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Abstract. Earlier we studied the homogeneous boundary value problem for the heat equation in degenerating domains. For this
problem in the weight class of essentially bounded functions it was established the existence of a nontrivial solution up to a constant
multiplier. In this paper, on the basis of the above result, we study the issues of the existence of nontrivial solutions of homogeneous
nonlinear heat equations, including the homogeneous Burgers equation in degenerating domains. The nonhomogeneous boundary
value problems for the Burgers equation are studied separately.

INTRODUCTION

Earlier in several papers [1], [2], [3], [4], [5], [6] it was shown the existence of non-trivial solutions for the homo-
geneous boundary value problem for linear heat equation in degenerating (in the power-law order) domains. In this
paper, based on our previous results established for a linear problem, we study the existence of nontrivial solutions
of homogeneous boundary value problems for two nonlinear heat equation, given in degenerate domains. Classes
of essentially bounded functions with weight in which there exists or does not exist a nontrivial solution are found.
Nontrivial solutions of the nonlinear equations under consideration are found in explicit form. We show in the de-
generating domain the existence of nontrivial solutions for a nonlinear heat equation (1st part of the work) and for
Burgers equation (2nd part of the work).

We will note the paper [7] where for linear and semilinear equations of Tricomi type, existence, uniqueness
and qualitative properties of weak solutions to the degenerate hyperbolic Goursat problem on characteristic triangles
were established. For the linear problem, a robust L2-based theory was developed, including well-posedness, elements
of a spectral theory, partial regularity results and maximum and comparison principles. For the nonlinear problem,
existence of weak solutions with nonlinearities of unlimited polynomial growth at infinity was proved by combining
standard topological methods of nonlinear analysis with the linear theory developed there.

In the work [8] for semilinear partial differential equations of mixed elliptic-hyperbolic type with various bound-
ary conditions, the nonexistence of nontrivial solutions was showed for domains which are suitably star-shaped and
for nonlinearities with supercritical growth in a suitable sense.

NONLINEAR HEAT EQUATION

Let G = {x, t| 0 < x < t, t > 0}. In the infinite corner domain G we study the existence of nontrivial solutions for the
following boundary value problem [9]: wt(x, t) = wxx(x, t) + w2

x(x, t), {x, t} ∈ G,

w(x, t)|x=0 = w(x, t)|x=t = 0.
(1)
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Using the transform
u(x, t) = exp{w(x, t)} − 1 (2)

the boundary value problem (1) is reduced to a linear homogeneous boundary value problem for the heat equation:{
ut(x, t) = uxx(x, t), {x, t} ∈ G,

u(x, t)|x=0 = u(x, t)|x=t = 0.
(3)

The reduction of the boundary value problem (3) to an integral equation
Search for a solution to the boundary value problem (3) as the sum of double-layer heat potentials [1], [2], [3], [4],
[5], [6], [10]:

u(x, t) =
1

4
√
π

t∫
0

x
(t − τ)3/2 exp

{
− x2

4(t − τ)

}
ν (τ) dτ +

1
4
√
π

t∫
0

x − τ
(t − τ)3/2 exp

{
− (x − τ)2

4(t − τ)

}
φ(τ) dτ. (4)

It is known [10] that the function (4) satisfies the equation (3) for any ν (t) and φ(t). Using boundary conditions
from (3) and the properties of heat potentials, we obtain the following integral equation with respect to the unknown
function φ(t):

[I −K]φ ≡ φ(t) −
t∫

0

K(t, τ)φ(τ)d τ = 0, t > 0, (5)

where

K(t, τ) =
1

2
√
π

[
t + τ

(t − τ)3/2 exp
{
− (t + τ)2

4(t − τ)

}
+

1
(t − τ)1/2 exp

{
− t − τ

4

}]
.

