝑥̅)2 𝑛
𝑖=1 - the sum of the squares of the deviations of the factor values 

from the mean. 

The value of the quantile t of the Student's distribution depends on the given 

confidence level α, usually given as 90, 95 or 99%. Often the confidence level is set 

at 95%. The use of Student's quantile t imposes a number of conditions on the 

regression model such as independence and normal distribution of residuals with 

zero mathematical expectations and the same variances. Often in practice, since 

the confirmation of these conditions requires enough time resources, an empirical 

rule of "three sigma" is used. 



This rule is not tied to the distribution of residues, and the number 3 is not much 

larger than the Student's t-test quantile for α = 95%. Then the upper and lower 

limits of the confidence interval can be calculated by the formula: 

𝑦𝑝 ± 3𝑠𝑝. 

 

5.2 PRACTICAL LESSON 5 and IWS 5 

Subject: Calculation of confidence intervals for the prediction task. 

Plan of the lesson. 

Study the scheme for calculating confidence intervals for the prediction task, 

presented above in the lecture material. 

Below in the figure is an example for Excel, made in accordance with the described 

scheme of calculating confidence intervals for the task of forecasting sales volumes 

as a function of time periods, represented as a polynomial of the second degree 

𝑌 =  𝑏0 + 𝑚1𝑡 + 𝑚2𝑡2 [1]. 

 

Fig. 5.1 Screenshot of calculating confidence intervals for the task of forecasting 

sales volumes in relation to time periods. 

 



2) Practice and task of the IWS. Apply the above confidence interval calculation 

scheme for your prediction task. 

3) Analyze the results. 

Literature. 

1. Minko A.A. Forecasting in business using Excel. M.: Eksmo, 2007, 208 p. 

2. Larose D.T. Discovering knowledge in data - an introduction to data mining. 

Wiley-Interscience, Hoboken, New Jersey, 2005 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



TOPIC 6 

RECOVER MISSING DATA FOR THE PREDICTION TASK 

 

6.1. Lecture material 

Missing or missing data in the intellectual analysis is a problem for the data 
preparation phase. This lack of data can significantly affect the data analysis 
process. Lack of information is rarely useful. Other things being equal, more data is 
almost always better. Therefore, various approaches have been developed in this 
area to solve this problem or to circumvent it. 
There are several approaches to solving this problem of missing data [1, 2]: 
- replacement of missing data with a certain constant determined by the analyst; 
- replacement of missing data by the average value of the field (for numeric 
variables) or by the mode (for categorical variables); 
- replacement of missing data by a value obtained by using a function that 
approximates the available data. 
One of the simple methods for restoring the missing values of the factor-variable is 
to replace the missing values with the average arithmetic values of the series of 
values of this factor. For example, if there is no i-th value xi of the factor X, then xi 

= (xi-1 + xi+1)/2 is assumed. This method of recovery has drawbacks. First, it does 
not work if there are no successive multiple factor values. Secondly, if the data are 
ordered in time, then the linear dependence of this factor on time is implicitly 
implied, which is not always true. Thirdly, if it is assumed the linear dependence of 
the factor on time, then the simple arithmetic mean of the nearest values is a very 
inaccurate method of approximation [1]. 
In the second method of recovering missing values, the regression function of the 

given (dependent) factor with missing values is first constructed based on one or 

more other factors (independent factors) also present in the data set. Then the 

missing values of the dependent factor are replaced by the calculated values of the 

constructed regression function for this factor. The main problem here is the choice 

of independent factors by which the regression function for the dependent factor 

will be built. 

Independent factors are subject to certain requirements. First, they must correlate 

with the dependent factor for which the regression function is built. This means 

that there must be some dependence between them. Secondly, the values of the 

independent variables should be as deterministic as possible. Should not depend 

on random influences, especially on random influences that affect the predicted 

variable Y. However, the latter condition is difficult to verify in practice, therefore, 



the time factor is often taken as independent variables. But, by their nature, 

changes of the factor are not always determined only by a temporary factor. The 

way out of this situation is the construction of several data models, where the 

missing values are restored based on different independent variables [1]. 

Consider an example of restoring missing values. 

In Figure 6.1. The table of initial data of production costs on the time periods is 

presented. There are missing values from the production cost data. It is necessary 

to restore the missing values. We can perform the reconstruction of the missing 

values using the second method described above, restoring the missing values, 

based on constructing a factor regression line with missing values for other factors 

in the original data. 

In the figure 6.2. Represents the construction of the regression line of production 

costs from time, which allows you to calculate the missing values of production 

costs. To do this, you need to add the regression line formula to the missing value 

cells. This is shown in Figure 6.3. 

See Figure 6.4. The table of initial data of expenses for advertising on the periods 

of time is presented. There are missing values from the cost of advertising. It is 

necessary to restore the missing values of advertising costs. Recover missing costs 

of advertising costs by using the above method of recovering missed values, based 

on building a line of regression costs for advertising cost factor production. 

In Figure 6.5. The construction of the regression line of the dependence of 

advertising costs on production costs is presented, which allows calculating the 

missed costs from time to time. To do this, you need to add the regression line 

formula to the missing value cells. This is shown in Figure 6.6. 

 



 

Fig.6.1. Chart of production costs from time. 

 

 

Fig. 6.2. The regression line of production costs from time. 

 



 

Fig. 6.3. Calculation of the missed values of production costs for the constructed 

line of regression of production costs from time. 

 

 

Fig. 6.4. Spot chart of advertising costs from production costs 

 



 

Fig. 6.5. The regression line of the dependence of advertising costs on production 

costs. 

 

 

Fig. 6.6. Calculation of the missed costs of advertising costs for the line of regression 

of advertising costs from production costs. 

 

6.2 PRACTICAL LESSON 6 and IWS 6 



Subject. Recover missing data for the prediction task. 

Plan of the lesson. 

1) Study the scheme for recovering missing data for the prediction task, presented 

above. 

2) Practice and task of the IWS. Apply the above-described scheme for recovering 

missing data for its prediction task. 

3) Analyze the results. 

Literature. 

1. Minko A.A. Forecasting in business using Excel. M.: Eksmo, 2007, 208 p. 

2. Larose D.T. Discovering knowledge in data - an introduction to data mining. 

Wiley-Interscience, Hoboken, New Jersey, 2005 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



TOPIC 7 

ANALYSIS OF DATA OUTLIERS FOR THE PREDICTION TASK 

 

7.1. Lecture material 

Data outliers are extreme values that lie near the limits of the data range or go 
against the trend of the remaining data. Identifying data outliers is important 
because they may represent errors in data entry. The task of the data outliers 
analysis is to find out whether the data outliers are values of "natural" origin, i.e. 
whether they are caused by the stochastic nature of the initial data or are 
conditioned by some unaccounted factors. If the data outliers are due to the 
presence of unknown factors, then it is necessary to deal with this situation, to 
identify the cause of the unknown factor. This can serve as an incentive for 
investigating the actual situation described by the initial data, and also for further 
improving the data model [1, 2]. 
There are several methods of data outliers detection. 
One elementary robust method is to use the interquartile range [2]. The quartiles 
of a data set divide the data set into four parts, each containing 25% of the data: 

-the first quartile (Q1) is the 25th percentile; 
-the second quartile (Q2) is the 50th percentile, that is, the median; 
-the third quartile (Q3) is the 75th percentile. 

The interquartile range (IQR) is a measure of variability that is much more robust 
than the standard deviation.  

The IQR is calculated as IQR = Q3 − Q1 and may be interpreted to represent 
the spread of the middle 50% of the data. A robust measure of data releases 
detection is therefore defined as follows. A data value is an outlier if: 

1) It is located 1.5(IQR) or more below Q1, or 
2) It is located 1.5(IQR) or more above Q3. 

For example, suppose that for a set of test scores, the 25th percentile was Q1 = 165 
and the 75th percentile was Q3 = 170, so that half of all the test scores fell between 
165 and 170. Then the interquartile range, the difference between these quartiles, 
was IQR = 170 − 165 = 5. 
A test score would be robustly identified as an data release if: 
a. It is lower than Q1 − 1.5(IQR) = 165 − 1.5*(5) = 157,5, or 
b. It is higher than Q3 + 1.5(IQR) = 170 + 1.5(5) = 177,5. 

Other method of data outliers detection using regression function is described 

below [1].  

The scheme for determining the data outliers includes the following steps: 



1) the data outliers points 𝑥𝑖are removed from the initial data set; 

2) the regression function f (X) is constructed from the remaining data and its 

statistical characteristics are calculated using the standard LINEST function 

(including the standard error 𝑠𝜀of the constructed regression); 

3) find the value of the regression function at the data outliers points f (X). 

4) calculate the residuals at data releases points 𝑒𝑖 = 𝑦𝑖 −  𝑓(𝑋𝑖), where 𝑦𝑖- is the 

value of the i-th outlier. 

5) find the normalized residues at the data outliers points е𝑖 =   е𝑖  / 𝑠𝜀  .. 

6) If the absolute value of the normalized residue exceeds the number 3, it is 

considered that with a probability of 95% this data outliers is not accidental. 

Let us consider an example of determining the randomness of data outliers. 

The set of initial data is given, presented in Table 7.1 and in Figure 7.1. 

Table 7.1. The set of initial data 

Time  Period  Production 

costs  

Advertising 

costs  

Sales 

volume 

January 1 890,8 200,8 1286,5 
February 2 896,4 210,5 1282,7 

March 3 903 208,6 1224,8 

April 4 888,8 226,7 1292,6 
May 5 889,8 230,62 1667,3 

June 6 890,8 238,7 1672,9 
July 7 888,3 232,3 1667,5 

August 8 885,8 240,1 2001,7 
September 9 883,9 238,1 2352,5 

October 10 875,1 248,1 2468,5 

November 11 877,73 253,58 2946,2 
December 12 873,8 261,05 1982,7 

January 13 878,2 275,1 1901,1 
February 14 866,3 265,5 1971,6 

March 15 865,1 266,1 1989,1 

April 16 876,6 282,6 2138,2 
May 17 862,5 286,5 2475,2 

June 18 865,9 286,3 2395,6 



July 19 857,5 284,3 2994,1 

 

 

Fig. 7.1. Initial data with data outliers in the 11th period. 

 

In the diagram of Fig. 7.1. One significant data outliers is seen in the 11th period. 

1) In accordance with the scheme for determining the accidental data outliers, it is 

necessary to delete data outliers. For example, the outlier of period 11 is deleted 

and its data line is stored in free line 20 (see Figure 7.2.). 

2) A regression function is constructed for the data of the predicted variable 

without a deleted data outliers (see Figure 7.2.). The statistical characteristics of 

the regression are calculated using the standard LINEST function, represented in 

cells G2: J6 (see Figure 7.2). 

 



 

Fig. 7.2. Calculation of the statistical characteristics of the regression without a 

deleted data outliers. 

 

3) The values of the predicted variable for the deleted data outliers (see Figure 7.3) 

are calculated from the parameters of the regression: 𝑌 = 𝑏0 + 𝑏1𝑡+𝑏2𝑋1 + 𝑏3𝑋2 

(formula in Excel: =J2+I2*B20+H2*C20+G2*D20). 

 



Fig. 7.3. Calculation of the value of the predicted variable for remote emission by 

regression parameters. 

4) The residuals at emission points 𝑒𝑖 = 𝑦𝑖 −  𝑓(𝑋𝑖), are calculated, where 𝑦𝑖- is the 

value of the i-th outlier (see Figure 7.4). 

 

Fig. 7.4. Calculation of residues at data outliers points. 

5) Calculation of normalized residues at emission points е𝑖 =   е𝑖  / 𝑠𝜀   for example 

(see Figure 7.5). 

 



Fig. 7.5. Calculation of normalized residues at data outliers points. 

6) If the absolute value of the normalized residue exceeds the number 3, it is 

considered that with a probability of 95% this data outliers is not accidental. 

In this example, the value of the predicted variable of the 11th period is not an 

accidental outlier, because the value of the normalized remainder is 3.45. 

An analysis of the results of a randomized data outliers test includes a sufficiently 

in-depth analysis of the necessary actions in the event that data outliers are not 

accidental. Often this is a sign that there is an unaccounted factor. 

If, as a result of the analysis, it turns out that these factors will not affect the 

predicted periods, such data outliers can be removed from the original data set. 

If the data outliers are of a recurring nature, then they must be taken into account 

when allocating the seasonal component of the forecast. 

If data outliers can appear in the future, but irregularly (for example, special 

promotions), these data releases can be taken into account by including additional 

factors in the data model. 

 

7.2 PRACTICAL LESSON 7 and IWS 7 

Subject: Analysis of data outliers for the predicting problem. 

Plan of the lesson. 

1) Examine the data outlier analysis scheme for the forecasting problem presented 

above. 

2) Practice and task of the IWS. Apply the above described data outliers analysis 

scheme to your predicting task. 

3) Analyze the results. 

Literature. 

1. Minko A.A. Predicting in business using Excel. Moscow: Eksmo, 2007, -208 p. 

2. Larose D.T. Discovering knowledge in data - an introduction to data mining. 

Wiley-Interscience, Hoboken, New Jersey, 2005 



TOPIC 8 

SELECTION OF FACTORS FOR THE PREDICTION TASK 

 

8.1 Lecture material 

The task of selecting factors is as follows: it is necessary to select such factors in 

the data model that their inclusion increases the accuracy of the approximation 

of the initial data by the predicting function.  

One of the most effective methods of selection of factors is the use of the 

adjusted coefficient of determination.  

Earlier, we considered in detail the coefficient of determination, when the question 

of the accuracy of the approximation of the initial data by the predicting function 

was studied. The coefficient of determination is convenient when estimating the 

accuracy of approximation by different prediction functions of the same initial 

data with the same set of factors.  

When it is necessary to compare the accuracy of approximation with the function 

of predicting the initial data with a different set of factors, and the task of 

selecting factors can be put in this way, then it is possible to use the adjusted 

coefficient of determination.  

That is, you can first calculate the adjusted determination coefficient for a model 

with a given set of factors, and then remove one of the factors from the model 

and calculate the adjusted determination coefficient.  

Then compare the obtained values of the adjusted determination coefficient: if 

elimination of the factor reduces the quality of the approximation, then this 

factor is significant for the model, and vice versa, if the quality of the 

approximation does not change or even increases, this means that this factor is 

not essential for the model. 

 

The adjusted coefficient of determination 𝑅𝑚
2̅̅ ̅̅   is calculated by the formula: 

𝑅𝑚
2̅̅ ̅̅ =

(𝑛−1)(1−𝑅𝑚
2 )

𝑛−𝑚
                                                                   (8.1) 



Where 𝑅𝑚
2 - "standard" coefficient of determination; 𝑚- number of factors; 𝑛 is the 

number of data points in the source data set. 

