Al-Farabi Kazakh National University International Science and Technology Center The Institute of Combustion Problems National Nanotechnology Laboratory of Open Type # X International Symposium The Physics and Chemistry of Carbon and Nanoenergetic Materials September 12-14, 2018 ALMATY, KAZAKHSTAN # «THE PHYSICS AND CHEMISTRY OF CARBON AND NANOENERGETIC MATERIALS» Х халықаралық симпозиумы # «ФИЗИКА ЖӘНЕ ХИМИЯ КӨМІРТЕКТІ ЖӘНЕ НАНОЭНЕРГЕТИКАЛЫҚ МАТЕРИАЛДАР» Х Международный Симпозиум # «ФИЗИКА И ХИМИЯ УГЛЕРОДНЫХ И НАНОЭНЕРГЕТИЧЕСКИХ МАТЕРИАЛОВ» | на основе титаната стронция Бакболат Б., Даулбаев Ч. Б., Султанов Ф.Р., Кутербеков К.А., Бекмырза К. 43. Применение плазмотрона с наноуглеродным покрытием электродов в плазменно-топливных системах В.Е. Мессерле, А.Б. Устименко, В.Г. Лукьященко, К.А. Умбеткалиев В.Е. Мессерле, А.Б. Устименко, В.Г. Лукьященко, К.А. Умбеткалиев 44. Влияние деформации углеродных цепей на их реактивную способность: псевдощелевая модель К.М.Мукимов, Б.Л.Оксетендлер, Л.Акопян, Ф.Искандарова 45. Apllication of diatomite for energy storage devices Turganbay А.В., Zhaparova А., Nazhipkyzy М., Lesbayev В.Т., Mansurov Z.А. 46. Nickel hydroxide modified activated rice husk for supercapacitor electrode material Seidl C., Yeleuov M., Temirgaliyeva T., Smagulova G.T., Lesbayev B., Prikhodko N.G., Mansurov Z.A. 47. Electroducing smart-textile Mansurov N.B., Smagulova G.T. 48. Testing composite material based on nano-particulate magnetite and carbonized rice husk for CO ₂ sorption Zhumagaliyeva A., Gargiulo V., Doszhanov Ye., Alfe M. 49. Изучение характеристики горения газогенераторных составов на основе нитрата натрия Турсынбек С., Байсейтов Д.А., Тулепов М.И., Казаков Ю.В., Абдракова Ф.Ю., Мансуров З.А. 171 50. Creation of coatings based on hydrophobic soot Hamidreza Pourghazian Esfahani, Alireza Pourghazian Esfahani, Gulim G. Kurmanbayeva, Assel N. Zhaksylykova, Aigerim R. Seitkazinova, Meruyert Nazhipkyzy, Zulkhair A. Mansurov 175 181. Влияние углеродных нанотрубок на упруго-прочностные свойства углепластика А. М. Ермаханова, М. Б. Исмаилов, Нелюб В.А. | 42. Получения нано-размерных волокон для фотокаталитических покрытий | | |--|--|-----| | 43. Применение плазмотрона с наноуглеродным покрытием электродов в153плазменно-топливных системах153В.Е. Мессерле, А.Б. Устименко, В.Г. Лукьященко, К.А. Умбеткалиев15344. Влияние деформации углеродных цепей на их реактивную способность: псевдощелевая модель К.М.Мукимов, Б.Л.Оксегендлер, Л.Акопян, Ф.Искандарова15745. Apllication of diatomite for energy storage devices160Turganbay A.B., Zhaparova A., Nazhipkyzy M., Lesbayev B.T., Mansurov Z.A.16046. Nickel hydroxide modified activated rice husk for supercapacitor electrode material163Seidl C., Yeleuov M., Temirgaliyeva T., Smagulova G.T., Lesbayev B., Prikhodko N.G., Mansurov Z.A.16347. Electroducing smart-textile165Mansurov N.B., Smagulova G.T.16548. Testing composite material based on nano-particulate magnetite and carbonized rice husk for CO2 sorption168Zhumagaliyeva A., Gargiulo V., Doszhanov Ye., Alfe M.16849. Изучение характеристики горения газогенераторных составов на основе нитрата натрия179Турсынбек С., Байсейтов Д.А., Тулепов М.И., Казаков Ю.В., Абдракова Ф.Ю., Мансуров З.