ν (t) =
1

2
√
π

t∫
0

τ

(t − τ)3/2 exp
{
− τ2

4(t − τ)

}
φ (τ) dτ. (6)

We have shown earlier [3], [4], [5], [6] that the integral equation (5) along with the trivial solution has a non-trivial
solution up to a constant multiplier.

Theorem 1. The general solution of equation (5) has the form

φ(t) = C · φ0(t), C = const, (7)

φ0(t) = t−1/2 exp {−t/4} +
√
π/2

[
1 + erf

(
t1/2/2

)]
. (8)

In the following paragraph we clarify the class of solutions (8) of the integral equation (5), which we have set earlier
in works [3], [4], [5], [6].

The class of solutions of the integral equation (5)
First set the property of the integral operator K in equation (5). Let us introduce the weight class of essentially bounded
functions

L∞(R+ ; θ1(t,T )) = {φ| θ1(t,T )φ(t) ∈ L∞(R+)}, (9)

θ1(t,T ) =
 t1/2, if 0 < t ≤ T,

T 1/2, if T < t < +∞,
(10)

and T is an arbitrary positive finite number. Let us introduce the weight class of essentially bounded functions (unique-
ness class)

L∞(R+ ; θ2(t, ε, T )) = {φ| θ2(t, ε, T )φ(t) ∈ L∞(R+)}, (11)

θ2(t, ε, T ) =
 t1/2−ϵ , if 0 < t ≤ T,

T 1/2−ϵ , if T < t < +∞,
(12)
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and T is an arbitrary positive finite number, ε > 0.

Lemma 1. The integral operator K in the equation (5) is bounded in the space L∞(R+; θ1(t,T )) (9)–(10), i.e.

K ∈ L (L∞(R+; θ1(t,T ))) . (13)

Proof of Lemma 1

Estimate the integral operator K. We show the following inequality

∥K∥ ≤ I(0,T ) + I(T,In f ), (14)

where by I(0,T ) and I(T,In f ) are indicated the norms of restriction of the integral operator K acting respectively in the
classes and for which the following estimates true

I(0,T ) ≤ I1,(0,T ) + I2,(0,T ), (15)

I(T,In f ) ≤ I1,(T,In f ) + I2,(T,In f ), (16)

where

I1,(0,T ) =
1
√
π

t∫
0

t3/2

τ1/2(t − τ)3/2 exp
{
− tτ

t − τ

}
exp

{
− t − τ

4

}
dτ,

I2,(0,T ) =
1

2
√
π

t∫
0

t1/2

τ1/2(t − τ)1/2

[
1 − exp

{
− tτ

t − τ

}]
exp

{
− t − τ

4

}
dτ,

I1,(T,In f ) =
1
√
π

t∫
0

t
(t − τ)3/2 exp

{
− (t + τ)2

4(t − τ)

}
dτ,

I2,(T,In f ) =
1

2
√
π

t∫
0

1
(t − τ)1/2

[
1 − exp

{
− tτ

t − τ

}]
exp

{
− t − τ

4

}
dτ.

Now for the proof of Lemma 1 is sufficient to show the boundedness of integrals in the right-hand sides of inequalities
(15)–(16). Perform the change τ = t sin2 α in the integrals I1,(0,T ) and I2,(0,T ) from (15), we have:

I1,(0,T ) ≤
2
√
π

π/2∫
0

exp
{
−

(√
t · tgα

)2
}

d
(√

t · tgα
)
= 1, (17)

I2,(0,T ) ≤
√

t
2
√
π

π/2∫
0

2t sinα · cosα
t1/2 sinα · t1/2 cosα

dα =
√
πt

4
. (18)

Making the change τ = t sin2 α in the integral I1,(T,In f ) and estimating the integral I2,(T,In f ) from (16), we obtain:

I1,(T,In f ) ≤
2
√
π

π/2∫
0

exp
{
−

(√
t · tgα

)2
}

d
(√

t · tgα
)
= 1, (19)

I2,(T,In f ) ≤ −
2
√
π

t∫
0

exp
{
− t − τ

2

}
d

√
t − τ

2
= erf

( √
t
√

2

)
. (20)
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From (17)–(20) follows the inequality (14), i.e. the assertion (13) is valid. Lemma 1 is proved.
From the assertion of Lemma 1 follows the validity of the following Lemmas.
Lemma 2. The solution of the integral equation (5) belongs to the class L∞(R+; θ1(t,T )) (9)–(10), i.e.