 

The adjusted coefficient of determination has the property that if k new factors are 

added to the model, then the new adjusted determination coefficient 𝑅𝑚+𝑘
2̅̅ ̅̅ ̅̅ ̅   can 

be either larger or smaller than the old adjusted coefficient of determination 𝑅𝑚
2̅̅ ̅̅ . 

If 𝑅𝑚+𝑘
2̅̅ ̅̅ ̅̅ ̅   is greater than 𝑅𝑚

2̅̅ ̅̅ , then it is considered that k new factors significantly 

affect the predicted variable Y, and these factors need to be added to the model. 

Otherwise (when 𝑅𝑚+𝑘
2̅̅ ̅̅ ̅̅ ̅   is less than or equal to 𝑅𝑚

2̅̅ ̅̅ , it is assumed that the new 

factors have little effect on the predicted variable, and therefore they can not be 

included in the model [1]. 

Below is an example of an assessment of the inclusion of a factor in the forecasting 

model. First, we consider a model with three factors: 

 

𝑌 = 𝑏0 + 𝑏1𝑡 + 𝑏2𝑋1 + 𝑏3𝑋2                                 (8.2.) 

 

Then we add the factor of the time period square to this model, having received 

the model with four factors: 

 

𝑌 = 𝑏0 + 𝑏1𝑡 + 𝑏2𝑡2 + 𝑏3𝑋1 + 𝑏4𝑋2                                       (8.3.) 

 

Then, from this model, we remove the factor X_2 and get a model with three 

factors: 

 

𝑌 = 𝑏0 + 𝑏1𝑡 + 𝑏2𝑡2 + 𝑏3𝑋1                                                         (8.4) 

 

For each of these models, we calculate their statistical characteristics and the 

adjusted determination coefficient. Further, by comparing their values, it is 



possible to draw conclusions about the importance of the included or excluded 

factors for the forecasting function of the problem under consideration. 

Below in Tables 8.1, 8.2 and Figure 8.1, the initial data and the results of calculating 

the estimates for the model (8.2) are presented. 

Table 8.1. The initial data for the model (8.2) 

Time  Period  Production 

costs  

Advertising 

costs  

Sales 

volume 

January 1 890,8 200,8 1286,5 
February 2 896,4 210,5 1282,7 

March 3 903 208,6 1224,8 
April 4 888,8 226,7 1292,6 

May 5 889,8 230,62 1667,3 

June 6 890,8 238,7 1672,9 
July 7 888,3 232,3 1667,5 

August 8 885,8 240,1 2001,7 
September 9 883,9 238,1 2352,5 

October 10 875,1 248,1 2468,5 

November 11 877,73 253,58 2012,2 
December 12 873,8 261,05 1982,7 

January 13 878,2 275,1 1901,1 
February 14 866,3 265,5 1971,6 

March 15 865,1 266,1 1989,1 
April 16 876,6 282,6 2138,2 

May 17 862,5 286,5 2475,2 

June 18 865,9 286,3 2395,6 
July 19 857,5 284,3 2994,1 

 

Table 8.2. The results of calculating estimates from the model (8.2). 

 Number of factors   - 3   
 Regression equation   Y=b0+b1*t+b2*X1+b3*X2  

 -10,1748 -9,17357 101,6508 11526,03   
 11,38783 14,02972 68,67564 12239,55   

 0,751075 261,4473 #Н/Д #Н/Д   
 15,08639 15 #Н/Д #Н/Д   

 3093677 1025320 #Н/Д #Н/Д   
        



       
 The adjusted coefficient of determination 

 0,71996      
       
       

 

 

 

Fig. 8.1. Screenshot of the calculation of the adjusted determination coefficient for 

the model (8.2). 

 

As can be seen from Table 8.2. And figure 8.1 in regression model 8.2, the 

determination coefficient is quite high 0.751075, the adjusted determination 

coefficient is 0.71996. 

Tables 8.3, 8.4 and figure 8.2 show the initial data and the results of calculating the 

estimates for the model (8.3), the four-factor model, in which the factor added is 

the time period squared factor. 

 

Table 8.3. The initial data for the model (8.3) 



Time  Period  Period 

in 

square 

 

Production 

costs  

Advertising 

costs  

Sales 

volume 

January 1 1 890,8 200,8 1286,5 
February 2 4 896,4 210,5 1282,7 

March 3 9 903 208,6 1224,8 

April 4 16 888,8 226,7 1292,6 
May 5 25 889,8 230,62 1667,3 

June 6 36 890,8 238,7 1672,9 
July 7 49 888,3 232,3 1667,5 

August 8 64 885,8 240,1 2001,7 

September 9 81 883,9 238,1 2352,5 
October 10 100 875,1 248,1 2468,5 

NOVEMBER 11 121 877,73 253,58 2012,2 
December 12 144 873,8 261,05 1982,7 

January 13 169 878,2 275,1 1901,1 
February 14 196 866,3 265,5 1971,6 

March 15 225 865,1 266,1 1989,1 

April 16 256 876,6 282,6 2138,2 
May 17 289 862,5 286,5 2475,2 

June 18 324 865,9 286,3 2395,6 
July 19 361 857,5 284,3 2994,1 

 

Table 8.4. The results of calculating the estimates from the model (8.3). 

Number of factors   - 4   
The regression equation Y=b0+b1*t+b2*t^2+b3*X1+b4*X2 

-13,0796 -10,1777 -2,10969 155,5671 12868,56  
11,92828 14,17594 2,378899 92,09033 12420,21  
0,764315 263,3282 #Н/Д #Н/Д #Н/Д  
11,35035 14 #Н/Д #Н/Д #Н/Д  
3148213 970784,6 #Н/Д #Н/Д #Н/Д  
      
      
The adjusted coefficient of determination 
0,717178      

 

 



 

Fig. 8.2. Screenshot of calculating the corrected determination coefficient for the 

model (8.3). 

 

As can be seen from Table 8.4. And figure 8.2 in the regression model (8.3), the 

determination coefficient increased by 0.764315, and the adjusted determination 

coefficient decreased by 0.717178. This suggests that the added factor is not 

significant for the forecasting model, i.e. the addition of a "time period square" to 

the predicting model does not significantly affect the predicted variable. 

Below in Tables 8.5, 8.6 and Figure 8.3, the initial data and the results of calculating 

the estimates for the model (8.4) are presented. 

Table 8.5. The initial data for the model (8.4) 

Time  Period  Period 

in 

square 

 

Production 

costs  Sales 

volume 

 

January 1 1 890,8 1286,5 
February 2 4 896,4 1282,7 

March 3 9 903 1224,8 

April 4 16 888,8 1292,6 
May 5 25 889,8 1667,3 



June 6 36 890,8 1672,9 

July 7 49 888,3 1667,5 

August 8 64 885,8 2001,7 
September 9 81 883,9 2352,5 

October 10 100 875,1 2468,5 
NOVEMBER 11 121 877,73 2012,2 

December 12 144 873,8 1982,7 

January 13 169 878,2 1901,1 
February 14 196 866,3 1971,6 

March 15 225 865,1 1989,1 
April 16 256 876,6 2138,2 

May 17 289 862,5 2475,2 
June 18 324 865,9 2395,6 

July 19 361 857,5 2994,1 

 

Table 8.6. The results of calculating the estimates from the model (8.4). 

Number of factors   - 3   
The regression equation Y=b0+b1*t+b2*t^2+b3*X1  
-13,7165 -1,39341 71,73884 13467,27   
13,89647 2,302831 51,68798 12491,62   
0,744074 265,0984 #Н/Д #Н/Д   
14,53692 15 #Н/Д #Н/Д   
3064840 1054158 #Н/Д #Н/Д   
      
      
The adjusted coefficient of determination 

0,712084      
      

 



 

Fig. 8.3. Screenshot of calculating the corrected determination coefficient for the 

model (8.4). 

 

As can be seen from Table 8.6. and figure 8.3 in the regression model (8.4), the 

determination coefficient decreased by 0.744074, and the adjusted determination 

coefficient decreased also 0.712084. This suggests that the excluded factor 

"advertising costs" is essential for the forecasting model, i.e. it is necessary to leave 

the "advertising costs" factor in the forecasting model. 

 

 

8.2 PRACTICAL LESSON 8 and IWS 8 

Subject. Selection of factors for the prediction problem. 

Plan of the lesson. 

1) Examine the selection scheme for the factors for the prediction task, presented 

above. 

2) Practical lesson and task of the IWS. Apply the above selection of factors for your 

prediction task. 

3) Analyze the results. 



Literature. 

Minko A.A. Predicting in business using Excel. M.: Eksmo, 2007, -208 p. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



TOPIC 9 

ESTIMATION OF THE QUALITY OF THE DATA MODEL FOR THE PREDICTION TASK 

 

9.1 Lecture material 

Evaluation of the quality of the data model means to estimate the accuracy of the 

approximation of the input data by the prediction function𝒀 =

𝒇(𝒕, 𝑿𝟏 , 𝑿𝟐, … 𝑿𝒎;  𝜺). There are various methods for estimating the accuracy of 

the approximation of the input data by the prediction function𝒇 =

𝒇(𝒃𝟏, 𝒃𝟐, … , 𝒃𝒌; 𝒕;  𝑿𝟏 , 𝑿𝟐, … 𝑿𝒎). The scheme of the effect of the random variable 

𝜺 on the prediction function is adopted either additive (𝑓 + 𝜺), or multiplicative 

(𝑓 ∗ 𝜺). 

The quality of the data model is estimated by various indicators: 

- The method of least squares (OLS); 

- coefficient of determination; 

- adjusted coefficient of determination; 

- the average absolute deviation: 
1

𝑛
∑ |𝑒𝑖  |𝑛

𝑖=1 ;; 

- the average absolute error in percent: ((
1

𝑛
∑ |

𝑒𝑖

𝑦𝑖
 |) 100%𝑛

𝑖=1 . 

The coefficient of determination and the adjusted coefficient of determination 

were previously considered in detail. The average absolute deviation and the mean 

absolute error in percent as well as the coefficient of determination are used when 

comparing data models built on the same data sets and containing the same set of 

factors. 

The basic method of constructing the approximating function of the input data is 

the method of least squares. The main condition for the application of this method 

is the linear dependence of the approximating function on the unknown (sought) 

parameters. 

The essence of the method of least squares is that the determination of the values 

of the unknown parameters 𝑏1, 𝑏2, … , 𝑏𝑘of the approximating function were based 

on the criterion of the minimum sum of squared deviations of the computed values 



of the predicted variable by the approximating function from the observed values 

of the predicted (dependent) variable: 

∑ 𝑒𝑖
2 = ∑ (𝑦𝑖 − 𝑓(𝑥𝑖))2𝑛

𝑖=1
𝑛
𝑖=1  → 𝑚𝑖𝑛,  

Where 𝑦𝑖are the observed values of the predicted variable at the i-th point of the 

initial data, 𝑓(𝑥𝑖)is the calculated values of the predicted variable from the 

approximating function at the i-th point. 

Finding the "correct" values of the parameters 𝑏1, 𝑏2, … , 𝑏𝑘by the method of least 

squares is due to a number of conditions. Let 𝜀𝑖 be the random effects on the i-th 

point of the original data. Then the conditions of least squares have the following 

form [1]: 

1) The mathematical expectation of random variables 𝜀𝑖is equal to 0 for all data 

points. 

2) The variances of the random variables 𝜀𝑖must be the same for all data points. 

This condition is called the condition of data homoscedasticity, and its non-

fulfillment is called heteroscedasticity of the data. 

3) The random variables 𝜀𝑖 must be independent of each other. This condition is 

called the lack of autocorrelation. 

4) The random variables 𝜀𝑖must be independent of the factors. 

5) There should be no strong linear relationship between the factors. This condition 

is called the absence of multicollinearity. 

6) The random variables 𝜀𝑖 have a normal distribution with zero mathematical 

expectation and the same variance. 

It should also be noted that the residuals 𝑒𝑖are taken as estimates of the random 

effects 𝜀𝑖at the i-th point of the predicted variable. This is due to the fact that 

random effects can not be observed explicitly. 

If these conditions are fulfilled, the values of the parameters 𝑏1, 𝑏2, … , 𝑏𝑘calculated 

by the least squares will be "correct": unbiased, consistent and effective. The 

unbiased property of the parameter values means that their mathematical 

expectations will be equal to the true values of these parameters. The property of 

consistency of the values of the parameters means that the variances of these 

values with an unlimited increase in the number n of data points will tend to zero. 



The effectiveness property of parameter values means that they have the smallest 

variance compared to any other estimates of these parameters. 

When evaluating the quality of a data model, the feasibility of the method of least 

squares conditions is important. Thus, if the method of least squares conditions are 

not fulfilled, it is necessary to consider the correspondence of the chosen type of 

predicting function to the nature of the initial data. Often in the appearance of the 

picture of the original data, it is necessary to select a suitable type of prediction 

function (approximation). 

One of the primary conditions of the method of least squares to be checked is the 

condition of homoscedasticity of data (the uniformity of the variance of residues 

for all data points) and the lack of autocorrelation of random effects 𝜀𝑖 (taking into 

account the use of residues - this will be the verification of the independence of 

the residues 𝜀𝑖). Below in Figure 9.1, a graph of the homoscedasticity of the data is 

shown - the uniformity of the variance of the residues for all data points of factor 

X, and Figure 9.2 shows the graph of the hetaera. 

 

Fig.9.1. Homoscedasticity of residues [2] 



 

Fig.9.2. Heteroscedasticity of residues [2] 

 

Consider the tests to verify these two conditions for the method of least squares. 

There are various developed tests to test each of these conditions. We show the 

tests of these conditions on one of them. 

 

Verification of the homoscedasticity of data by the Spearman rank correlation 

test. 

A hypothesis is advanced that there is no heteroscedasticity of the random variable 

𝑒𝑖. It is assumed that the variance of the random variables 𝑒𝑖will either increase or 

decrease as the factor X increases, and therefore in the method of least squares 

regression the absolute values of the residuals 𝑒𝑖and the values of X will be 

correlated. Scheme of the test: 

1) the data on X and the residuals 𝑒𝑖are ranked according to X and their ranks are 

determined; Ranks are defined as the location numbers of the values of X and 𝑒𝑖in 

the rows ordered in ascending order; 

2) the Spearman rank correlation coefficient is determined by the formula 

𝑟 = 1 −
6 ∑ 𝐷𝑖

2𝑛
𝑖=1

𝑛(𝑛2−1)
, where Di  is the difference between the ranks of X and 𝑒𝑖; 

3) The criterial statistics are calculated: 



 𝑡𝑥,𝑒 =
𝑟√𝑛−2

√1−𝑟2
 

4) The critical value 𝑡𝑐𝑟  is calculated as a quantile of the order of 1-α / 2 of the 

Student's distribution with the degree of freedom n-2. 