А.17150. Creation of coatings based on hydrophobic soot171Натийгеzа Роигghazian Esfahani, Alireza Pourghazian Esfahani, Gulim G. Kurmanbayeva,17551. Влияние углеродных нанотрубок на упруго-прочностные свойства углепластика175 | на основе титаната стронция | | | плазменно-топливных системах В.Е. Мессерле, А.Б. Устименко, В.Г. Лукьященко, К.А. Умбеткалиев 44. Влияние деформации углеродных цепей на их реактивную способность: псевдощелевая модель К.М.Мукимов, Б.Л.Оксегендлер, Л.Акопян, Ф.Искандарова 45. Apllication of diatomite for energy storage devices Turganbay A.B., Zhaparova A., Nazhipkyzy M., Lesbayev B.T., Mansurov Z.A. 46. Nickel hydroxide modified activated rice husk for supercapacitor electrode material Seidl C., Yeleuov M., Temirgaliyeva T., Smagulova G.T., Lesbayev B., Prikhodko N.G., Mansurov Z.A. 47. Electroducing smart-textile Mansurov N.B., Smagulova G.T. 48. Testing composite material based on nano-particulate magnetite and carbonized rice husk for CO ₂ sorption Zhumagaliyeva A., Gargiulo V., Doszhanov Ye., Alfe M. 49. Изучение характеристики горения газогенераторных составов на основе нитрата натрия Турсынбек С., Байсейтов Д.А., Тулепов М.И., Казаков Ю.В., Абдракова Ф.Ю., Мансуров З.А. 171 50. Creation of coatings based on hydrophobic soot Hamidreza Роигghazian Esfahani, Alireza Pourghazian Esfahani, Gulim G. Kurmanbayeva, Assel N. Zhaksylykova, Aigerim R. Seitkazinova, Meruyert Nazhipkyzy, Zulkhair A. Mansurov 175 51. Влияние углеродных нанотрубок на упруго-прочностные свойства углепластика | Бакболат Б., Даулбаев Ч. Б., Султанов Ф.Р., Кутербеков К.А., Бекмырза К. | 150 | | В.Е. Мессерле, А.Б. Устименко, В.Г. Лукьященко, К.А. Умбеткалиев15344. Влияние деформации углеродных цепей на их реактивную способность: псевдощелевая модель
К.М.Мукимов, Б.Л.Оксегендлер, Л.Акопян, Ф.Искандарова15745. Apllication of diatomite for energy storage devices
Turganbay A.B., Zhaparova A., Nazhipkyzy M., Lesbayev B.T., Mansurov Z.A.16046. Nickel hydroxide modified activated rice husk for supercapacitor electrode material
Seidl C., Yeleuov M., Temirgaliyeva T., Smagulova G.T., Lesbayev B., Prikhodko N.G., Mansurov Z.A.16347. Electroducing smart-textile
Mansurov N.B., Smagulova G.T.16548. Testing composite material based on nano-particulate magnetite and carbonized rice husk for CO2 sorption
Zhumagaliyeva A., Gargiulo V., Doszhanov Ye., Alfe M.16849. Изучение характеристики горения газогенераторных составов на основе нитрата натрия
Турсынбек С., Байсейтов Д.А., Тулепов М.И., Казаков Ю.В., Абдракова Ф.Ю., Мансуров З.А.17150. Creation of coatings based on hydrophobic soot
Натийгеza Роurghazian Esfahani, Alireza Pourghazian Esfahani, Gulim G. Kurmanbayeva,
Assel N. Zhaksylykova, Aigerim R. Seitkazinova, Meruyert Nazhipkyzy, Zulkhair A. Mansurov17551. Влияние углеродных нанотрубок на упруго-прочностные свойства углепластика | 43. Применение плазмотрона с наноуглеродным покрытием электродов в | | | 44. Влияние деформации углеродных цепей на их реактивную способность: псевдощелевая модель К.М.Мукимов, Б.Л.Оксегендлер, Л.Акопян, Ф.Искандарова 157 45. Apllication of diatomite for energy storage devices Turganbay A.B., Zhaparova A., Nazhipkyzy M., Lesbayev B.T., Mansurov Z.A. 160 46. Nickel hydroxide modified activated rice husk for supercapacitor electrode material Seidl C., Yeleuov M., Temirgaliyeva T., Smagulova G.T., Lesbayev B., Prikhodko N.G., Mansurov Z.A. 163 47. Electroducing smart-textile Mansurov N.B., Smagulova G.T. 165 48. Testing composite material based on nano-particulate magnetite and carbonized rice husk for CO2 sorption Zhumagaliyeva A., Gargiulo V., Doszhanov Ye., Alfe M. 168 49. Изучение характеристики горения газогенераторных составов на основе нитрата натрия Турсынбек С., Байсейтов Д.