θ1(t,T )φ0(t) ∈ L∞(R+). (21)

Lemma 3 (uniqueness class). For the integral equation (5) the space L∞(R+; θ2(t, ε, T )) is a class of uniqueness,
i.e., in the class (11)–(12) the equation (5) has only a trivial solution.

The class of solutions of the boundary value problem for the heat equation (3)
For further we transform the representation (4) of the solution of the boundary value problem (3). For this purpose,
substituting the representation of the function ν(t) (6) in (4), we get:

u(x, t) =
1

4
√
π

t∫
0

M(x, t, τ)φ(τ) dτ, (22)

M(x, t, τ) =
x + τ

(t − τ)3/2 exp
{
− (x + τ)2

4(t − τ)

}
+

x − τ
(t − τ)3/2 exp

{
− (x − τ)2

4(t − τ)

}
. (23)

θ3(t, ε, T ) =

 t1/2, if 0 < t ≤ T,

T 1/2 exp
{
−

(
1
4 + ε

)
(t − T )

}
, if T < t < +∞,

(24)

and T is an arbitrary positive finite number, ε > 0.
Lemma 4. Let G0,T = {0 < x < t, 0 < t ≤ T }. Then the solution u(x, t) of the boundary value problem (3) belongs

to the class
L∞(G0,T ; θ3(t, ε, T )).

Proof of Lemma 4

Since {x, t} ∈ G0,T , then by definition (24) we get θ3(t, ε, T ) = t1/2. Estimate the solution (22)–(23) on the set G0,T . Let
us show that

∥u(x, t)∥L∞(G0,T ;θ3(t,ε,T )) ≤
4∑

k=1

Ik(x, t), (25)

where

I1(x, t) =
t1/2

4
√
π

exp
{ x + t

2

} t∫
0

x + t
τ1/2(t − τ)3/2 exp

{
− (x + t)2

4(t − τ)

}
dτ, (26)

I2(x, t) =
t1/2

4
√
π

exp
{ x + t

2

} t∫
0

1
τ1/2(t − τ)1/2 exp

{
− (x + t)2

4(t − τ)

}
dτ, (27)

I3(x, t) =
t1/2

4
√
π

exp
{ t − x

2

} t∫
0

t − x
τ1/2(t − τ)3/2 exp

{
− (t − x)2

4(t − τ)

}
dτ, (28)

I4(x, t) =
t1/2

4
√
π

exp
{ t − x

2

} t∫
0

1
τ1/2(t − τ)1/2 exp

{
− (t − x)2

4(t − τ)

}
dτ (29)
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are valid. To obtain the expressions (26)–(29) in representation of the solution u(x, t) (22)–(23) the following transfor-
mations are applied

x + τ = x + t − (t − τ), x − τ = x − t + (t − τ).

It remains to show the boundedness of the integrals (26)–(29) on the set G0,T . Making the change τ = t sin2 α in the
integrals (26)–(29), we obtain:

I1(x, t) =
1

2
√
π

exp
{

t2 − x2

4t

} π/2∫
0

exp

−
(

x + t

2
√

t
tgα

)2
 d

(
x + t

2
√

t
tgα

)
=

1
4

exp
{

t2 − x2

4t

}
. (30)

I2(x, t) ≤ t1/2

4
√
π

exp
{ x + t

2

} t∫
0

1
τ1/2(t − τ)1/2 dτ =

√
π t1/2

4
exp

{ x + t
2

}
, (31)