If 𝑡𝑥,𝑒 ≤ 𝑡𝑐𝑟   , then this will indicate the absence of heteroscedasticity, or, 

conversely, the presence of homoscedasticity. 

The following is an example of how to perform this test. The initial data of the 

example are presented in Table 9.1. The check on the homoscedasticity of the time 

factor and the residues in the predict function 

𝑌 = 𝑏0 + 𝑏1𝑡 + 𝑏2𝑡2 + 𝑏3𝑋1 + 𝑏4𝑋2 

Where 𝑋1- production costs, 𝑋2- advertising costs, Y - sales volumes, t - time. 

Table 9.1. Initial data for the homoscedasticity test of residues 

Time  Perio

d  

Perio

d in 

squar

e  

Producti

on costs  

Adverti

sing 

costs  

Sales 

volume  

Function 

forecast  

Residuals 

January 1 1 890,8 200,8 1286,5 1329,349 -42,8493 

February 2 4 896,4 210,5 1282,7 1294,721 -12,0205 

March 3 9 903 208,6 1224,8 1397,418 -172,618 
April 4 16 888,8 226,7 1292,6 1446 -153,4 

May 5 25 889,8 230,62 1667,3 1521,13 146,1696 
June 6 36 890,8 238,7 1672,9 1537,63 135,2696 

July 7 49 888,3 232,3 1667,5 1774,925 -107,425 

August 8 64 885,8 240,1 2001,7 1822,27 179,4298 
Septembe
r 9 81 883,9 238,1 2352,5 1987,469 365,0307 

October 10 100 875,1 248,1 2468,5 2061,72 406,7796 

NOVEMB
ER 11 121 877,73 253,58 2012,2 2074,541 -62,3407 

December 12 144 873,8 261,05 1982,7 2123,879 -141,179 
January 13 169 878,2 275,1 1901,1 1998,154 -97,0541 

February 14 196 866,3 265,5 1971,6 2343,438 -371,838 
March 15 225 865,1 266,1 1989,1 2442,189 -453,089 

April 16 256 876,6 282,6 2138,2 2199,5 -61,2998 

May 17 289 862,5 286,5 2475,2 2377,942 97,25768 



June 18 324 865,9 286,3 2395,6 2427,682 -32,082 
July 19 361 857,5 284,3 2994,1 2616,842 377,2578 

 

Table 9.2. Computation of the homoscedasticity test of residues 

The regression equation Y=b0+b1*t+b2*t^2+b3*X1+b4*X2   
-13,0796 -10,1777 -2,10969 155,5671 12868,56   
11,92828 14,17594 2,378899 92,09033 12420,21   
0,764315 263,3282 #Н/Д #Н/Д #Н/Д   
11,35035 14 #Н/Д #Н/Д #Н/Д   
3148213 970784,6 #Н/Д #Н/Д #Н/Д   
       
Significance level 0,05     
       
The sum of the squared differences of ranks    
1104  {=СУММКВРАЗН(B2:B20;РАНГ(H2:H20;H2:H20;1))} 

Spearman's correlation coefficient    
0,447078  {=1-6*J12/(20*(600-1))}   
Criteria statistics     
1,943352  {=J14*КОРЕНЬ(20-2+КОРЕНЬ(1-J14*J14))} 

Critical value     
2,100922  {=СТЬЮДРАСПОБР(L9;20-2)}   
There is homoskedasticity    
       

 

 



Fig. 9.3. Screenshot of the initial data and calculation of the homoscedasticity test 

of the time factor and residues 

Based on the results of the homoscedasticity test of the time factor and residues, 

it was found that 𝑡𝑥,𝑒 = 1,943352, 𝑡𝑐𝑟 = 2,100922.. Accordingly, 𝑡𝑥,𝑒 ≤ 𝑡𝑐𝑟   , then 

there is a homoscedasticity of the time factor and residuals. 

 

Verification of the condition of independence of the residual data by the Durbin-

Watson test. 

The verification of the independence of the residues, that is, the test for the lack 

of autocorrelation of the residues can be performed according to the Darbin-

Watson test (criterion). The criterion is named after James Durbin and Jeffrey 

Watson [3]. The Durbin-Watson criterion is calculated by the following formula: 

𝐷𝑊 =
∑ (𝑒𝑖 − 𝑒𝑖−1)2𝑛

𝑖=2

∑ (𝑒𝑖)2𝑛
𝑖=1

 

 

In the absence of autocorrelation DW = 2, with positive autocorrelation, DW tends 

to zero, and for negative autocorrelation DW approaches 4. And according to the 

Durbin-Watson criterion, special tables are developed that allow one to determine 

the critical points of the observable statistics DW for a given number of 

observations n, the number of factors and a given level of significance. But in 

practice, the rule is often used: 

- the interval from 0 to 4 is divided into several ranges: positive autocorrelation, 

negative autocorrelation and ranges of uncertainty; 

- if DW ≤ 0.5, then there is positive autocorrelation (the range of positive 

autocorrelation), 

- if DW ≥ 3.5, then there is negative autocorrelation (the range of negative 

autocorrelation), 

- if 1.5 ≤ DW ≤ 2.5, then there is no autocorrelation (the range of absence of 

autocorrelation). 

- in other cases, these are uncertainty ranges when there is no confidence in the 

presence or absence of autocorrelation: 0.5 <DW <1.5 and 2.5 <DW <3.5. 



If the value of the Durbin-Watson criterion falls within the autocorrelation ranges 

or uncertainty ranges when analyzing the given source data model, this should be 

the reason for further research on the selection of a more suitable prediction 

function. 

Below in Table 9.3 and Figure 9.3, an example of the verification of the 

independence of residues according to the Durbin-Watson criterion is presented. 

The initial data is taken from Table 9.1. 

Table 9.3 Calculation of the Durbin-Watson criterion for checking the 

independence of residues 

The regression equation   
Y=b0+b1*t+b2*t^2+b3*X1+b4*X2  

 -13,0796 -10,1777 -2,10969 155,5671 12868,56  

 11,92828 14,17594 2,378899 92,09033 12420,21  
 0,764315 263,3282 #Н/Д #Н/Д #Н/Д  

 11,35035 14 #Н/Д #Н/Д #Н/Д  
 3148213 970784,6 #Н/Д #Н/Д #Н/Д  
       
 the Durbin-Watson criterion    

  0,99674     
 

In this example, the value of the Durbin-Watson criterion is 0.99674, i.e. It falls 

within the uncertainty range of 0.5 <DW <1.5. This is the reason for choosing a 

more advanced forecasting function. 



 

Fig. 9.4. A screenshot of the original data and the calculation of the independence 

test for residues according to the Durbin-Watson criterion 

 

9.2 PRACTICAL LESSON 9 and IWS 9 

Subject. Estimation of the quality of the data model for the prediction problem. 

Plan of the lesson. 

1) Study the scheme for assessing the quality of the data model for the prediction 

task, presented above. 

2) Practical lesson and task of the IWS. Apply the above-described data quality 

model for your forecasting task. 

3) Analyze the results. 

Literature. 

1. Minko A.A. Predicting in business using Excel. M.: Eksmo, 2007, -208 p. 

2. http://metr-ekon.ru. Lectures on Econometrics with examples of solutions. The 

essence of heteroscedasticity. 

3. https://ru.wikipedia.org/wiki/Robin_Watson_Charter_ 

 



TOPIC 10 

DATA SMOOTHING FOR THE PREDICTION TASK 

 

10.1. Lecture Material 

Data smoothing is a procedure for preliminary processing of the initial data, which 

allows smoothing (decreasing) the values of random effects in the original data. 

Consider three methods of smoothing the data: the moving average, exponential 

smoothing, and the Holt method. 

 

Moving average method. 

Smoothing of data by the moving average method is carried out according to the 

formula [1]: 

 

𝑦�̂� =
1

2𝑘+1
(𝑦𝑖−𝑘 + 𝑦𝑖−𝑘+1 + ⋯ + 𝑦𝑖−1 + 𝒚𝒊 + 𝑦𝑖+1 + ⋯ + 𝑦𝑖+𝑘−1 + 𝑦𝑖+𝑘),     (10.1) 

 

where k is a positive integer that is less than n. In practice, the value of k is set to 

1, 2 or 3. That is, k values are taken to the left from the right and k values from the 

averaged value 𝑦𝑖 , and also 𝑦𝑖 itself. 

The disadvantage of this method is the reduction of the smoothed data on the left 

and right by k values relative to the original data. 

In the case of time series, the moving average method is calculated using the 

formula: 

 

𝑦�̂� =
1

𝑘
(𝑦𝑖−𝑘+1 + 𝑦𝑖−𝑘+2 + ⋯ + 𝑦𝑖−1 + 𝑦𝑖).                                                        (10.2) 

 

In this case, we take on the left k-1 values from the averaged value 𝑦𝑖 , and also 

𝑦𝑖  itself. 



The disadvantage of this formula is the cut of the smoothed data on the left by k-1 

values, i.e. a shift to the right of smoothed data relative to the original data. 

 

Table 10.1. Initial data and results for the moving average method according to the 

formula (10.1) 

Time  Period  Production 

costs  

The smoothed 

data (formula 

10.1) 

February 2 1282,7  
March 3 1224,8 1266,7 

April 4 1292,6 1394,9 

May 5 1667,3 1544,267 

June 6 1672,9 1669,233 

July 7 1667,5 1780,7 

August 8 2001,7 2007,233 

September 9 2352,5 2274,233 

October 10 2468,5 2277,733 

NOVEMBER 11 2012,2 2154,467 

December 12 1982,7 1965,333 

January 13 1901,1 1951,8 

February 14 1971,6 1953,933 

March 15 1989,1 2032,967 

April 16 2138,2 2200,833 

May 17 2475,2 2336,333 

June 18 2395,6 2621,633 

July 19 2994,1 2694,85 
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Fig. 10.1 Sales volume charts: the initial (row 1) and smoothed (row 2) by formula 

(10.1) 

 

Fig. 10.2. A screenshot of the initial data and smoothing using the moving average 

method according to the formula (10.1) 

Table 10.2 Initial data and results for the moving average method using formula 

(10.2) 

Time  Period  Production 

costs  

The smoothed 

data (formula 

10.2) 

February 2 1282,7  
March 3 1224,8 1253,75 

April 4 1292,6 1258,7 

May 5 1667,3 1479,95 

June 6 1672,9 1670,1 

July 7 1667,5 1670,2 

August 8 2001,7 1834,6 

September 9 2352,5 2177,1 

October 10 2468,5 2410,5 

NOVEMBER 11 2012,2 2240,35 

December 12 1982,7 1997,45 

January 13 1901,1 1941,9 

February 14 1971,6 1936,35 

March 15 1989,1 1980,35 

April 16 2138,2 2063,65 

May 17 2475,2 2306,7 



June 18 2395,6 2435,4 

July 19 2994,1 2694,85 

 

 

Fig. 10.3 Sales volume charts: the initial (row 1) and smoothed by formula (10.2) 

 

Fig. 10.4. A screenshot of the initial data and smoothing using the moving average 

method according to the formula (10.2) 

 

Exponential data smoothing. 
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Exponential data smoothing applies to data that depends on time, i.e. to time 

series. In this method, the smoothed values are calculated using the following 

formula: 

𝑦�̂� = (1 − 𝛼)𝑦𝑖 + 𝛼𝑦𝑖−1̂ ,                                                                                             (10.3) 

Where α is the smoothing coefficient; 𝑦1̂ is taken as  𝑦1. The values of α   are taken 

in the range (0.1), in practice - from 0.2 to 0.8. 

The smoothing factor allows some balancing between the previous smoothed value 

 𝑦𝑖−1̂and the current observed value 𝑦𝑖  to get the current smoothed value 𝑦�̂�. The 

closer the smoothing coefficient is to zero, the less is the smoothing of the observed 

value, i.e. When α = 0, there is no smoothing. Conversely, for α = 1, the current 

smoothed value will coincide with the previous smoothed value, i.e. the graph of 

smoothed values will be a horizontal line (see Figure 10.6). 

Table 10.3 Values of the α - smoothing coefficient and the smoothing formula with 

their values 

0,2 
coeff smoothing 1 

{=(1-$I$2)*C3+$I$2*D2} 

0,4 
coeff smoothing 2 

{=(1-$I$3)*C3+$I$3*E2} 

0,6 
coeff smoothing 3 

{=(1-$I$4)*C3+$I$4*F2} 

0,8 
coeff smoothing 4 

{=(1-$I$5)*3+$I$5*G2} 

1 
coeff smoothing 5 

{=(1-$I$6)*С3+$I$6*H2} 

 

Table 10.4 Initial data and results for the method of exponential smoothing by the 

formula (10.3) for the given smoothing coefficients 

Time  Period  Production 

costs  

The 

smoothed 

data 1 

The 

smoothed 

data 2 

The 

smoothed 

data 3 

The 

smoothed 

data 4 

The 
smoothed 
data 5 

February 2 1282,7 1282,7 1282,7 1282,7 1282,7 1282,7 

March 3 1224,8 1236,38 1247,96 1259,54 1271,12 1282,7 

April 4 1292,6 1281,356 1274,744 1272,764 1273,167 1282,7 

May 5 1667,3 1590,111 1510,278 1430,578 1336,556 1282,7 

June 6 1672,9 1656,342 1607,851 1527,507 1400,513 1282,7 

July 7 1667,5 1665,268 1643,64 1583,504 1453,464 1282,7 

August 8 2001,7 1934,414 1858,476 1750,783 1549,654 1282,7 

September 9 2352,5 2268,883 2154,89 1991,47 1693,5 1282,7 

October 10 2468,5 2428,577 2343,056 2182,282 1840,515 1282,7 



NOVEMBER 11 2012,2 2095,475 2144,542 2114,249 1891,507 1282,7 

December 12 1982,7 2005,255 2047,437 2061,629 1914,257 1282,7 

January 13 1901,1 1921,931 1959,635 1997,418 1915,792 1282,7 

February 14 1971,6 1961,666 1966,814 1987,091 1924,967 1282,7 

March 15 1989,1 1983,613 1980,186 1987,894 1936,696 1282,7 

April 16 2138,2 2107,283 2074,994 2048,017 1970,813 1282,7 

May 17 2475,2 2401,617 2315,118 2218,89 2056,974 1282,7 

June 18 2395,6 2396,803 2363,407 2289,574 2124,94 1282,7 

July 19 2994,1 2874,641 2741,823 2571,384 2274,88 1282,7 

 

 

Fig. 10.5 Sales volume charts: the initial (row 1) and smoothed (row 2, row2, row3, 

row4, row5, row6) by formula (10.3) 
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Fig. 10.6 A screenshot of the original data and exponential smoothing using formula 

(10.3) 

 

Holt's smoothing method. 