А., Тулепов М.И., Казаков Ю.В., Абдракова Ф.Ю., Мансуров З.А. 171 50. Creation of coatings based on hydrophobic soot Hamidreza Pourghazian Esfahani, Alireza Pourghazian Esfahani, Gulim G. Kurmanbayeva, Assel N. Zhaksylykova, Aigerim R. Seitkazinova, Meruyert Nazhipkyzy, Zulkhair A. Mansurov 175 51. Влияние углеродных нанотрубок на упруго-прочностные свойства углепластика | плазменно-топливных системах | | | К.М.Мукимов, Б.Л.Оксегендлер, Л.Акопян, Ф.Искандарова15745. Apllication of diatomite for energy storage devices160Turganbay A.B., Zhaparova A., Nazhipkyzy M., Lesbayev B.T., Mansurov Z.A.16046. Nickel hydroxide modified activated rice husk for supercapacitor electrode material163Seidl C., Yeleuov M., Temirgaliyeva T., Smagulova G.T., Lesbayev B., Prikhodko N.G., Mansurov Z.A.16347. Electroducing smart-textile165Mansurov N.B., Smagulova G.T.16548. Testing composite material based on nano-particulate magnetite and carbonized rice husk for CO2 sorption16849. Изучение характеристики горения газогенераторных составов на основе нитрата натрия16849. Изучение характеристики горения газогенераторных составов на основе нитрата натрия17150. Creation of coatings based on hydrophobic soot171Натийгеza Рошгghazian Esfahani, Alireza Pourghazian Esfahani, Gulim G. Kurmanbayeva,175Азsel N. Zhaksylykova, Aigerim R. Seitkazinova, Meruyert Nazhipkyzy, Zulkhair A. Mansurov17551. Влияние углеродных нанотрубок на упруго-прочностные свойства углепластика | В.Е. Мессерле, А.Б. Устименко, В.Г. Лукьященко, К.А. Умбеткалиев | 153 | | 45. Apllication of diatomite for energy storage devices Turganbay A.B., Zhaparova A., Nazhipkyzy M., Lesbayev B.T., Mansurov Z.A. 46. Nickel hydroxide modified activated rice husk for supercapacitor electrode material Seidl C., Yeleuov M., Temirgaliyeva T., Smagulova G.T., Lesbayev B., Prikhodko N.G., Mansurov Z.A. 47. Electroducing smart-textile Mansurov N.B., Smagulova G.T. 48. Testing composite material based on nano-particulate magnetite and carbonized rice husk for CO ₂ sorption Zhumagaliyeva A., Gargiulo V., Doszhanov Ye., Alfe M. 49. Изучение характеристики горения газогенераторных составов на основе нитрата натрия Турсынбек С., Байсейтов Д.А., Тулепов М.И., Казаков Ю.В., Абдракова Ф.Ю., Мансуров З.А. 171 50. Creation of coatings based on hydrophobic soot Hamidreza Pourghazian Esfahani, Alireza Pourghazian Esfahani, Gulim G. Kurmanbayeva, Assel N. Zhaksylykova, Aigerim R. Seitkazinova, Meruyert Nazhipkyzy, Zulkhair A. Mansurov 175 51. Влияние углеродных нанотрубок на упруго-прочностные свойства углепластика | 44. Влияние деформации углеродных цепей на их реактивную способность: псевдощелевая модель | | | Turganbay A.B., Zhaparova A., Nazhipkyzy M., Lesbayev B.T., Mansurov Z.A. 46. Nickel hydroxide modified activated rice husk for supercapacitor electrode material Seidl C., Yeleuov M., Temirgaliyeva T., Smagulova G.T., Lesbayev B., Prikhodko N.G., Mansurov Z.A. 47. Electroducing smart-textile Mansurov N.B., Smagulova G.T. 48. Testing composite material based on nano-particulate magnetite and carbonized rice husk for CO ₂ sorption Zhumagaliyeva A., Gargiulo V., Doszhanov Ye., Alfe M. 49. Изучение характеристики горения газогенераторных составов на основе нитрата натрия Турсынбек С., Байсейтов Д.