I3(x, t) =
1

2
√
π

exp
{
− t2 − x2

4t

} π/2∫
0

exp

−
(

t − x

2
√

t
tgα

)2
 d

(
t − x

2
√

t
tgα

)
=

1
4

exp
{
− t2 − x2

4t

}
. (32)

I4(x, t) ≤ t1/2

4
√
π

exp
{ t − x

2

} t∫
0

1
τ1/2(t − τ)1/2 dτ =

√
π t1/2

4
exp

{ t − x
2

}
. (33)

From the boundedness on the set G0,T of the right-hand sides of the relations (30)–(33) the assertion of Lemma 4
follows.

Lemma 5. Let GT,In f = {0 < x < t, T < t < ∞}. Then the solution u(x, t) of the boundary value problem (3)
belongs to the class

L∞(GT,In f ; θ3(t, ε, T )).

Proof of Lemma 5

Since {x, t} ∈ GT,In f , then by definition (24) we have

θ3(t, ε, T ) = T 1/2 exp
{
−

(
1
4
+ ε

)
(t − T )

}
.

Estimate the solution (22)–(23) on the set GT,In f . Let us show that

∥u(x, t)∥L∞(GT,In f ; θ3(t,ε,T )) ≤
4∑

k=1

T 1/2Jk(x, t), (34)

where

J1(x, t) =
1

4
√
π

exp
{

2x + t
4
− ε t

} t∫
0

x + t
(t − τ)3/2 exp

{
− (x + t)2

4(t − τ)

}
dτ, (35)

J2(x, t) =
1

4
√
π

exp
{

2x + t
4
− ε t

} t∫
0

1
(t − τ)1/2 exp

{
− (x + t)2

4(t − τ)

}
dτ, (36)

J3(x, t) =
1

4
√
π

exp
{
−2x − t

4
− ε t

} t∫
0

t − x
(t − τ)3/2 exp

{
− (x − t)2

4(t − τ)

}
dτ, (37)
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J4(x, t) =
1

4
√
π

exp
{
−2x − t

4
− ε t

} t∫
0

1
(t − τ)1/2 exp

{
− (x − t)2

4(t − τ)

}
dτ (38)

are valid. To obtain the expressions (35)–(38) in representation of the solution u(x, t) (22)–(23) the following transfor-
mations are applied

x + τ = x + t − (t − τ), x − τ = x − t + (t − τ).
It remains to show the boundedness of the integrals (35)–(38) on the set GT,In f . Making the change τ = t sin2 α

in the integrals (35)–(38), we get:

J1(x, t) ≤ 1
2
√
π

exp
{
− x2

4t
− ε t

} π/2∫
0

exp

−
(

x + t

2
√

t
tgα

)2
 d

(
x + t

2
√

t
tgα

)
=

1
4

exp
{
− x2

4t
− ε t

}
, (39)

J2(x, t) ≤ t1/2

2
√
π

exp
{
− x2

4t
− ε t

} π/2∫
0

exp

−
(

x + t

2
√

t
tgα

)2
 dα ≤

√
π t1/2

4
exp

{
− x2

4t
− ε t

}
, (40)

J3(x, t) ≤ 1
√
π

exp
{
− x2

4t
− ε t

} π/2∫
0

exp

−
(

t − x

2
√

t
tgα

)2
 d

(
t − x

2
√

t
tgα

)
=

1
2

exp
{
− x2

4t
− ε t

}
, (41)

J4(x, t) ≤ t1/2

2
√
π

exp
{
− x2

4t
− ε t

} π/2∫
0

exp

−
(

t − x

2
√

t
tgα

)2
 dα ≤

√
π t1/2

4
exp

{
− x2

4t
− ε t

}
. (42)

From the boundedness on the set GT,In f of the right-hand sides of the relations (39)–(42) the assertion of Lemma 5
follows. From the assertions of Lemmas 4 and 5 follows the validity of the following theorem.