The method of smoothing Holt is based on adding a trend component to the data 

being smoothed. Calculated by the following formulas: 

 

𝑦�̂� = (1 − 𝛼)𝑦𝑖 + 𝛼(𝑦𝑖−1̂ + 𝑇𝑖−1);     𝑇𝑖 = (1 − 𝛽)(𝑦�̂� − 𝑦𝑖−1̂ ) + 𝛽𝑇𝑖−1,          (10.4) 

 

Where α and β are smoothing coefficients, taking values from 0 to 1. The value 𝑦1̂ 

is taken as 𝑦1, and the value calculated by the formula 

𝑇1 =
𝑦2 − 𝑦1 + 𝑦4 − 𝑦3

2
 

is taken as the value of 𝑇1. 

By Holt's method, it is possible to produce and predict for k periods ahead. 

Calculations are made by the formula: 

𝑦𝑛+�̂� = 𝑦�̂� + 𝑘𝑇𝑛                                                                                       (10.5) 

 

 

Table 10.5 Initial data and results for the Holt method according to the formula 

(10.4) 

Time  Period  Production 

costs  

The 

smoothed 

data  
Ti Alfa = 0,6 Beta= 0,4 

February 2 1282,7 1282,7 158,4  Ti{=(C3-C2+C5-4)/2}  
March 3 1224,8 1164,5 -7,56  Ti

sm{=(1-$I$1)*(D3-2)+$I$1*E2} 

April 4 1292,6 1220,276 30,4416     
May 5 1667,3 1380,821 108,5034     
June 6 1672,9 1432,55 74,43918     
July 7 1667,5 1481,867 59,36549     
August 8 2001,7 1654,181 127,1346     



September 9 2352,5 1857,228 172,682     
October 10 2468,5 1998,127 153,6126     
NOVEMBER 11 2012,2 1911,589 9,521932     
December 12 1982,7 1934,32 17,44755     
January 13 1901,1 1910,564 -7,27493     
February 14 1971,6 1939,343 14,35775     
March 15 1989,1 1950,631 12,51597     
April 16 2138,2 2018,149 45,51715     
May 17 2475,2 2173,659 111,5129     
June 18 2395,6 2195,528 57,72631     

 

 

Fig. 10.7 Sales volume graphs: the initial (row 1) and smoothed (row 2) sales 

volumes for the Holt method using formula (10.4) 

In Fig. 10.7 also shows approximations of the original and smoothed sales volume 

data by predicting functions. The coefficient of determination of the prediction 

function for smoothed data is much higher. 

Table 10.6.  The results of calculating the predicting of the volume of sales by the 

Holt method using formula (10.5) 

July 
19 2994,1 2480,321 193,9664 Ti{=(1-$I$1)*(D19-D18)+$I$1*E18} 

August 
20  2674,287  прогноз {=$D$19+(B20-$B$19)*$E$19}  

September 
21  2868,254      

October 
22  3062,22      
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Fig. 10.8 The screenshot of the initial data, the results of smoothing and the 

forecast for the Holt method using formula (10.4) and (10.5) 

 

10.2 PRACTICAL LESSON 10 and IWS 10 

Subject.  Smoothing data for the prediction task. 

Plan of the lesson. 

1) Study  the data smoothing schemes for the prediction task presented above. 

2) Practical lesson and task of the IWS. Apply the above described data smoothing 

schemes to your prediction task. 

3) Analyze the results. 

Literature. 

1. Minko A.A. Forecasting in business using Excel. M.: Eksmo, 2007, -208 p. 

 

 

 

 



TOPIC 11 

TREND FUNCTIONS IN PREDICTING TASKS 

 

11.1. Lecture material 

A trend is the general tendency of changing the initial data. In time-dependent 

prediction functions, there are usually two components: the trend component, 

which is the main dependency in the predicting function, and the seasonal 

component, which may be absent. In this topic, it is consider schemes for building 

the trend component of the prediction function. The main way to identify the trend 

is the method of constructing the regression function. As previously shown, the 

scheme for constructing the regression function is: 

- calculation of regression coefficients by the least squares method, which is 

performed in Excel by standard functions LINEST or LOGEST; 

- writing a formula for the chosen regression function using the regression 

coefficients obtained at the previous stage; 

- calculation of the necessary quality indicators of the constructed data model, for 

example, the adjusted determination coefficient, the mean absolute error or the 

average absolute error in percent; 

- analysis of the quality of the constructed data model. 

Below it is consider examples of constructing prediction functions that depend on 

one factor and prediction functions, depending on several factors. 

 

11.1.1 Prediction functions depending on one factor 

 

Polynomial prediction function. 

The polynomial forecast function from one factor in the general form has the form 

of an algebraic polynomial [1]: 

 

𝑌 = 𝑏0 + 𝑏1𝑋 + 𝑏2𝑋2 + ⋯ + 𝑏𝑚𝑋𝑚,                                                                            (11.1) 



   

 

Where the coefficients 𝑏0 , 𝑏1 , 𝑏2 , … , 𝑏𝑚are determined on the basis of the initial 

data Y and X. 

The following is an example of calculating quality metrics for a parabola and a cubic 

parabola for given source data: 

𝑌 = 𝑏0 + 𝑏1𝑡 + 𝑏2𝑡2, 

 

𝑌 = 𝑏0 + 𝑏1𝑡 + 𝑏2𝑡2 + 𝑏3𝑡3. 

 

Table 11.1 The initial data and the results of constructing regression functions for 

a parabola and a cubic parabola according to formula (11.1) 

Time Period Period in 

square 

Period in 

cube 

Production 

costs 

parabola cubic 
parabola 

January 1 1 1 1286,5 1232,35 1014,37 

February 2 4 8 1282,7 1322,12 1250,66 

March 3 9 27 1224,8 1409,84 1441,64 

April 4 16 54 1292,6 1495,51 1583,72 

May 5 25 125 1667,3 1579,12 1709,36 

June 6 36 216 1672,9 1660,68 1796,91 

July 7 49 343 1667,5 1740,18 1860,82 

August 8 64 512 2001,7 1817,63 1906,47 

September 9 81 729 2352,5 1893,03 1939,3 

October 10 100 1000 2468,5 1966,37 1964,72 

NOVEMBER 11 121 1331 2012,2 2037,66 1988,12 

December 12 144 1728 1982,7 2106,9 2014,93 

January 13 169 2197 1901,1 2174,08 2050,56 

February 14 195 2744 1971,6 2240,23 2128,48 

March 15 225 3375 1989,1 2302,28 2169,91 

April 16 256 4096 2138,2 2363,3 2264,46 

May 17 289 4913 2475,2 2422,27 2389,47 

June 18 324 5832 2395,6 2479,18 2550,36 

July 19 361 6859 2994,1 2534,04 2752,54 

 

Table 11.2. The calculated characteristics of the regression functions of a parabola 

and a cubic parabola 



Coeff of parabola Y=b0-b1*t+b2*t^2   

-1,026883 92,853778 1140,524   

2,2723591 46,76701 203,22234   

0,7273164 264,95083 #Н/Д   

21,338032 16 #Н/Д   

2995814,5 1123183 #Н/Д   

     

Determination coefficient of parabola  

0,7273164     

Adjusted Determination coefficient of parabola 

0,7112762 {=1-(19-1)*(1-I4)/(19-2)}  

Coefficients of cubic parabola  

 Y=b0+b1*t+b2*t^2+b3*t^3   

0,9019587 -28,06199 314,15832 727,3731  

0,4451412 13,503639 117,30559 275,9743  

0,7859135 242,46263 #Н/Д #Н/Д  

18,355042 15 #Н/Д #Н/Д  

3237175,6 881821,9 #Н/Д #Н/Д  

     

Determination coefficient for cubic parabola  

0,7859135     

Adjusted Determination coefficient for cubic parabola 

0,8897035 {=1-(19-1)*(1-I14)/(19-3)}  

 

Comparison of the adjusted coefficients of determination of the regression 

function of a parabola and a cubic parabola shows that the quality of the 

approximation of the initial data by a cubic parabola is higher than the parabola. 

This result can be visually observed by comparing the graphs of the original data 

and the constructed regression functions in Figure 11.1. 
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Fig. 11.1. The raw data graphs (row 1), the parabola regression function (row 2), 

and the cubic parabola regression function (row 3) 

 

Fig. 11.2. Screenshot of the quality assessment of two models of the polynomial 

forecasting function: a parabola and a cubic parabola 

 

Exponential predicting function. 

The exponential function of prediction from one factor is calculated by the formula 

[1]: 

𝑌 = 𝑏0 ∗ (𝑏1)𝑋                                                                                                             (11.2) 

To calculate the coefficients of the exponential function, we use the standard LGRF 

function. 

The following is an example of calculating the exponential forecasting performance 

indicators from a single factor for given source data: 

𝑌 = 𝑏0 ∗ (𝑏1)𝑡. 

 

Table 11.3. The initial data and the results of constructing the exponential 

regression function from one factor using formula (11.2) 



Time Period 
Sales 
volume 

exponential 
regression  Coefficients of function  

January 1 1286,5 1320,98  1,04 1270,29   
February 2 1282,7 1373,69  0,005 0,06267   
March 3 1224,8 1428,5  0,749 0,13122   
April 4 1292,6 1485,5  50,67 17   
May 5 1667,3 1544,78  0,873 0,29274   
June 6 1672,9 1606,42  {=LOGEST(C2:C20;B2:B20;;1)} 

July 7 1667,5 1670,52  Determination coefficient 

August 8 2001,7 1737,17  0,749    
September 9 2352,5 1806,49      
October 10 2468,5 1878,57      
NOVEMBER 11 2012,2 1953,53      
December 12 1982,7 2031,48      
January 13 1901,1 2112,54  {=$G$2*POWER($F$2;B14)} 

February 14 1971,6 2196,83      
March 15 1989,1 2284,49      
April 16 2138,2 2375,64      
May 17 2475,2 2470,44      
June 18 2395,6 2569,01      
July 19 2994,1 2671,52      

 

 

Fig. 11.3. The graphs of the initial data (row 1), the exponential regression function 

(row 2) of one factor according to the formula (11.2 
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Fig. 11.4. Screenshot of the construction and evaluation of the quality of the 

exponential regression function from one factor by the formula (11.2) 

 

11.1.2. Forecasting functions, depending on several factors. 

 Exponential regression. 

The exponential function of the regression from many factors in the general form 

is calculated by the following formula: 

 

𝑌 = 𝑏0 ∗ (𝑏1)𝑋1 ∗ (𝑏2)𝑋2 ∗ … ∗ (𝑏𝑚)𝑋𝑚,                                                                     (11.3) 

 

Where the coefficients 𝑏0, 𝑏1, 𝑏2, … , 𝑏𝑚are determined from the original data 

𝑋1, 𝑋2, … , 𝑋𝑚and Y. 

To calculate the coefficients of the exponential function of regression from many 

factors, the standard LGRFPRIBL function is used. 

The following is an example of calculating the exponential forecasting performance 

indicators from three factors for given source data: 

𝑌 = 𝑏0 ∗ (𝑏1)𝑡 ∗ (𝑏2)𝑋1 ∗ (𝑏3)𝑋2,                                                                 (11.4) 



Where t - time period, 𝑋1- production costs, 𝑋2- advertising costs. 

 

Table 11.4 The initial data and the construction of the trend of the exponential 

regression function from three factors according to the formula (11.4) 

Time Period Production costs Cost of 

advertising 

Sales 

volume 

Trend 

January 1 905,8 199,8 1282 1303,2 

February 2 902,5 211,5 1292,7 1346,58 

March 3 903 206,6 1226,8 1375,57 

April 4 889,8 225,7 1392,6 1585,13 

May 5 889,8 219 1647,3 1636,04 

June 6 892,8 236,7 1672,9 1540,28 

July 7 888,3 231,3 1660,5 1678,17 

August 8 875,8 241,1 2011,7 1956,56 

September 9 883,9 238,1 2351,9 1807,64 

October 10 875,1 248,1 2468,5 2010,12 

NOVEMBER 11 871,6 256,9 2746,2 2095,7 

December 12 873,8 251,9 1942,7 2095,67 

January 13 868,2 273,1 1901,1 2183,13 

February 14 866,3 264,5 1971,6 2317,85 

March 15 862,1 267,1 1989,1 2471,69 

April 16 866,6 282,9 2139,2 2292,83 

May 17 862,5 287,5 2474,2 2431,14 

June 18 863,9 286,3 2393,6 2435,33 

July 19 858,5 285,3 2990,1 2657,8 

 

The calculation of the trend of the exponential forecasting function from three 

factors: Y = b0 * (b1) ^ t * (b2) ^ X1 * (b3) ^ X2 is performed in Excel using the 

formula: 

= $ K $ 3 * $ J $ 3 ^ B2 * $ I $ 3 ^ C2 * $ H $ 3 ^ D2. 

Table 11.5. The results of calculating the characteristics of the exponential 

regression function from three factors using formula (11.4) 

Regression Y=b0*(b1)^t*(b2)^X1*(b3)^X2 

0,997792 0,987413 1,016948 191595799 

0,00664 0,009145 0,035555 8,7102376 

0,725445 0,150918 #Н/Д #Н/Д 

13,21128 15 #Н/Д #Н/Д 

0,902716 0,341646 #Н/Д #Н/Д 



    
Determination coefficient  
0,725445    

 

 

Fig. 11.5. The graphs of the initial data (row 1), the exponential regression function 

from the three factors (row 2) by the formula (11.4) 

 

Fig. 11.6 Screenshot of the construction and evaluation of the quality of the 

exponential function of the regression from three factors by the formula (11.4) 
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exponential, logarithmic, polynomial, power functions allow you to build trend 

lines, determine the coefficient of determination, make a prediction for a specified 

number of periods forward (backward). Often it is necessary to build the 

forecasting function using the standard LINEST and LOGEST functions, calculating 

the coefficients and statistical characteristics of the approximating regressions. 

This scheme is used in the examples discussed above. 

 

11.2 PRACTICAL LESSON 11 and IWS 11 

Subject. Highlighting the trend function for the prediction task. 

Plan of the lesson. 

1) Study the trend allocation scheme for the prediction task presented above. 

2) Practical lesson and task of the IWS. Apply the above described schemes to the 

selection of the trend function for its prediction task. 

3) Analyze the results. 

Literature. 

1. Minko A.A. Predicting in business using Excel. M.: Eksmo, 2007, -208 p. 

 

 

 

 

 

 

 

 

 

 

 



TOPIC 12 

SEASONAL COMPONENT IN PREDICTION FUNCTIONS 

 

12.1. Lecture material. 

The seasonal component in the prediction functions determines periodic changes 

in the values of the prediction function. The type (model) of interaction between 

the trend component and the seasonal component of the prediction function can 

be additive or multiplicative. In the additive model of the prediction function, 

seasonal changes are added to the trend, i.e. F (t) = T (t) + S (t), where T and S 

denote, respectively, the trend and seasonal components of the function f, and in 

the multiplicative model, the trend and seasonal variations are multiplied; F (t) = T 

(t) * S (t). 