А., Тулепов М.И., Казаков Ю.В., Абдракова Ф.Ю., Мансуров З.А. 171 50. Creation of coatings based on hydrophobic soot Hamidreza Pourghazian Esfahani, Alireza Pourghazian Esfahani, Gulim G. Kurmanbayeva, Assel N. Zhaksylykova, Aigerim R. Seitkazinova, Meruyert Nazhipkyzy, Zulkhair A. Mansurov 175 51. Влияние углеродных нанотрубок на упруго-прочностные свойства углепластика | К.М.Мукимов, Б.Л.Оксегендлер, Л.Акопян, Ф.Искандарова | 157 | | 46. Nickel hydroxide modified activated rice husk for supercapacitor electrode materialSeidl C., Yeleuov M., Temirgaliyeva T., Smagulova G.T., Lesbayev B., Prikhodko N.G., Mansurov Z.A.16347. Electroducing smart-textile165Mansurov N.B., Smagulova G.T.16548. Testing composite material based on nano-particulate magnetite and carbonized rice husk for CO2 sorption2Zhumagaliyeva A., Gargiulo V., Doszhanov Ye., Alfe M.16849. Изучение характеристики горения газогенераторных составов на основе нитрата натрия171Турсынбек С., Байсейтов Д.А., Тулепов М.И., Казаков Ю.В., Абдракова Ф.Ю., Мансуров З.А.17150. Creation of coatings based on hydrophobic soot175Натіdгеzа Роигghazian Esfahani, Alireza Pourghazian Esfahani, Gulim G. Kurmanbayeva,17551. Влияние углеродных нанотрубок на упруго-прочностные свойства углепластика175 | 45. Apllication of diatomite for energy storage devices | | | Seidl C., Yeleuov M., Temirgaliyeva T., Smagulova G.T., Lesbayev B., Prikhodko N.G., Mansurov Z.A.16347. Electroducing smart-textile
Mansurov N.B., Smagulova G.T.16548. Testing composite material based on nano-particulate magnetite and carbonized rice husk for CO2 sorption
Zhumagaliyeva A., Gargiulo V., Doszhanov Ye., Alfe M.16849. Изучение характеристики горения газогенераторных составов на основе нитрата натрия
Турсынбек С., Байсейтов Д.А., Тулепов М.И., Казаков Ю.В., Абдракова Ф.Ю., Мансуров З.А.17150. Creation of coatings based on hydrophobic soot
Hamidreza Pourghazian Esfahani, Alireza Pourghazian Esfahani, Gulim G. Kurmanbayeva,
Assel N. Zhaksylykova, Aigerim R. Seitkazinova, Meruyert Nazhipkyzy, Zulkhair A. Mansurov17551. Влияние углеродных нанотрубок на упруго-прочностные свойства углепластика | Turganbay A.B., Zhaparova A., Nazhipkyzy M., Lesbayev B.T., Mansurov Z.A. | 160 | | 47. Electroducing smart-textile165Mansurov N.B., Smagulova G.T.16548. Testing composite material based on nano-particulate magnetite and carbonized rice husk for CO2 sorption168Zhumagaliyeva A., Gargiulo V., Doszhanov Ye., Alfe M.16849. Изучение характеристики горения газогенераторных составов на основе нитрата натрия171Турсынбек С., Байсейтов Д.А., Тулепов М.И., Казаков Ю.В., Абдракова Ф.Ю., Мансуров З.А.17150. Creation of coatings based on hydrophobic soot175Натіdreza Pourghazian Esfahani, Alireza Pourghazian Esfahani, Gulim G. Kurmanbayeva,175Азѕеl N. Zhaksylykova, Aigerim R. Seitkazinova, Meruyert Nazhipkyzy, Zulkhair A. Mansurov17551. Влияние углеродных нанотрубок на упруго-прочностные свойства углепластика | 46. Nickel hydroxide modified activated rice husk for supercapacitor electrode material | | | Mansurov N.B., Smagulova G.T.16548. Testing composite material based on nano-particulate magnetite and carbonized rice husk for CO2 sorption