Theorem 2. Along with a trivial solution, the boundary value problem (3) has a family of nontrivial solutions

{C · u(x, t), C = const , 0},
where

u(x, t) ∈ L∞(G ; θ3(t, ε, T )),

defined by the relations (22)–(23).

Theorem 3 (uniqueness class). The boundary value problem (3) has only a trivial solution in the class
L∞(G ; θ4(t, ε1, ε2,T )), where

θ4(t, ε1, ε2,T ) =

 t1/2−ε1−ε2 , if 0 < t ≤ T,

T 1/2−ε1−ε2 exp
{
−

(
1
4 + ε2

)
(t − T )

}
, if T < t < +∞,

(43)

and T is an arbitrary positive finite number, ε1 ≥ 0, ε2 ≥ 0.

The main result for the nonlinear heat equation
From the theorems and lemmas which were set above it follows

Theorem 4. Along with a trivial solution, the boundary value problem (1) has a family of nontrivial solutions

{w(x, t) = ln[1 +C · u(x, t)], C = const , 0},
which is determined by transformation (2), where

u(x, t) ∈ L∞(G ; θ3(t, ε, T )).

To solve the nonlinear equation (1), we have:

exp{w(x, t)} − 1 ∈ L∞(G ; θ3(t, ε, T )).
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THE BURGERS EQUATION

We consider the following boundary value problem wt + wwx − wxx = 0, 0 < x < t, t > 0,

w
∣∣∣
x=0 = 0, w

∣∣∣
x=t = 0.

(44)

Using the Hopf-Cole transformation

w(x, t) = −2 · ux(x, t)
u(x, t)

, (45)

the boundary value problem (44) reduces to the following auxiliary boundary value problem ut − uxx = 0, 0 < x < t, t > 0,

ux

∣∣∣
x=0 = 0, ux

∣∣∣
x=t = 0.

(46)

The literature on Burgers equations is quite numerous. We give only the following [11], [12], [13], [14].

Reduction to the integral equation
Search for a solution to the boundary value problem (46) as the sum of simple-layer heat potentials [1], [2], [3], [4],
[5], [6], [10]:

u(x, t) =
1

2
√
π

t∫
0

1
(t − τ)1/2 exp

{
− x2

4(t − τ)

}
ν(τ) +

1
2
√
π

t∫
0

1
(t − τ)1/2 exp

{
− (x − τ)2

4(t − τ)

}
φ(τ)dτ. (47)

It is known [10] that the function (47) satisfies the equation (46) for any ν (t) and φ(t). Using the boundary conditions
from (46) and the properties of the heat potentials [3], [4], [5], [6], we obtain the following integral equation with
respect to the unknown function φ(t):

[I −K]φ ≡ φ(t) −
t∫

0

K(t, τ)φ(τ)d τ = 0, t > 0, (48)

where

K(t, τ) =
1

2
√
π

[
t + τ

(t − τ)3/2 exp
{
− (t + τ)2

4(t − τ)

}
+

1
(t − τ)1/2 exp

{
− t − τ

4

}]
,

ν (t) =
1

2
√
π

t∫
0

τ

(t − τ)3/2 exp
{
− τ2

4(t − τ)

}
φ (τ) dτ, (49)

Remark. Note that this equation coincides with the integral equation (5) for the nonlinear boundary value
problem (1) which was considered above. And for it Theorem 1 and Lemma 1-3 are true.