The scheme for allocating the seasonal component from the initial data and 

including it in the prediction function has the following stages: 

1) Based on the input data, the trend of the predicted variable (trend of the 

prediction function) is constructed T. The previous chapter shows how this is done. 

This is usually done by constructing a regression function. 

2) Seasonal components 𝑠𝑖are calculated for each regression data point using the 

formulas: 

- for the additive model 𝑠𝑖 = 𝑦𝑖 − 𝑇𝑖, where i = 1, ..., n; 

- for the multiplicative model 𝑠𝑖 = 𝑦𝑖/𝑇𝑖, where i = 1, ..., n, 

Where 𝑦𝑖are the observed values of the predicted variable at the i-th data point; 

𝑇𝑖- the value of the trend of the predicted variable in the i-th data point; Total 

points of input data n. 

3) The seasonal components 𝑠1, 𝑠2, … , 𝑠𝑛 are divided into groups according to k 

seasons, for example, 12 months of the year; For each season there is an average 

𝑆�̅� 

4) The seasonal coefficients 𝑆1, 𝑆2 , … , 𝑆𝑘are calculated: 

- for the additive model 𝑆𝑖 = 𝑆�̅� − 𝑚, 𝑖 = 1 … 𝑘̅̅ ̅̅ ̅̅ ̅, where m is the correction factor 

for computing each seasonal coefficient: 𝑚 =
1

𝑘
(𝑆1̅ + 𝑆2̅ + ⋯ + 𝑆𝑘

̅̅ ̅) 



- for the multiplicative model 𝑆𝑖 = 𝑆�̅� ∗ 𝑚, 𝑖 = 1 … 𝑘̅̅ ̅̅ ̅̅ ̅,, where m is the correction 

factor for computing each seasonal coefficient: 𝑚 =
𝑘

𝑆1̅̅ ̅+𝑆2̅̅ ̅+⋯+𝑆𝑘̅̅̅̅
. 

5) The prediction function with seasonal coefficients is calculated: 

- for the additive model 𝑓𝑖 = 𝑇𝑖 + 𝑆𝑝;; 

- for the multiplicative model 𝑓𝑖 = 𝑇𝑖 ∗ 𝑆𝑝. 

Where 𝑆𝑝is the seasonal coefficient for the p-th season, which includes 𝑇𝑖-the trend 

function at the i-th data point, 

6) The residuals (prediction errors) are calculated 𝑒𝑖 = 𝑦𝑖 − 𝑓𝑖. 

7) The remainder of the constructed data model is analyzed and the model quality 

indicators are computed. 

If the residue analysis and the quality indicators of the constructed model are 

satisfactory, i.e. the constructed model is adequate to the initial data, then a 

prediction is made for the constructed model. If analysis of the residuals shows 

unsatisfactory results, then a change in the trend function approximating the initial 

data is necessary. 

8) Calculation of the prediction. If it is necessary to predict the depended variable 

at time𝑡𝑛+𝑗, then the value of the prediction function 𝑓𝑛+𝑗is calculated using the 

formulas: 

- for the additive model 𝑓𝑛+𝑗 = 𝑇𝑛+𝑗 + 𝑆𝑝, 

- for the multiplicative model 𝑓𝑛+𝑗 = 𝑇𝑛+𝑗 ∗ 𝑆𝑝. 

As can be seen from the formulas, in order to make a prediction, it is necessary to 

calculate the value of the trend 𝑇𝑛+𝑗at the time of the forecast. The trend value of 

the prediction function 𝑇𝑛+𝑗at time 𝑡𝑛+𝑗  in the case when the predicted variable 

depends only on time is not difficult: it is calculated by the regression formula of 

this prediction function for the required time moment. 

The situation is more complicated if the prediction function depends on several 

factors. In this case, to calculate the predicted values of the trend prediction 

function, it is necessary to know (calculate) the predicted values of all factors. In 

this case, it is need first calculate the predicted values of the factors, and then 

calculate the predicted values of the function. That is, to predict the values of 



factors, it is need follow the same steps as for the prediction function. For this it is 

necessary for each factor to construct a function of regression by another factor, 

usually in this capacity the time factor is taken. And the regression function for this 

factor is to calculate the predicted values of this factor at the necessary instants of 

time. 

  

Below is an example of constructing a prediction function, taking into account the 

allocation and use of the seasonal component in the prediction function. 

1) Based on the input data, the trend of the predicted variable (trend of the 

prediction function) is constructed T. In the example, this is done by constructing 

the regression function. In the example, the regression equation is taken 

 𝑌 = 𝑏0 + 𝑏1𝑡 + 𝑏2𝑡2 + 𝑏3𝑋1 + 𝑏4𝑋2, where t - time, 𝑋1- production costs, 𝑋2- 

advertising costs. 

 

Table 12.1 Initial data and constructed regression function. 

Period Period 

in 

square 

Production 

costs 

Advertising 

costs 

Sales 

volume 

Regression 

function 

1 1 890,8 200,8 1286,5 1329,349 

2 4 896,4 210,5 1282,7 1294,721 
3 9 903 208,6 1224,8 1397,418 

4 16 888,8 226,7 1292,6 1446 
5 25 889,8 230,62 1667,3 1521,13 

6 36 890,8 238,7 1672,9 1537,63 
7 49 888,3 232,3 1667,5 1774,925 

8 64 885,8 240,1 2001,7 1822,27 

9 81 883,9 238,1 2352,5 1987,469 
10 100 875,1 248,1 2468,5 2061,72 

11 121 877,73 253,58 2012,2 2074,541 
12 144 873,8 261,05 1982,7 2123,879 

13 169 878,2 275,1 1901,1 1998,154 
14 196 866,3 265,5 1971,6 2343,438 

15 225 865,1 266,1 1989,1 2442,189 

16 256 876,6 282,6 2138,2 2199,5 



17 289 862,5 286,5 2475,2 2377,942 
18 324 865,9 286,3 2395,6 2427,682 

19 361 857,5 284,3 2994,1 2616,842 

 

Calculation of regression coefficients by the standard LINEST function. 

The regression equation is Y = b0 + b1 * t + b2 * t ^ 2 + b3 * X1 + b4 * X2 

-13,0796 -10,1777 -2,10969 155,5671 12868,56 

 

2) Seasonal components 𝑠𝑖are calculated for each regression data point using the 

formulas: 

- for the additive model 𝑠𝑖 = 𝑦𝑖 − 𝑇𝑖, where i = 1, ..., n; 

Where 𝑦𝑖are the observed values of the predicted variable in the i-th data point, 

𝑇𝑖is the trend value of the predicted variable in the i-th data point. 

3) The seasonal components 𝑠1, 𝑠2, … , 𝑠𝑛are divided into groups according to k 

seasons; for each season there is an average 𝑆�̅�. 

4) The seasonal coefficients 𝑆1, 𝑆2 , … , 𝑆𝑘are calculated: 

- for the additive model 𝑆𝑖 = 𝑆�̅� − 𝑚, 𝑖 = 1 … 𝑘̅̅ ̅̅ ̅̅ ̅,, where m is the correction factor 

for computing each seasonal coefficient: 𝑚 =
1

𝑘
(𝑆1̅ + 𝑆2̅ + ⋯ + 𝑆𝑘

̅̅ ̅) 

For the example in question, Table 12.2 shows the values of the calculated seasonal 

components, the mean seasonal component, seasonal coefficients. 

Table 12.2 Calculation of seasonal components, mean seasonal component, 

seasonal coefficients 

Sales 

volume  

Regression 

function  

Residuals  Average 

season  

Seasonal 

coefficient 

1286,5 1329,349 -42,8493 -69,9517 -101,107 
1282,7 1294,721 -12,0205 -191,929 -223,084 

1224,8 1397,418 -172,618 -312,853 -344,008 
1292,6 1446 -153,4 -107,35 -138,505 

1667,3 1521,13 146,1696 121,7136 90,55862 

1672,9 1537,63 135,2696 51,59384 20,43882 
1667,5 1774,925 -107,425 134,9165 103,7615 



2001,7 1822,27 179,4298 179,4298 148,2747 
2352,5 1987,469 365,0307 365,0307 333,8757 

2468,5 2061,72 406,7796 406,7796 375,6246 
2012,2 2074,541 -62,3407 -62,3407 -93,4957 

1982,7 2123,879 -141,179 -141,179 -172,334 

1901,1 1998,154 -97,0541 -97,0541  
1971,6 2343,438 -371,838 -371,838  
1989,1 2442,189 -453,089 -453,089  
2138,2 2199,5 -61,2998 -61,2998  
2475,2 2377,942 97,25768 97,25768  
2395,6 2427,682 -32,082 -32,082  
2994,1 2616,842 377,2578 377,2578  

 

Excel formulas for computed columns (on the first line, column names and line 

numbering, see Figure 12.1): 

The regression function is = $ R $ 2 + $ Q $ 2 * A2 + $ P $ 2 * B2 + $ O $ 2 * C2 + $ 

N $ 2 * D2; 

Residuals of regression function = E2-F2; 

Mean 𝑆�̅�  - = AVERAGE (G2; OFFSET (G2; 12; 0)); 

The seasonal coefficients 𝑆𝑖 - = H2-AVERAGE ($ H $ 2: $ H $ 13). 

5) The forecasting function with seasonal coefficients is calculated: 

- for the additive model 𝑓𝑖 = 𝑇𝑖 + 𝑆𝑝, 

Where 𝑆𝑝  is the seasonal coefficient for the p-th season, which includes 𝑇𝑖  - the 

trend function at the i-th data point. 

For the example in question, Table 12.3 shows the values of the prediction function. 

Table 12.3 Construction of the prediction function as the sum of the trend and the 

calculated seasonal coefficients 

Sales 

volume 

Regression 

function 

Remaining 

regression 

function 

Average 

season 

Seasonal 
coefficient 

Prediction 
function 

1286,5 1329,349 -42,8493 -69,9517 -101,107 1228,243 

1282,7 1294,721 -12,0205 -191,929 -223,084 1071,636 



1224,8 1397,418 -172,618 -312,853 -344,008 1053,409 

1292,6 1446 -153,4 -107,35 -138,505 1307,495 

1667,3 1521,13 146,1696 121,7136 90,55862 1611,689 

1672,9 1537,63 135,2696 51,59384 20,43882 1558,069 

1667,5 1774,925 -107,425 134,9165 103,7615 1878,686 

2001,7 1822,27 179,4298 179,4298 148,2747 1970,545 

2352,5 1987,469 365,0307 365,0307 333,8757 2321,345 

2468,5 2061,72 406,7796 406,7796 375,6246 2437,345 

2012,2 2074,541 -62,3407 -62,3407 -93,4957 1981,045 

1982,7 2123,879 -141,179 -141,179 -172,334 1951,545 

1901,1 1998,154 -97,0541 -97,0541  1897,047 

1971,6 2343,438 -371,838 -371,838  2120,354 

1989,1 2442,189 -453,089 -453,089  2098,181 

2138,2 2199,5 -61,2998 -61,2998  2060,995 

2475,2 2377,942 97,25768 97,25768  2468,501 

2395,6 2427,682 -32,082 -32,082  2448,121 

2994,1 2616,842 377,2578 377,2578  2720,604 

 

The Excel formula for the prediction function (on the first line, column names and 

line numbering, see Figure 12.1):    = F2 + I2. 

6) Calculation of residuals (prediction errors) 𝑒𝑖 = 𝑦𝑖 − 𝑓𝑖. 

For the example in question, Table 12.4 shows the values of the prediction residuals 

(errors). 

Table 12.4 Calculations of residuals (prediction errors). 

Sales 

volum

e 

Regressio

n function 

Remainin

g 

regressio

n function 

Average 

season 

Seasonal 
coefficien
t 

Predictio
n 
function 

The 
predictio
n 
residuals 
(errors) 

1286,5 1329,349 -42,8493 -69,9517 -101,107 1228,243 58,25742 
1282,7 1294,721 -12,0205 -191,929 -223,084 1071,636 211,0636 

1224,8 1397,418 -172,618 -312,853 -344,008 1053,409 171,3909 
1292,6 1446 -153,4 -107,35 -138,505 1307,495 -14,8951 

1667,3 1521,13 146,1696 
121,713
6 90,55862 1611,689 55,61099 

1672,9 1537,63 135,2696 
51,5938
4 20,43882 1558,069 114,8308 



1667,5 1774,925 -107,425 
134,916
5 103,7615 1878,686 -211,186 

2001,7 1822,27 179,4298 
179,429
8 148,2747 1970,545 31,15502 

2352,5 1987,469 365,0307 
365,030
7 333,8757 2321,345 31,15502 

2468,5 2061,72 406,7796 
406,779
6 375,6246 2437,345 31,15502 

2012,2 2074,541 -62,3407 -62,3407 -93,4957 1981,045 31,15502 
1982,7 2123,879 -141,179 -141,179 -172,334 1951,545 31,15502 

1901,1 1998,154 -97,0541 -97,0541  1897,047 4,052622 
1971,6 2343,438 -371,838 -371,838  2120,354 -148,754 

1989,1 2442,189 -453,089 -453,089  2098,181 -109,081 

2138,2 2199,5 -61,2998 -61,2998  2060,995 77,20515 

2475,2 2377,942 97,25768 
97,2576
8  2468,501 6,699056 

2395,6 2427,682 -32,082 -32,082  2448,121 -52,5208 

2994,1 2616,842 377,2578 
377,257
8  2720,604 273,4963 

 

The Excel formula for calculating the remainders of the prediction function (for the 

first line, column names and line numbers, see Figure 12.1): = E2-J2. 

7) Analysis of the constructed data model for quality indicators. 

Table 12.5. Calculation of the quality indicators of the constructed data model 

Seasonal 
coefficient 

Prediction 
function 

the 
prediction 
residuals 
(errors) 

 b4 b3 b2 b1 b0 

-101,107 1228,243 58,25742  -13,0796 -10,1777 -2,10969 155,5671 12868,56 

-223,084 1071,636 211,0636 Regression equation   Y=b0+b1*t+b2*t^2+b3*X1+b4*X2 

-344,008 1053,409 171,3909       

-138,505 1307,495 -14,8951       

90,55862 1611,689 55,61099 Determination coeff regression equation      

20,43882 1558,069 114,8308  0,764315     

103,7615 1878,686 -211,186       

148,2747 1970,545 31,15502 Determination coeff of prediction function  

333,8757 2321,345 31,15502  0,936665     

375,6246 2437,345 31,15502       

-93,4957 1981,045 31,15502       

-172,334 1951,545 31,15502       



 1897,047 4,052622       

 2120,354 -148,754       

 2098,181 -109,081       

 2060,995 77,20515       

 2468,501 6,699056       

 2448,121 -52,5208       

 2720,604 273,4963       

 

Excel formula for calculating the coefficient of determination of the regression 

function (see column 12.1 for column names and line numbering): 

= 1- (SUMSQ (G2: G20) / SUMSQ (E2: E20-AVERAGE (E2: E20))). 