Zhumagaliyeva A., Gargiulo V., Doszhanov Ye., Alfe M.16849. Изучение характеристики горения газогенераторных составов на основе нитрата натрия
Турсынбек С., Байсейтов Д.А., Тулепов М.И., Казаков Ю.В., Абдракова Ф.Ю., Мансуров З.А.17150. Creation of coatings based on hydrophobic soot
Hamidreza Pourghazian Esfahani, Alireza Pourghazian Esfahani, Gulim G. Kurmanbayeva,
Assel N. Zhaksylykova, Aigerim R. Seitkazinova, Meruyert Nazhipkyzy, Zulkhair A. Mansurov17551. Влияние углеродных нанотрубок на упруго-прочностные свойства углепластика | Seidl C., Yeleuov M., Temirgaliyeva T., Smagulova G.T., Lesbayev B., Prikhodko N.G., Mansurov Z.A. | 163 | | 48. Testing composite material based on nano-particulate magnetite and carbonized rice husk for CO ₂ sorption Zhumagaliyeva A., Gargiulo V., Doszhanov Ye., Alfe M. 168 49. Изучение характеристики горения газогенераторных составов на основе нитрата натрия Турсынбек С., Байсейтов Д.А., Тулепов М.И., Казаков Ю.В., Абдракова Ф.Ю., Мансуров З.А. 171 50. Creation of coatings based on hydrophobic soot Hamidreza Pourghazian Esfahani, Alireza Pourghazian Esfahani, Gulim G. Kurmanbayeva, Assel N. Zhaksylykova, Aigerim R. Seitkazinova, Meruyert Nazhipkyzy, Zulkhair A. Mansurov 175 51. Влияние углеродных нанотрубок на упруго-прочностные свойства углепластика | 47. Electroducing smart-textile | | | Zhumagaliyeva A., Gargiulo V., Doszhanov Ye., Alfe M.16849. Изучение характеристики горения газогенераторных составов на основе нитрата натрияТурсынбек С., Байсейтов Д.А., Тулепов М.И., Казаков Ю.В., Абдракова Ф.Ю., Мансуров З.А.17150. Creation of coatings based on hydrophobic sootНаmidreza Pourghazian Esfahani, Alireza Pourghazian Esfahani, Gulim G. Kurmanbayeva,175Assel N. Zhaksylykova, Aigerim R. Seitkazinova, Meruyert Nazhipkyzy, Zulkhair A. Mansurov17551. Влияние углеродных нанотрубок на упруго-прочностные свойства углепластика | Mansurov N.B., Smagulova G.T. | 165 | | 49. Изучение характеристики горения газогенераторных составов на основе нитрата натрияТурсынбек С., Байсейтов Д.А., Тулепов М.И., Казаков Ю.В., Абдракова Ф.Ю., Мансуров З.А.17150. Creation of coatings based on hydrophobic soot171Hamidreza Pourghazian Esfahani, Alireza Pourghazian Esfahani, Gulim G. Kurmanbayeva,175Assel N. Zhaksylykova, Aigerim R. Seitkazinova, Meruyert Nazhipkyzy, Zulkhair A. Mansurov17551. Влияние углеродных нанотрубок на упруго-прочностные свойства углепластика | 48. Testing composite material based on nano-particulate magnetite and carbonized rice husk for CO ₂ sorption | | | Турсынбек С., Байсейтов Д.А., Тулепов М.И., Казаков Ю.В., Абдракова Ф.Ю., Мансуров З.А.17150. Creation of coatings based on hydrophobic soot175Hamidreza Pourghazian Esfahani, Alireza Pourghazian Esfahani, Gulim G. Kurmanbayeva,175Assel N. Zhaksylykova, Aigerim R. Seitkazinova, Meruyert Nazhipkyzy, Zulkhair A. Mansurov17551. Влияние углеродных нанотрубок на упруго-прочностные свойства углепластика | Zhumagaliyeva A., Gargiulo V., Doszhanov Ye., Alfe M. | 168 | | 50. Creation of coatings based on hydrophobic sootHamidreza Pourghazian Esfahani, Alireza Pourghazian Esfahani, Gulim G. Kurmanbayeva,Assel N. Zhaksylykova, Aigerim R. Seitkazinova, Meruyert Nazhipkyzy, Zulkhair A. Mansurov51. Влияние углеродных нанотрубок на упруго-прочностные свойства углепластика | 49. Изучение характеристики горения газогенераторных составов на основе нитрата натрия | | | Hamidreza Pourghazian Esfahani, Alireza Pourghazian Esfahani, Gulim G. Kurmanbayeva,Assel N. Zhaksylykova, Aigerim R. Seitkazinova, Meruyert Nazhipkyzy, Zulkhair A. Mansurov17551. Влияние углеродных нанотрубок на упруго-прочностные свойства углепластика | <u>Турсынбек С.