Taking into account the formulas (47), (49) for solving the boundary value problem for the heat equation (46) we
obtain the representation

u(x, t) =
1

2
√
π

t∫
0

1
(t − τ)1/2

[
exp

{
− (x + τ)2

4(t − τ)

}
+ exp

{
− (x − τ)2

4(t − τ)

}]
φ(τ)dτ. (50)
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The class of solutions u(x, t) (50) for the equation (46)
Let us introduce the weight class of essentially bounded functions

L∞(G ; θ3(t, ε, T )) = {u| θ3(t, ε, T )u(x, t) ∈ L∞(G)}, (51)

where weight function θ3(t, ε, T ) is defined in (24):

θ3(t, ε, T ) =

 t1/2, if 0 < t ≤ T,

T 1/2 exp
{
−

(
1
4 + ε

)
(t − T )

}
, if T < t < +∞,

and T is an arbitrary positive finite number, ε > 0.
Lemma 6. Let G0,T = {0 < x < t, 0 < t ≤ T }. Then the solution u(x, t) (50) of the boundary value problem (46)

belongs to the class
L∞(G0,T ; θ3(t, ε, T )).

Proof of Lemma 6

Since {x, t} ∈ G0,T , then by definition (24) we have

θ3(t, ε, T ) = t1/2.

Estimate the solution (50) on the set G0,T . Let us show, that

∥u(x, t)∥L∞(G0,T ;θ3(t,ε,T )) ≤ IB1(x, t) + IB2(x, t). (52)

Indeed, the following relations

IB1(x, t) ≤ t1/2

2
√
π

t∫
0

1
τ1/2(t − τ)1/2 exp

{
− (x + τ)2

4(t − τ)

}
dτ ≤

√
π t
2
, (53)

IB2(x, t) ≤ t1/2

2
√
π

t∫
0

1
τ1/2(t − τ)1/2 exp

{
− (x − τ)2

4(t − τ)

}
dτ ≤

√
π t
2

(54)

are true. This completes the proof of Lemma 6.

Lemma 7. Let GT,In f = {0 < x < t, T < t < ∞}. Then the solution u(x, t) (50) of the boundary value problem
(46) belongs to the class

L∞(GT,In f ; θ3(t, ε, T )).

Proof of Lemma 7

Since {x, t} ∈ GT,In f , then by definition (24) we have

θ3(t, ε, T ) = T 1/2 exp
{
−

(
1
4
+ ε

)
(t − T )

}
.

Estimate the solution (50) on the set GT,In f . Let us show, that

∥u(x, t)∥L∞(GT,In f ; θ3(t,ε,T )) ≤ JB1(x, t) + JB2(x, t). (55)
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Indeed, the following relations

JB1(x, t) ≤ 1
2
√
π

exp{−εt}
t∫

0

1
(t − τ)1/2 dτ =

√
t
√
π

exp{−εt}, (56)

JB2(x, t) ≤ 1
2
√
π

exp{−εt}
t∫

0

1
(t − τ)1/2 dτ =

√
t
√
π

exp{−εt} (57)

are true. This completes the proof of Lemma 7.
From the assertions of Lemmas 6 and 7 follows the validity of the following theorem.

Theorem 5. Along with a trivial solution, the boundary value problem (46) has a family of nontrivial solutions
(50)

{C · u(x, t), C = const , 0},

where
u(x, t) ∈ L∞(G ; θ3(t, ε, T )),

and θ3(t, ε, T ) defined by the relations (24).

The main result for the Burgers equation
From the theorems and lemmas which were set above it follows

Theorem 6. Along with a trivial solution the boundary value problem (44) has a unique nontrivial solution

w(x, t) = −2ux(x, t)/u(x, t)

which is determined by transformation (2), where

u(x, t) ∈ L∞(G ; θ3(t, ε, T )).

To solve the nonlinear Burgers equation (44) we have:

exp

−1
2

x∫
0

w(ξ, t)dξ

 ∈ L∞(G ; θ3(t, ε, T )).

CONCLUSION

From the assertions of Theorems 4 and 6 it follows that some functionals of non-trivial solutions of both the nonlinear
equation and Burgers equation allow growth both at the top of the corner and at infinity.

This orders of growth are determined by one weight function θ3(t, ε, T ) for each of the considered equations.
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