The Excel formula for calculating the determination coefficient of the prediction 

function (column names and line numbering, see Figure 12.1): = 1- (SUMSQ (K2: 

K20) / SUMSQ (E2: E20-AVERAGE (E2: E20))). 

The value of the coefficient of determination of the prediction function is 0.936665, 

which is much better than the value of the coefficient of determination of the 

regression function 0, 764315, which indicates that the quality of the model with 

seasonal component is more qualitative than the model without taking it into 

account. 

 

Fig. 12.1 A screenshot of the construction of the prediction function taking into 

account the seasonal component. 



 

8) Calculation of the prediction. 

The example uses the regression equation 

𝑌 = 𝑏0 + 𝑏1𝑡 + 𝑏2𝑡2 + 𝑏3𝑋1 + 𝑏4𝑋2,, where t - time, 𝑋1- production costs, 𝑋2- 

advertising costs. 

Since the prediction function depends on several factors, to calculate the predict 

from the predicted variable, it is necessary to make a prediction for all factors of 

the regression equation. The prediction by time and square of time is not difficult. 

It is necessary to construct regression functions for 𝑋1- production costs, 𝑋2 - 

advertising costs. 

The prediction of values of the factor "production costs" is presented below. 

Table 12.6. Input and prediction for the "production cost" factor 

Period  Production 

costs  

Prediction 

period  

Prediction 

of 

production 

costs 
 

1 890,8 20 859,064  
2 896,4 21 856,9897  
3 903 22 854,9154  
4 888,8 23 852,8411  
5 889,8    
6 890,8    
7 888,3    
8 885,8    
9 883,9    
10 875,1    
11 877,73    
12 873,8    
13 878,2    
14 866,3    
15 865,1    
16 876,6    
17 862,5    
18 865,9    



19 857,5    
 

 

Fig. 12.2. Graph of the regression function with the prediction for the "production 

cost" factor 

 

Fig. 12.3. Screenshot of the prediction for the factor "production costs" 

 

Below is a prediction of the values of the factor "advertising costs" 

Table 12.6. Baseline data and prediction for the "advertising costs" factor 

y = -2,0743x + 900,55
R² = 0,8681

820

830

840

850

860

870

880

890

900

910

1 3 5 7 9 11 13 15 17 19 21 23

Production costs

production costs

Линейная (production 
costs)



Period  Advertising 

costs  

Prediction 

period  

Prediction 

of 

advertising 

costs 
 

1 200,8 20 296,762  
2 210,5 21 301,5146  
3 208,6 22 306,2672  
4 226,7 23 311,0198  
5 230,62    
6 238,7    
7 232,3    
8 240,1    
9 238,1    
10 248,1    
11 253,58    
12 261,05    
13 275,1    
14 265,5    
15 266,1    
16 282,6    
17 286,5    
18 286,3    
19 284,3    

 

 

Fig. 12.4. Graph of the regression function with the prediction for the "advertising 

costs" factor 

y = 4,7526x + 201,71
R² = 0,9579
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Fig. 12.5. Screenshot of the prediction for the factor "advertising costs" 

The prediction for the prediction variable (sales volume) is presented below. 

Table 12.6. Initial data and prediction for the prediction function for time periods 

20-23 

Пе

рио

д 

Произв
одстве
нные 
затраты 

Затраты 
на 
реклам
у 

Объем 
прода
ж 

Функция 
регресси
и 

Остаток 
функции 
регрессии 

Среднее  
сезона Si 

Сезонны
е коэф 

Функция 
прогноз 

1 
890,8 200,8 1286,5 1329,349 -42,8493 -69,9517 -101,107 1228,243 

2 
896,4 210,5 1282,7 1294,721 -12,0205 -191,929 -223,084 1071,636 

3 
903 208,6 1224,8 1397,418 -172,618 -312,853 -344,008 1053,409 

4 
888,8 226,7 1292,6 1446 -153,4 -107,35 -138,505 1307,495 

5 
889,8 230,62 1667,3 1521,13 146,1696 121,7136 90,55862 1611,689 

6 
890,8 238,7 1672,9 1537,63 135,2696 51,59384 20,43882 1558,069 

7 
888,3 232,3 1667,5 1774,925 -107,425 134,9165 103,7615 1878,686 

8 
885,8 240,1 2001,7 1822,27 179,4298 179,4298 148,2747 1970,545 

9 
883,9 238,1 2352,5 1987,469 365,0307 365,0307 333,8757 2321,345 

10 
875,1 248,1 2468,5 2061,72 406,7796 406,7796 375,6246 2437,345 



11 
877,73 253,58 2012,2 2074,541 -62,3407 -62,3407 -93,4957 1981,045 

12 
873,8 261,05 1982,7 2123,879 -141,179 -141,179 -172,334 1951,545 

13 
878,2 275,1 1901,1 1998,154 -97,0541 -97,0541  1897,047 

14 
866,3 265,5 1971,6 2343,438 -371,838 -371,838  2120,354 

15 
865,1 266,1 1989,1 2442,189 -453,089 -453,089  2098,181 

16 
876,6 282,6 2138,2 2199,5 -61,2998 -61,2998  2060,995 

17 
862,5 286,5 2475,2 2377,942 97,25768 97,25768  2468,501 

18 
865,9 286,3 2395,6 2427,682 -32,082 -32,082  2448,121 

19 
857,5 284,3 2994,1 2616,842 377,2578 377,2578  2720,604 

20 
859,064 296,762   2511,216    2659,491 

21 
856,989 301,514   2539,235    2873,111 

22 
854,915 306,267   2563,035    2938,66 

23 
852,841 311,019   2582,616    2489,12 

 

 

Fig. 12.6. The prediction graphic for the prediction function, the seasonal 

coefficients graphic, the prediction function error graphic. 
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Subject. Segregation of the seasonal component of the data model for the 

prediction task. 

Plan of the lesson. 

5) Study the scheme for allocating the seasonal component of the data model for 

the prediction problem presented above. 

6) Task of the IWS. Apply the above chart of the seasonal component of the data 

model for its prediction task. 

7) Analyze the results. 

Literature. 

Minko A.A. Predicting in business using Excel. M.: Eksmo, 2007, -208 p. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



TOPIC 13 

DECISION TREES 

13.1. Lecture material 

The work of decision trees is based on the process of recursive partitioning of the 

initial set of observations or objects into subsets associated with classes defined 

by the selected attributes of objects on each cycle of the recursive partition.  

The partition is performed using the decision rules, in which the values of the 

attributes are checked according to the specified condition. Let's consider the 

main idea of algorithms for constructing decision trees using the example. 

The scheme for using decision trees is as follows. Let's consider the scheme of 

construction and use of decision trees on the standard example of issuing a loan 

to the client [1]. 

The database on which to base the forecasting, for example, contains the following 

initial data on the bank's customers that are attributes of this database: 

- age, 

- availability of real estate, 

- education, 

- the average monthly income, 

- return a loan by the client on time. 

The task is to predict, based on the data listed above (except of the  last attribute), it 

is worth whether giving out a loan to a new client. 

The task is solved in two stages: 

- construction of a classification model (training stage); 

- use of the constructed model for making decisions on new clients. 

At the stage of building the classification model, a classification tree is constructed 

or a set of classification rules is created. 

At the stage of using the model, the built decision tree, namely, the path from its root 

to one of the vertices, which is a set of rules for a particular client, is used to answer 

the question «Whether to issue the loan? " 

The rule is a logical construction, represented in the form 

"If: <condition> then: <operator>". 

Let's assume for this example there are statistics presented in Table 13.1. 

Table 13.1. Customer input data 



 Age  property 

availabili

ty  

education  average monthly 

income  

loan 

repaymen

t 

1 40(age>30) yes Higher 

education 

high yes 

2 50(age >30) yes Higher 

education 

high yes 

3 65(age >60) no specialized 

secondary 

average no 

4 32(age >30) yes Higher 

education 

average yes 

5 25(age ≤30) no secondary 

education 

low no 

6 20(age ≤30) no secondary 

education 

low no 

7 28(age ≤30) yes secondary 

education 

average yes 

 

In Fig. 13.1. an example of a classification tree, which solves the problem of       

"Whether to issue the loan?". 

 

 

 

 

 

 

 

 

 

 

 

Fig.13.1. A variant of the decision tree for the task of "issuing a loan to a client" (1-

issuing a loan, 0-not issuing). 
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As can be seen from the decision tree of this example, the internal nodes of the tree 

(age, availability of real estate, income and education) are attributes of the database 

described above. These attributes are called splitting attributes. The final nodes of a 

tree, or sheets, are called class labels, which are the values of the dependent 

categorical variable "to give out" or "not to issue" a loan. 

At each internal node, it is necessary to specify a validation condition (splitting 

predicate) that would split the set associated with this node into subsets. For this 

check, one of the database attributes must be selected, except for the dependent 

variable. This question of selecting the attribute of splitting is the main point in 

the automated construction of the decision tree. 

The general rule for selecting an attribute can be formulated as follows: the selected 

attribute must split the set so that the resulting subsets consist of objects 

belonging to the same class or are as close to it as possible, i. e. the number of 

objects from other classes ("impurities") in each of these sets was as small as 

possible. 

A number of methods for constructing decision trees have been developed, 

including: Classification and regression trees (CART) method, C4.5 method [1]. 

 

Algorithm C4.5 uses the concept of information gain or entropy reduction to 

select the optimal splitting (split) in each node of the decision tree. Because the 

decrease in entropy leads to an increase in information and vice versa. 

 Let us first consider the concept of entropy. Suppose that there is a variable X 

whose  k values have probabilities 𝑝1,  𝑝2, . . . , 𝑝𝑘. How much information is needed 

to transmit a stream of symbols representing the values of the observed X? The 

answer to this question is the entropy X and is defined as 

 

𝐻(𝑋) = − ∑ 𝑝𝑗𝑙𝑜𝑔2(𝑝𝑗)𝑗 . 

 

Algorithm C4.5 uses the concept of entropy as follows. 

Suppose that there is a splitting attribute s that divides the learning set of data T into 

several subsets, T1, T2, ... , Tk. The average amount of information on these subsets 



can be calculated as the weighted sum of the entropies of the individual subsets, as 

follows: 

𝐻𝑠(𝑇, 𝐷) = ∑ 𝑃𝑖
𝑠
𝑖=1 𝐻𝑠(𝑇𝑖 , 𝑑), 

 

Where Pi represents the fraction of records in the subset i, Hs(T,D)is the entropy of 

the splitting of the data set T by the splitting attribute S with the dependent variable 

D, 𝐻𝑠(𝑇𝑖 , 𝐷)- is the entropy of the splitting subset 𝑇𝑖from the splitting attribute S 

with the dependent variable D, 𝑠 is the number of values of the splitting attribute S 

(determines the number of subsets (classes) of splitting). 

Then, information gain or entropy reduction can be determined by splitting the initial 

set T into subsets of the splitting attribute s as: 

  

Gain(T,S) = H(T,D)-Hs(T,D),  

 

Where H (T, D) is the entropy of the initial data set T by the attribute of the D-

dependent variable. 

𝐻(𝑇, 𝐷) = ∑ 𝑃𝑖
𝑑
𝑖=1 𝐻(𝑇𝑖 , 𝐷), 

Where d is the number of values of the attribute D-dependent variable. 

Thus, the information is incremented by dividing the initial training data set T in 

accordance with the splitting attribute S. At each node, C4.5 selects the optimal 

splitting, which has the highest gain of information Gain (T, S). 

We calculate the entropy and increment of information by the definition of the 

optimal attribute for an example. 

We calculate the entropy of the initial data set H (T). 

H (T, Credit) = −
4

7
𝑙𝑜𝑔2

4

7
−

3

7
𝑙𝑜𝑔2

3

7
≈ 0,9852 . Here, Credit is a dependent 

variable. 

 

We calculate the increments of information for various attributes. 

The increase in information on the splitting attribute "Income": 



𝐺𝑎𝑖𝑛 (𝑇, Income ) =  𝐻(𝑇, Credit) −
2

7
𝐻(𝑇𝑖𝑛𝑐𝑜𝑚𝑒=ℎ𝑖𝑔ℎ , Credit) − 

3

7
𝐻(𝑇𝑖𝑛𝑐𝑜𝑚𝑒=𝑎𝑣𝑒𝑟𝑎𝑔𝑒 , Credit) −

2

7
𝐻(𝑇𝑖𝑛𝑐𝑜𝑚𝑒=𝑙𝑜𝑤 , Credit)

≈ 0,9852 −
2

7
(−

2

2
𝑙𝑜𝑔2

2

2
−

0

2
𝑙𝑜𝑔2

0

2
) −

3

7
(−

2

3
𝑙𝑜𝑔2

2

3
−

1

3
𝑙𝑜𝑔2

1

3
)

−
2

7
(−

0

2
𝑙𝑜𝑔2

0

2
−

2

2
𝑙𝑜𝑔2

2

2
) ≈ 0,9181 

 

The increase in information on the splitting attribute "Age": 

𝐺𝑎𝑖𝑛 (𝑇, age ) =  𝐻(𝑇, Credit) −
3

7
𝐻(𝑇𝑎𝑔𝑒>30, Credit) − 

1

7
𝐻(𝑇𝑎𝑔𝑒>60, Credit) −

3

7
𝐻(𝑇𝑎𝑔𝑒≤30, Credit)

≈ 0,9852 −
3

7
(−

3

3
𝑙𝑜𝑔2

3

3
−

0

3
𝑙𝑜𝑔2

0

3
) −

1

7
(−

0

1
𝑙𝑜𝑔2

0

1
−

1

1
𝑙𝑜𝑔2

1

1
)

−
3

7
(−

1

3
𝑙𝑜𝑔2

1

3
−

2

3
𝑙𝑜𝑔2

2

3
) ≈ 0,9181 

 

Increase in information on the attribute of splitting " Property ": 

𝐺𝑎𝑖𝑛 (𝑇, property ) =  𝐻(𝑇, Кредит) −
4

7
𝐻(𝑇𝑝𝑟𝑜𝑝𝑒𝑟𝑡𝑦=𝑦𝑒𝑠, Кредит) 

−
3

7
𝐻(𝑇𝑝𝑟𝑜𝑝𝑒𝑟𝑡𝑦=𝑛𝑜, Кредит) ≈ 0,9852 −

4

7
(−

4

4
𝑙𝑜𝑔2

4

4
−

0

4
𝑙𝑜𝑔2

0

4
) 

−
3

7
(−

0

3
𝑙𝑜𝑔2

0

3
−

3

3
𝑙𝑜𝑔2

3

3
) ≈ 0,9852 

 

The increase in information on the splitting attribute "Education": 

𝐺𝑎𝑖𝑛 (𝑇, education ) =  𝐻(𝑇, Credit) −
3

7
𝐻(𝑇𝑒𝑑𝑢𝑐𝑎𝑡𝑖𝑜𝑛=ℎ𝑖𝑔ℎ , Credit) − 

1

7
𝐻(𝑇𝑒𝑑𝑢𝑐𝑎𝑡𝑖𝑜𝑛=𝑠𝑝𝑒𝑐 𝑠𝑒𝑐𝑜𝑛𝑑𝑎𝑟𝑦 , Credit) −

3

7
𝐻(𝑇𝑒𝑑𝑢𝑐𝑎𝑡𝑖𝑜𝑛=𝑠𝑒𝑐𝑜𝑛𝑑𝑎𝑟𝑦 , Credit)

≈ 0,9852 −
3

7
(−

3

3
𝑙𝑜𝑔2

3

3
−

0

3
𝑙𝑜𝑔2

0

3
) −

1

7
(−

0

1
𝑙𝑜𝑔2

0

1
−

1

1
𝑙𝑜𝑔2

1

1
)

−
3

7
(−

1

3
𝑙𝑜𝑔2

1

3
−

2

3
𝑙𝑜𝑔2

2

3
) ≈ 0,9181 

 

Thus, calculations of the information gain show that the optimal at the first level is 

the verification of the attribute "Property”. 