</u> , Байсейтов Д.А., Тулепов М.И., Казаков Ю.В., Абдракова Ф.Ю., Мансуров З.А. | 171 | | Assel N. Zhaksylykova, Aigerim R. Seitkazinova, Meruyert Nazhipkyzy, Zulkhair A. Mansurov17551. Влияние углеродных нанотрубок на упруго-прочностные свойства углепластика | 50. Creation of coatings based on hydrophobic soot | | | 51. Влияние углеродных нанотрубок на упруго-прочностные свойства углепластика | Hamidreza Pourghazian Esfahani, Alireza Pourghazian Esfahani, Gulim G. Kurmanbayeva, | | | | Assel N. Zhaksylykova, Aigerim R. Seitkazinova, Meruyert Nazhipkyzy, Zulkhair A. Mansurov | 175 | | А. М. Ермаханова, М. Б. Исмаилов, Нелюб В.А. | 51. Влияние углеродных нанотрубок на упруго-прочностные свойства углепластика | | | | А. М. Ермаханова, М. Б. Исмаилов, Нелюб В.А. | 179 | # X International Symposium «THE PHYSICS AND CHEMISTRY OF CARBON AND NANOENERGETIC MATERIALS» Х халықаралық симпозиумы «ФИЗИКА ЖӘНЕ ХИМИЯ КӨМІРТЕКТІ ЖӘНЕ НАНОЭНЕРГЕТИКАЛЫҚ МАТЕРИАЛДАР» Х Международный Симпозиум «ФИЗИКА И ХИМИЯ УГЛЕРОДНЫХ И НАНОЭНЕРГЕТИЧЕСКИХ МАТЕРИАЛОВ» #### CREATION OF COATINGS BASED ON HYDROPHOBIC SOOT Hamidreza Pourghazian Esfahani^{acd*}, Alireza Pourghazian Esfahani^{ab}, Gulim G. Kurmanbayeva^d, Assel N. Zhaksylykova^d, Aigerim R. Seitkazinova^d, Meruyert Nazhipkyzy^{cd}, Zulkhair A. Mansurov^{cd} ^a TOO"POURGHAZIAN" (branch of Ranghe Tarake Tazene Asia), Number 14, Home 93V, Street Dostyk, 050051, Almaty, Republic of Kazakhstan ^b Sharif University of Technology, Tehran, Iran ^c The Institute of Combustion Problems, 172 Bogenbai Batyr Str., 050012, Almaty, Kazakhstan ^dAl-Farabi Kazakh National University, 71 al-Farabi Ave., 050040, Almaty, Kazakhstan hamidreza.pourghazian@crackpaint.com **Abstract.** This work presents the results of investigations of the influence of hydrophobic soot to the coating. Obtained soot particles was investigated by scanning electron microscopy (SEM), Raman spectroscopy, Elemental analysis and etc. #### 1. Introduction The development of hydrophobic and superhydrophobic materials has recently attracted a lot of attention due to the wide range of applications that these surfaces offer. Self-cleaning surfaces, anti-fouling materials, stain resistant textiles or antiicing coatings are just some examples that show the potential of these materials1 [1]. The results showed information's for production superhydrophobic coatings based on nano titanium dioxide, silica nano particles, nanotubes and polymers [2]. Soot is a material, which is made in a big quantity and mostly used to modify the properties of structural materials in the manufacture of elastomers, dyes, dry power sources, paint and coating, etc [3]. It was obtained soot particles during combustion of hydrocarbons. Thus, if fuel burns under specified conditions, it will be possible to get soot with special properties [3, 4]. In this work it was used ultrasonic wave mixer for dispersion of soot in the mixture of polyurethane and solvent 646. ## 2. Experimental #### 2.1 Materials Polyurethane lacquer was applied for protection from mechanical and chemical impact of floors, walls, ceilings, products, etc. Solvent 646 is a mixture of toluene 50%, ethanol 15%, butanol 10%, butyl- or amyl acetate 10%, ethyl cellosolve 8%, acetone 7%. The hydrophobic soot was obtained by application electric field of 1 kV during combustion of the mixture of propane, butane, isobutene. The size of soot particles were 30-40 nanometers with the significant chain formation and tertiary structure, and the water contact angle (WCA) was larger than 146° [5]. Soot deposited on the surface of a stainless steel cylinder. The produced soot was investigated by EDS. In Fig.1. shown EDS images of soot samples. #### 2.2 Preparation of coatings and dispersion of soot in the resin # «THE PHYSICS AND CHEMISTRY OF CARBON AND NANOENERGETIC MATERIALS» Х халықаралық симпозиумы # «ФИЗИКА ЖӘНЕ ХИМИЯ КӨМІРТЕКТІ ЖӘНЕ НАНОЭНЕРГЕТИКАЛЫҚ МАТЕРИАЛДАР» Х Международный Симпозиум «ФИЗИКА И ХИМИЯ УГЛЕРОДНЫХ И НАНОЭНЕРГЕТИЧЕСКИХ МАТЕРИАЛОВ» Materials were mixed step-by-step. Initially polyurethane and solvent 646 were weighted and blended and then soot was mixed with slurry, then soot was rapidly dispersed to the liquid mixture by ultrasonic homogenizer under different conditions. Table 1 presents 3 samples of coating composed of Polyurethane "Elakor-PU" lacquer (TU 2312-009-18891264-2009) resin, solvent 646, soot. Table 1. Different samples under different conditions | Number of | Polyurethane, | solvent | soot, | Ultrasonic | Ultrasonic | Ultrasonic | Min | |-----------|---------------|---------|-------|------------------|-------------------------|-----------------------------|-----| | sample | gr. | 646, | | ъ | | cc | | | | | | gr. | Power | on | off | | | | | gr. | | (25 Hz),
Watt | time(second
working) | time(second
not working) | | | Coating-1 | 5 | 30 | 1 | 600 | 2 | 1 | 5 | | Coating-2 | 5 | 30 | 2 | 600 | 3 | 1 | 15 | | Coating-3 | 4 | 40 | 3 | 600 | 5 | 0.5 | 30 | Samples were prepared in different containers and then applied to the paper, tile, metal and wood. It was used drop shape analyzer DSA25 KRÜSS GmbH for measurement of the water contact angle for surface. Three or four droplets of water were applied on the sample and then measured. #### 3. Results and discussion # 3.1 Measurement of WCA by drop shape analyzer KRUSS The water contact angle was measured on the tile and paper, wood, metal before and after hydrophobic coating. The obtained results are presented in the table below: Table 2 presents the results on comparison of different coating formulations, WCA and soot concentrations. **Table 2.** Comparison of different coating formulations, WCA and soot concentrations | Number | Polyurethane, | Solvent 646, | Soot, | Ultra | Soot | Water | Water | Water | Water | |-------------|---------------|--------------|-------|---------|----------------|-----------|------------|-----------|------------| | | gr | gr | gr | sonic | concentration, | contact | contact | contact | contact | | | | | | action, | % | angle on | angle on | angle on | angle on | | | | | | min | | the tile, | the paper, | the wood, | the metal, | | | | | | | | degree | degree | degree | degree | | Without | 0 | 0 | 0 | 0 | 0 | 47.8 | 98.6 | 40 | 29.9 | | any coating | | | | | | | | | | | Coating-1 | 5 | 30 | 1 | 5 | 2.7 | 93 | 115 | 105 | 100 | | Coating-2 | 5 | 30 | 2 | 15 | 5.4 | 137 | 136 | 130 | 128 | | Coating-3 | 4 | 40 | 3 | 30 | 6.3 | 141 | 142 | 136 | 135 | #### 3.2 Comparison of different coatings together with the CPVC # «THE PHYSICS AND CHEMISTRY OF CARBON AND NANOENERGETIC MATERIALS» Х халықаралық симпозиумы # «ФИЗИКА ЖӘНЕ ХИМИЯ КӨМІРТЕКТІ ЖӘНЕ НАНОЭНЕРГЕТИКАЛЫҚ МАТЕРИАЛДАР» Х Международный Симпозиум «ФИЗИКА И ХИМИЯ УГЛЕРОДНЫХ И НАНОЭНЕРГЕТИЧЕСКИХ МАТЕРИАЛОВ» The critical pigment volume concentration (CPVC) Eq.