Thus, the calculation of the information gain shows that the optimal at the first level 

is the verification of the attribute "Property”, in which the gain of information Gain 

(T, property) = 0.9852. With this in mind, the decision tree of this example will look 

like Figure 13.2. 

 

 

 

 

 

                                                                

 

 

 

Fig. 13.2 Optimal solution tree for example 

 

Select the data set for the right branch from the source data set (Table 13.2.). This is 

necessary for the recursive application of the algorithm for constructing a decision 

tree to determine the splitting attribute for the next level. To do this, the set of 

possible attributes includes: age, education, income. The attribute "property" is used 

for splitting on the first level. 

Table 13.2 Data set for selecting the second splitting attribute. 

 

 Age  property 

availabili

ty  

education  average monthly 

income  

loan 

repaymen

t 

1 40(age>30) yes Higher 

education 

high yes 

2 50(age >30) yes Higher 

education 

high yes 

4 32(age >30) yes Higher 

education 

average yes 

7 28(age ≤30) yes secondary 

education 

average yes 

 

We calculate the entropy of the initial data set H (T) for the next level of splitting. 

     no 

Bad credit risk. Posts 

3,5,6 

Good credit risk. 

Records 1,2,4,7 

Property? 

yes 



H(T,Credit)=−
4

4
𝑙𝑜𝑔2

4

4
−

0

4
𝑙𝑜𝑔2

0

4
≈ 0  

Since the entropy of a given set for the next level is zero, this means that the process 

of building the decision tree for this example is complete. The resulting decision tree 

for the given source data set of the statistics of the example is optimal (Figure 13.2). 

However, one should bear in mind that the original sample may not cover all possible 

cases in reality, so the final decision on the structure of the decision tree remains 

with the user. 

Below is represented the solution of the above example using data mining tool 

Rapidminer. 

In the Fig.13.3 screenshot of source data for the standard example of issuing 

a loan to the client  is presented. 

In the Fig.13.4 screenshot of the developing process structure for the standard 

example of issuing a loan to the client is presented. Input and output points of process 

operators (mod = Model, unl = Unlabelled data, lab = Labelled data, exa = Example 

set, ori = Original data). 

In the Fig.13.5-13.8. screenshot of set role operator parameters  for the 

standard example of issuing a loan to the client are presented. 

Parameters of the operator “Set role” [2]: 

1) The parameter ‘attribute_name’,  which role should be changed. The name 

can be selected from the dropdown menu or manual typed. 

Range of the parameter ‘attribute_name’: 

- target_role; 

- set of additional role. 

The target role of the selected Attribute is the new role assigned to it. As 

possible target roles are used: 

- regular: attributes without a special role. Regular Attributes are used as input 

variables for learning tasks; 

- label: this is a special role; an attribute with the label role acts as a target 

Attribute for learning Operators; the label is also often called 'target variable' or 

'class'; 

- prediction: this is a special role; an Attribute with the prediction role is the 

result of an application of a learning model.  

More detail description of the parameters is in the Rapidminer Manual [2]. 

And in the Fig.13.9. screenshot of results for the standard example of issuing 

a loan to the client is presented. 

 

 



 

Fig.13.3. Screenshot of source data for the standard example of issuing a loan to the 

client 

 

Fig.13.4. Screenshot of the developing process structure for the standard example of 

issuing a loan to the client.  

 



 

Fig.13.5. Screenshot of set role operator parameters (target attribute “loan 

repayment”) for the standard example of issuing a loan to the client 

 

 

Fig.13.6. Screenshot of set role operator parameters (regular attribute “age”) for the 

standard example of issuing a loan to the client 

 



 

Fig.13.7. Screenshot of set role operator parameters (regular attribute “average 

monthly income”) for the standard example of issuing a loan to the client 

 

 

Fig.13.7. Screenshot of set role operator parameters (regular attribute “education”) 

for the standard example of issuing a loan to the client 

 



 

Fig.13.8. Screenshot of set role operator parameters (regular attribute “property 

availability”) for the standard example of issuing a loan to the client 

 

 

Fig.13.9. Screenshot of results for the standard example of issuing a loan to the client 

 

 

13.2 PRACTICAL LESSON 13 and IWS13 



Subject. The construction and use of decision trees for the classification problem. 

  Plan of the lesson. 

1) Study the scheme for constructing and using decision trees for the classification 

problem, presented above. 

2) The task of the IWS. Apply the above scheme of constructing and using the 

decision tree for your classification problem. 

3) Analyze the results. 

Literature 

1. Larose D.T. Discovering knowledge in data - an introduction to data mining. 

Wiley-Interscience, Hoboken, New Jersey, 2005 

2. Rapidminer Studio, manual. https://docs.rapidminer.com/latest/studio/ 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



TOPIC 14 

CLUSTERING 

 

14.1. Lecture material 

Clustering refers to the grouping of observation records into classes of similar 

objects.  

A cluster is a collection of records that are similar to each other, and are not 

similar to records in other clusters.  

Clustering differs from classification in that there is no target variable for 

clustering. The clustering task does not attempt to classify, evaluate, or predict the 

value of the target variable. Instead, clustering algorithms tend to segment the 

entire data set into relatively homogeneous subgroups or clusters, where the 

similarity of records in a cluster is maximized, and the similarity of records 

outside this cluster is minimized [1]. 

Examples of clustering tasks in business and research include the following: 

• Targeted marketing of niche products for small businesses that does not have a 

large marketing budget. 

  • For the purpose of accounting audit, for the segmentation of financial behavior in 

benign and suspicious categories. 

  • As a measurement tool to reduce, when a data set has hundreds of attributes. 

Clustering is often performed as a preliminary step in the data mining process, with 

clusters being used as additional inputs to other downstream techniques, such as 

neural networks. 

 

14.1.1 Similarity of measures. 

Cluster analysis is confronted with many of the same issues that are dealt with in the 

classification problem. For example, the following issues should be addressed: 

- How to measure the similarity? 

- How to standardize or normalize numeric variables? 

One measure of the similarity of records is the Euclidean distance between records: 



𝑑𝐸𝑢𝑐𝑙𝑖𝑑𝑒𝑎𝑛(𝑥, 𝑦) = √∑(𝑥𝑖 − 𝑦𝑖)2

𝑖

 

 

Where х = x1, x2, ..., хт, and у = y1, y2, ..., ут represent the m attribute values of the 

two records. 

  Of course, there are many other indicators, such as the distance of Manhattan: 

 

𝑑𝑀𝑎𝑛ℎ𝑎𝑡𝑡𝑒𝑛(𝑥, 𝑦) = ∑|𝑥𝑖 − 𝑦𝑖|

𝑖

 

 

The Minkowski distance is the general case of the above metrics for the total 

exponent r: 

𝑑𝑀𝑖𝑛𝑘𝑜𝑤𝑠𝑘𝑖(𝑥, 𝑦) = √∑|𝑥𝑖 − 𝑦𝑖|𝑟

𝑖

𝑟
 

A particular case of the Minkowski distance is the Manhattan distance corresponding 

to r = 1. For r = 2, the usual Euclidean distance is obtained. 

 

14.1.2. Transformation of data. 

Variables, as a rule, have ranges that differ significantly from each other. Therefore, 

for data analysis programs, it is necessary to normalize numerical variables, 

standardize the scale of the effect of each variable on the results. There are several 

methods for normalization, two of the most common methods: min-max 

normalization and Z-score standardization. Let X refer to the initial value of the field 

and X * refers to the normalized value of the field. 

The Min-Max normalization method scales by the difference in range: 

 𝑋∗ =
𝑋−min (𝑋)

𝑟𝑎𝑛𝑔𝑒(𝑋)
=

𝑋−min (𝑋)

max(𝑋)−min (𝑥)
, 

Where X is the value of the normalized field, min (X) is the minimum value of the 

normalized field,      max (X) is the maximum value of the normalized field. 



For example, consider the variable "time to 60" from the car data set, which 

determines the time (in seconds) how much each car spends to reach 60 km per hour. 

Let's calculate the min-max normalization for three cars (Car1, Car2, Car3), having 

"time to 60" 8, 15 and 25 seconds respectively. 

Then for Car1 the normalized value of the field "time to 60" will be equal to: 

𝑋∗ =
𝑋 − min (𝑋)

max(𝑋) − min (𝑥)
=

8 − 8

25 − 8
= 0 

For Car2, the normalized field value "time to 60" will be: 

𝑋∗ =
𝑋 − min (𝑋)

max(𝑋) − min (𝑥)
=

15 − 8

25 − 8
= 0,41 

For Car3, the normalized field value "time to 60" will be: 

𝑋∗ =
𝑋−min (𝑋)

max(𝑋)−min (𝑥)
=

25−8

25−8
= 1. 

 

  Thus, min-max values of normalization will fluctuate from zero to one if new data 

values do not occur that lie outside the original range. 

 

Z-score standardization is very widespread in the world of statistical analysis, it 

works as a difference between the field value and the mean value of the field and the 

scaling of this difference by the standard deviation (SD) values of the field. I.e, 

𝑋∗ =
𝑋−mean (𝑋)

𝑆𝐷(𝑋)
. 

Then for Car1 the normalized value of the field "time to 60" will be equal to: 

𝑋∗ =
𝑋 − mean (𝑋)

𝑆𝐷(𝑋)
=

8 − 15

2,9
= −2,4 

For Car2, the normalized field value "time to 60" will be: 

𝑋∗ =
𝑋 − mean (𝑋)

𝑆𝐷(𝑋)
=

15 − 15

2,9
= 0 

For Car3, the normalized field value "time to 60" will be: 

𝑋∗ =
𝑋−mean (𝑋)

𝑆𝐷(𝑋)
=

25−15

2,9
= 3,4. 



Summarizing, the standardization values of the Z-count are generally in the range of 

-4 to 4, with an average value having Z-account of zero standardization. 

 

14.1.3 Clustering algorithms. Hierarchical cluster method. 

In this method, a hierarchical agglomerate algorithm is realized, which consists 

in uniting smaller clusters into larger clusters.  

Before starting clustering, all objects are considered separate clusters.  

In the course of the algorithm, clusters are combined. First, select a pair of nearby 

clusters, which are combined into one cluster. As a result, the number of clusters 

becomes N-1.  

The procedure is repeated until all the classes are combined. At any stage, the 

union can be interrupted by obtaining the required number of clusters.  

The closeness of clusters is determined by the distance between them. 

You can use several criteria to determine the distance between clusters A and B: 

- The "nearest neighbor" method, based on the minimum distance between any 

record of cluster A and any record of cluster B. 

- The method of " distant neighbor", based on the maximum distance between 

any record of cluster A and any record of cluster B. Moreover, cluster clusters 

that are smaller in size are the priority for the association. 

- The method of "the least mean connection between the records of cluster A and 

records of cluster B". 

 

The "nearest neighbor" method. 

For example, take a one-dimensional data set [1]: 

1    4    9   15   16   18   25   32   32   44 

It is assumed that each element is a separate cluster. The process of combining 

clusters and constructing a hierarchy of clusters for an example is shown in Fig. 14.1. 

Consider the sequence of algorithm steps for this example. 

Step 1. Since singleton clusters are considered, the minimum distance between any 

record of cluster A and any record of cluster B will be searched between the 



elements. These are clusters with 32,32 elements, the distance between them is 

0. 

Step 2. The search of variants of clusters shows that clusters with elements 15,16 

with a distance equal to 1 should unite. 

Step 3. At this step it is necessary to combine the cluster (15,16) with the cluster 

(18) with the distance equal to 2. 

Step 4. At this step, clusters (1) and (4) are combined with a distance of 3. 

Step 5. Clusters (1,4) and (9) are united with a minimum distance of 5 between 

elements 4 and 9. 

Step 6. Clusters (1,4,9) and (15,16,18) are united with a minimum distance equal to 

6 between cluster element 9 (1,4,9) and cluster element 15 (15,16,18). 

Step 7. Clusters (1,4,9, 15,16,18) and (25) are combined with a minimum distance 

of 7 between the cluster element 18 (1,4,9,15,16,18) and the cluster element 25 (25 

). 

Step 8. Clusters (1,4,9, 15,16,18, 25) and (32,32) are united with a minimum distance 

of 7 between cluster element 25 (1,4,9,15,16,18,25) And cluster element 32 (32,32). 

Step 9. Clusters (1,4,9, 15,16,18,25,32,32) and (44) are combined with a minimum 

distance of 12 between the cluster element 32 (1,4,9,15,16,18, 25,32,32) and the 

cluster element 44 (44). 

At each step, the variants are sorted and there is a variant of combining clusters with 

the minimum distance. 

 

steps 1 4 9 15 16 18 25 32 32 44 

1        32,32  d=0  

2    15,16    d=1      

3    15,16,18   

d=2(16,18) 

    

4 1,4      d=3       

5 1,4,9       d=5(4,9)        

6 1,4,9, 15,16,18   d=6(9,15)     

7 1,4,9, 15,16,18,25   d=7(18,25)    

8 1,4,9, 15,16,18,25,32,32   d=7(25,32)  

9 1,4,9, 15,16,18,25,32,32,44   d=12(32,44) 

Fig. 14.1. Steps for clustering the data set using the "nearest neighbor" method. 



 

 

The method of "distant neighbor". 

For example, the "distant neighbor" method is shown in Fig. 14.2. 