(1) was used for formulating coatings [6]. CPVC is normal point for using a sufficient quantity of a binder for one volume of constant formulation of the paint and coating. Some properties of coating such as corrosion, glossy, abrasion changed in the CPVC (table 3) [6]. **Table 3.** Comparison of CPVC, WCA, soot concentration and thixotropic properties | Number | Soot, | Binder | PVC, | Flocculation | Use of | Thixotropic | Settling | Liquid | Concentration | Water | |-----------|-------|---------------|------|--------------|------------|-------------|----------|-----------|----------------|-----------| | | gr. | polyurethane, | % | | dispersing | properties | | stability | of soot in the | contact | | | | gr. | | | agent | | | | formulation, | angle on | | | | | | | | | | | % | the paper | | Coating-1 | 1 | 5 | 16.6 | No | No | No | yes | No | 2.7 | 115° | | | | | | | | | | | | | | Coating-2 | 2 | 5 | 28.5 | No | No | yes | No | yes | 5.4 | 136° | | | | | | | | | | | | | | Coating-3 | 3 | 4 | 42.8 | No | No | yes | No | yes | 6.3 | 142° | #### **Conclusions** If soot was added in big quantities to the coatings at the critical pigment volume concentration (CPVC) and if the amount of soot increases coating, then hydrophobicity in the dry film of the surface becomes higher. Initial polyurethane has good resistance to the acid and alkali material, good mechanical and physical property. Introducing the soot nanostructure into the mixture of polyurethane and 646 solvent, hydrophobic coating was obtained for different surfaces such as wood, metal, tile, and paper. Additionally, thixotropic properties in CPVC were determined by application of hydrophobic soot to the hydrophobic coating-2 and coating-3. #### References - 1. Corrosion science, corrosion protection by hydrophobic silica particle-polydimethylsiloxane composite coatings, Volume 99, October 2015, Lina, Ejenstam, Agne Swerin, Jinshan Pan, Per M.Claesson - 2. Novel multifunctional coatings with photocatalytic and hydrophobic properties for the preservation of the stone building heritage Donato Colangiuli, Angela Calia, Nadia Bianco, Construction and Building Materials 93 (2015) 189–196 - 3. Nazhipkyzy M. Modern problems of processes burning, detonation, explosion: educational manual / M. Nazhipkyzy. Almaty: Qazaq university, page 11(114), 2017, ISBN 978-601-04-2795-2 - 4. Mansurov Z.A. Soot formation / Z.A.Mansurov. Almaty: Kazakh University, page 8(211), 2014, ISBN 978-601-247-502-9 # ${\it «THE PHYSICS AND CHEMISTRY OF CARBON AND NANOENERGETIC MATERIALS} {\it »}$ Х халықаралық симпозиумы «ФИЗИКА ЖӘНЕ ХИМИЯ КӨМІРТЕКТІ ЖӘНЕ НАНОЭНЕРГЕТИКАЛЫҚ МАТЕРИАЛДАР» Х Международный Симпозиум «ФИЗИКА И ХИМИЯ УГЛЕРОДНЫХ И НАНОЭНЕРГЕТИЧЕСКИХ МАТЕРИАЛОВ» - 5. Zulkhair A. Mansurov, Ishwar K. Puri, Bakhytzhan T. Lesbayev, Gaukhar T. Smagulova, Nikolay G. Prikhodko, Meruyert Nazhipkyzy, Talgat B. Seitov. Flame synthesis of superhydrophobic soot surfaces. Flame structure, 28 May, 2014. - 6. W.K. Asbeck, M.V. Loo, Critical pigment volume relationships, Ind. Eng. Chem.41 (1949) 1470–1475.