The difference in the distant neighbor algorithm for this example begins with 

step 4, where the distance is taken as the maximum between the elements. The 

situation is similar in step 5. 

The structural difference in the hierarchy begins with step 6, where, unlike the 

previous method, other clusters are combined. 

шаги 1 4 9 15 16 18 25 32 32 44 

1        32,32  d=0  

2    15,16    d=1      

3 1,4      d=3       

4   15,16,18   

d=3(15,18) 

    

5 1,4,9       d=8(1,9)        

6  25,32,32    

d=7(25,32) 

 

7 1,4,9, 15,16,18   d=17(1,18)  

8       25,32,32,44    d=19(25,44) 

9 1,4,9, 15,16,18,25,32,32,44   d=43(1,44) 

Fig. 14.2. Steps for clustering a data set using the far-neighbor method. 

 

The method of the least mean connection between the records of cluster A and 

records of cluster B. 

"The method of the least mean connection between records of cluster A and records 

of cluster B" is shown for example in Fig. 14.3. As you can see from the comparison 

of the clustering patterns in three methods, the result of the clustering of the "least 

mean communication method between the records of cluster A and records of cluster 

B" coincides with the result of the "distant neighbor" method. 

steps 1 4 9 15 16 18 25 32 32 44 

1        32,32  d=0  

2    15,16    d=1      

3 1,4      d=3       



4   15,16,18   

d=2,5(15,18=3;16,18=2) 

    

5 1,4,9       

d=6,5(1,9=8;4,9=5) 

       

6  25,32,32    d=7  

7 1,4,9, 15,16,18   d=11,66  

8       25,32,32,44    d=14,33 

9 1,4,9, 15,16,18,25,32,32,44   d=23.91 

Fig. 14.3. Steps for clustering a data set using the method of least average 

communication between cluster records. 

 

14.1.4 Algorithms for clustering. Method K-means (k-means). 

The k-means method is a simple and effective algorithm for building data clusters. 

The algorithm includes the following steps [1]: 

1) The user sets the number of clusters to which the original data set should be 

divided. 

2) Randomly assign records as cluster centers. 

3) For each record is the closest cluster to it. 

4) For each cluster there is a centroid of the cluster and the center of each cluster 

changes according to the centroid value. 

5) Steps 3-5 are repeated until there is a minimum of the sums of the quadratic 

deviation of cluster points from the center of the cluster or centroid of the 

clusters will cease to change. 

The criterion of "closeness" in step 3 usually uses the Euclidean distance 

𝑑𝐸𝑢𝑐𝑙𝑖𝑑𝑒𝑎𝑛(𝑥, 𝑦) = √∑ (𝑥𝑖 − 𝑦𝑖)2
𝑖 . 

The cluster centroid in step 4 is as follows. Suppose that there are n data points 

(a1,b1,c1), (a2,b2,c2),…, (an,bn,cn). The centroid of these points is at the point 

(∑ 𝑎𝑖 𝑛,⁄  ∑ 𝑏𝑖 𝑛,⁄  ∑ 𝑐𝑖 𝑛,⁄ ). If the centroids of the clusters cease to change, the 

algorithm terminates. The completion of the algorithm can also be determined by 

minimizing the sums of quadratic deviation of cluster points (sum of squared errors-

SSE) from the center of the cluster: 

𝑆𝑆𝐸 = ∑ ∑ 𝑑(𝑝, 𝑚𝑖)2
𝑝∈𝐶𝑖

𝑘
𝑖=1 , 



Where 𝑝 ∈ 𝐶𝑖is the point 𝐶𝑖of the cluster, 𝑚𝑖is the centroid of the cluster, 𝑑(𝑝, 𝑚𝑖)is 

the deviation (error) of the points from the center of the cluster. 

Also, to assess the rationality of clustering, the ratio of the variations between 

clusters and the sums of the quadratic deviation of cluster points is used: 

𝑑(𝑚1,𝑚2)

𝑆𝑆𝐸
. 

This indicator is growing for a more rational version of clustering. 

Example. Let there be given 5 points of a two-dimensional space: 

a b c d e 

(1,3) (3,3) (4,3) (5,3) (1,2) 

The number of clusters is set to -2. 

The centroid for cluster C1 will be (1,2), and the centroid for cluster C2 will be (5,3). 

This is usually determined randomly. 

Table 14.1. Calculation of the distance of Euclid for example. 

 m1 m2 Cluster 

A 1 4 C1 

B 2.24 2 C2 

C 3.16 1 C2 

D 4.12 0 C2 

E 0 4.12 C1 

Cluster C1 includes (a, e), and cluster C2 includes (b, c, d). 

Calculating the sums of the quadratic deviation of cluster points (sum of squared 

errors-SSE) from the center of the cluster for an example: 

𝑆𝑆𝐸 = ∑ ∑ 𝑑(𝑝, 𝑚𝑖)2
𝑝∈𝐶𝑖

𝑘
𝑖=1  = 12 + 22 + 12 + 02 + 02 = 6. 

Calculating the ratio: 

𝑑(𝑚1,𝑚2)

𝑆𝑆𝐸
=

4,12

6
= 0,68. 

In the next iteration, new values of cluster centroids are determined. 

For cluster C1, the centroid value is: (
1+1

2
,

3+2

2
) = (1; 2.5) 

For cluster C2, the centroid value is: (
3+4+5

3
,

3+3+3

3
) = (4; 3). 



Now, for the new values of cluster centroids, the distances from the center of the 

clusters for each point are calculated. 

Table 14.2. The calculation of the Euclidean distance for an example is the second 

iteration 

 m1 m2 Claster 

a 0.5 3 C1 

b 2.06 2 C2 

c 3.04 1 C2 

d 4.03 1 C2 

e 0.5 3.16 C1 

Calculating the sums of the squared deviation of cluster points (sum of squared 

errors-SSE) from the cluster center for the second iteration: 

𝑆𝑆𝐸 = ∑ ∑ 𝑑(𝑝, 𝑚𝑖)2
𝑝∈𝐶𝑖

𝑘
𝑖=1  = 0.52 + 22 + 12 + 12 + 0.52 = 6.5 

Calculating the ratio: 

𝑑(𝑚1,𝑚2)

𝑆𝑆𝐸
=

3,04

6.5
= 0,46. 

As SSE increases, and the evaluation of the rationality of clustering decreases, the 

previous version is considered the most rational. 

Below is presented an example of solving the above problem using the Rapidminer 

software tool [2]. 

In the Fig. 14.1 the screenshot of source data for the a one-dimensional data set is 

presented. 

In the Fig. 14.2 the screenshot of process structure of clustering task by k-means 

method is presented. 

In the Fig. 14.3 the screenshot of clustering task results by k-means method is 

presented. 

 

 



 

Fig. 14.1. Screenshot of source data for the a one-dimensional data set 

 

 

Fig. 14.2. Screenshot of process structure of clustering task by k-means method 

 

 

 



 

 

Fig. 14.3. Screenshot of clustering task results by k-means method 

 

 

14.2 PRACTICAL LESSON 14 and IWS 14 

Subject. Building and using clustering methods. 

 Plan of the lesson. 

1) Study the scheme for constructing and using the clustering methods presented 

above. 

2) The task of the IWS. Apply the above scheme of building and using clustering 

methods for your clustering task. 

3) Analyze the results. 

Literature. 

1. Larose D.T. Discovering knowledge in data - an introduction to data mining. 

Wiley-Interscience, Hoboken, New Jersey, 2005 

2. Rapidminer Studio, manual. https://docs.rapidminer.com/latest/studio 

 



TOPIC 15 

ASSOCIATION RULES 

 

15.1. The lecture material 

 

The purpose of the search for association rules is to find patterns between related 

events in databases. For the first time, the association rule mining problem was 

proposed to find typical shopping patterns made in supermarkets, so sometimes it is 

also called market basket analysis. Very often buyers buy more than one product. In 

most cases, there is a relationship between these goods. A market basket is a set of 

goods purchased by a buyer within the framework of a single transaction. 

Transactions are quite typical operations, for example, they can describe the results 

of visits to the store buyer. A transaction is a set of events that occurred 

simultaneously. Each such transaction is a set of goods purchased by the buyer for 

one visit. By registering all business transactions during the whole period of their 

activity, trading companies accumulate transaction collections, formed as 

transaction database. 

Transaction database is a two-dimensional table, which consists of the transaction 

number (TID) and the list of purchases purchased by the buyer during this 

transaction. Each transaction corresponds to the purchase of an individual buyer. An 

example of such a table is shown in Table 15.1. 

Table 15.1. Transaction database example 

 

 

 

 

 

 

Let D be the set of transactions presented in Table 15.1, where each transaction T in 

D represents a set of elements contained in a variety of possible goods,  the set 

denoted as I (bread, milk, tea, sugar, cheese, sour cream, sausage, butter). Suppose 

that there are a certain set of elements A (for example, bread and milk) and another 

set of objects B (for example, tea). Then the association rule takes the form, if A, 

then B (i.e,), where antecedent A and consequent B are the proper subsets of I. 

For example, trivial rules such as: “bread and milk, and then tea”. 

TID The list of purchases 

001 

002 

003 

004 

005 

006 

Bread, milk, tea, sugar 

Milk, cheese, sour cream 

Milk, bread, cheese, tea 

Sausage, cheese, bread, sugar 

Bread, tea, milk, sour cream 

Sugar, tea, butter  
 



As a result of this type of analysis, one can establish a regularity of the following 

kind: "If a set of goods (or a set of elements) A has been encountered in the 

transaction, then one can do the conclusion that in the same transaction a set of 

elements B should appear. Establishment such regularities enable us to find very 

simple and understandable rules, called associative. 

The method of associative rules uses two parameters that characterize this method: 

support and confidence of the rule.  Support for a specific association rule is the 

proportion of transactions in D which contain both A and B. That is, 

 

Support = 
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑟𝑎𝑛𝑠𝑎𝑐𝑡𝑖𝑜𝑛𝑠 𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑖𝑛𝑔 𝑏𝑜𝑡ℎ 𝐴 𝑎𝑛𝑑 𝐵

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑟𝑎𝑛𝑠𝑎𝑐𝑡𝑖𝑜𝑛𝑠
 . 

 

The confidence of the association rule is a measure of the accuracy of the rule, 

the percentage of transactions containing A that also contain B. 

 

Confidence = 
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑟𝑎𝑛𝑠𝑎𝑐𝑡𝑖𝑜𝑛𝑠 𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑖𝑛𝑔𝑏𝑜𝑡ℎ 𝐴 𝑎𝑛𝑑 𝐵

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑟𝑎𝑛𝑠𝑎𝑐𝑡𝑖𝑜𝑛𝑠 𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑖𝑛𝑔 𝐴
  . 

 

A set of elements is a set of elements contained in I, and k-itemset is a set of elements 

containing k elements. For example, {bread, milk} is a set of 2 items, and {sugar, 

tea, butter} is a 3-set of items, each of the set I. The frequency of the elements of a 

set is simply the number of transactions that contain a particular set of elements. A 

frequent set of items is a set of elements that arises at least a certain minimum 

number of times, with a set frequency ≥φ. For example, suppose that we set φ = 4. 

Then the sets that occur more than four times are called often. We denote the set of 

frequent sets of k-objects as Fk. 

The mining of association rules from large databases is a two-step process [1]: 

1. Find all frequent itemsets; that is, find all itemsets with frequency ≥φ. 

2. From the frequent itemsets, generate association rules satisfying the minimum 

support and confidence conditions. 

The a priori algorithm takes advantage of the a priori property to shrink the search 

space. The a priori property states that if an itemset Z is not frequent, then adding 

another item A to the itemset Z will not make Z more frequent. That is, if Z is not 

frequent, will not be frequent. In fact, no superset of Z (itemset containing Z) will 

be frequent. This helpful property reduces significantly the search space for the a 

priori algorithm. 

 



Below is an example of mining associative rules using the Rapidminer program for 

the data presented in Table 15.1 (Fig. 15.1-15.6) [2]. 

In the Fig. 15.1 is presented screenshot of source data with items in separate 

columns. In the Fig. 15.2-15.4 is presented screenshot of process structure with 

define of characteristics of process operators. 

In Rapidminer there are possibility to write a list of items in one column. For above 

example we prepare source data as list of items in one column, rename items by 

short name (Table 15.2). 

Table 15.2. Transaction database example with a list of items in one column 

 

In the Fig. 15.5 is presented screenshot of source data with list items in one column. 

In the Fig. 15.6 is presented screenshot of process structure with define of 

characteristics of process operators FP- growth with list items in one column. 

In the Fig. 15.7 is presented screenshot of frequent items of association rules with 

items on separate columns. 

In the Fig. 15.8 is presented screenshot of association rules with items on separate 

columns. 

In the Fig. 15.9 is presented screenshot of frequent items of association rules with 

list items in one column. 

In the Fig. 15.10 is presented screenshot of association rules with list items in one 

column. 

TID The list of purchases The list of purchases  in one 

column 

001 

002 

003 

004 

005 

006 

Bread, milk, tea, sugar 

Milk, cheese, sour cream 

Milk, bread, cheese, tea 

Sausage, cheese, bread, sugar 

Bread, tea, milk, sour cream 

Sugar, tea, butter  
 

a|b|c|g 

b|d|f  

b|a|d|c 

e|d|a|g 

a|c|b|f 

g|c|h 



 

Fig. 15.1. Screenshot of source data with items in separate columns 

 

 

Fig. 15.2. Screenshot of process structure of association rules defining 

 



 

Fig. 15.3. Screenshot of process structure with define of characteristics of process 

operators FP- growth with items on separate columns 

 

 

Fig. 15.4. Screenshot of process structure with define of characteristics of process 

operator “Create associative rules”  with items on separate columns 

 

 



 

Fig. 15.5. Screenshot of source data with list items in one column 

 

 

 

Fig. 15.6. Screenshot of process structure with define of characteristics of process 

operators FP- growth with list items in one column 



 

Fig. 15.7. Screenshot of frequent items of association rules with items on separate 

columns 

 

Fig. 15.8. Screenshot of association rules with items on separate columns 

 



 

Fig. 15.9. Screenshot of frequent items of association rules with list items in one 

column 

 

 

Fig. 15.10. Screenshot of association rules with list items in one column 

 

 

 



15.2 PRACTICAL LESSON 15 and IWS 15 

Subject. Building and using association rules methods. 

 Plan of the lesson. 

1) Study the scheme for constructing and using the association rules methods 

presented above. 

2) The task of the IWS. Apply the above scheme of building and using association 

rules methods for your clustering task. 

3) Analyze the results. 

Literature. 

1. Larose D.T. Discovering knowledge in data - an introduction to data mining. 

Wiley-Interscience, Hoboken, New Jersey, 2005 

2. Rapidminer Studio, manual. https://docs.rapidminer.com/latest/studio 

 

 

 

 

 

 

 


