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analogous to the solution of the Schrödinger equation for an electron moving in a periodic
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this observation, a possible experimental verification of the model is suggested.
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1. Introduction

This talk is based on Ref.1.

An experimental search for gravitational waves (GW) is one of the most intrigu-

ing problems in modern physics. One of the effects accompanying the propagation

of GWs could be its interaction with a nonperturbative spinor vacuum. The reason

for such an interaction to occur is that the energy-momentum tensor of a spinor

field contains the spin connection, which in turn contains first derivatives of tetrad

components with respect to the coordinates. As a result, the Einstein equations

give the wave equation for a GW which contains second derivatives of the tetrad

components on the left-hand side and their first derivatives on the right-hand side.

In Ref.2 we have considered the propagation of a weak GW interacting with the

nonperturbative spinor vacuum. Here we extend those results to the case of a strong

GW. In doing so, as in Ref.2, to model the nonperturbative vacuum of a spinor field,

we will use a phenomenological approach. Within the framework of this approach,

we make some physically reasonable assumptions about expectation values of the

spinor field and its dispersion. This will permit us to reduce the infinite system

of differential equations for all Green’s functions of the nonperturbative quantum

spinor field to the finite set of equations (for more details, see Refs.2,3).

Following this approach, here we will discuss the solution of the Einstein equa-
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tions for a strong GW propagating on the background of the nonperturbative vac-

uum of spinor fields, which is a generalization of the weak, plane gravitational wave

of Ref.2.

2. Strong GW in a nonperturbative spinor vacuum

The metric for a strong GW propagating in one direction is sought in the form

ds2 = 2dξdη − χ2(η)γab(η)dx
adxb, (1)

where x0 = ξ, x1 = η are lightlike coordinates; the indices a, b run over the values

2, 3, and det(γab) = 1. Our goal here is to consider the propagation of GWs in a

nonperturbative spinor vacuum. We expect that such a physical system has to be

considered in nonperturbative language when both a metric and a spinor field are

regarded as quantum quantities and are quantized in a nonperturbative manner.

Our nonperturbative approach for quantizing nonlinear fields is described in

Ref.2. In such an approximation the Einstein-Dirac operator equations can be

written in the following manner2:

Gāµ = κ
⟨
Q
∣∣∣T̂āµ∣∣∣Q⟩

, (2)⟨
Q
∣∣∣∇µT̂

µ
ā

∣∣∣Q⟩
= 0, (3)

Also, to check the consistency of the ansätze for a 2-point Green’s function, instead

of solving the Dirac equation, we will use the Bianchi identities (3), as we did in

Ref.2.

3. Approximate model of the nonperturbative spinor vacuum

Our strategy in the formulation of the model of the nonperturbative spinor vac-

uum is as follows: (i) we write some classical ansätze for a spinor; (ii) we derive

the corresponding energy-momentum tensor; and (iii) we then write hats over the

corresponding spinor components.

We suggest the following approximate model of the nonperturbative vacuum of

the spinor field:

(a) The nonperturbative vacuum is described by the following operator of the

spinor field:

ψ̂T = eiωη
(
Â, Â, V̂ , V̂

)
. (4)

The constant operators Â, V̂ appearing here are independent of η.

(b) The corresponding energy-momentum tensor of the spinor field is⟨
Q
∣∣∣T̂1̄η∣∣∣Q⟩

= −2
⟨
V̂ V̂ †

⟩
(β′ coshβ + α′ sinhβ + 4ω) . (5)

(c) To check this model, we calculate the divergence of the energy-momentum

tensor and show that it vanishes.
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4. Einstein equations for a strong GW interacting with the

nonperturbative spinor vacuum

For the metric (1), we have foloowing Einstein equation

−χ′′ +

[
β′ coshβ + α′ sinhβ − 1

4

(
α′2 + β′2

)
cosh2 β − 1

4
α′β′ sinh 2β

]
χ = −4ω̃χ,

(6)

One sees immediately that Eq. (6) is a Schrödinger-like equation with an effective

potential.

In what follows we will seek periodic solutions to Eq. (6). It is clear that for

periodic functions α, β we obtain an equation similar to that describing the move-

ment of a single electron in a crystal. Such an equation has been well studied in

the literature (see, for example, the textbook4), and we can apply all mathematical

methods used in solving the Schrödinger equation to our case of a strong GW.

5. General solution

In order to solve Eq. (6) for a periodic potential, in this section we apply the

methods developed in solid state theory. The only difference is that the function

χ(η) is a real function, unlike the usual quantum mechanics where a wave function

is complex.

First of all, let us rewrite Eq. (6) in the form

−χ′′(η) + Veff (η)χ(η) = −4ωχ(η). (7)

In order to find a solution of the type of GW, we have to investigate the case of a

periodic potential Veff (η + η0) = Veff (η).

We seek a solution to Eq. (7) in the form

χ(η) = χ0 +
∞∑
k=1

[
ak cos

(
2πk

η0
η

)
+ bk sin

(
2πk

η0
η

)]
. (8)

In principle, by using well-developed methods of solid state theory (see, for example,

the textbook4), one can find a GW solution for any periodic metric functions α(η)

and β(η).

6. The Kronig-Penney model for gravitational waves

Let us consider the simplest case, β = 0. In order to apply the Kronig-Penney

approximation, we will use the metric function α(η) and corresponding effective

potential as in Fig. 1.

For the periodic potential, Eq. (7) takes the form{
χ′′ = K2χ if − a < η < 0,

χ′′ = −Q2χ if 0 < η < b,
(9)
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Fig. 1. The profiles of α(η) (the top graph)

and Veff = −α′2(η)
4

(the bottom graph).
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Fig. 2. The profile of the left-hand side of

the constraint equation (10) for ã = 3 and
b̃ = 50. The straight line corresponds to 1.

where K2 = 4ω, Q2 = V 2
0 /4−K2. The dimensionless constraint equation is

2x− 1

2
√
x− x2

sinh
(
ã
√
x
)
sin

(
b̃
√
1− x

)
+ cosh

(
ã
√
x
)
cos

(
b̃
√
1− x

)
= 1. (10)

The typical profile of the left-hand side (lhs) of the constraint equation (10) is shown

in Fig. 2.

7. Experimental verification

Let us discuss now possible experimental consequences coming from a consideration

of the propagation of a strong GW through the nonperturbative spinor vacuum.

Direct calculations show that for such a case there exists the electric current with

following non-zero components

jt = −jx = 2
√
2
⟨
Q
∣∣∣V̂ V̂ †

∣∣∣Q⟩
. (11)

This means that we have the electric charge and current densities concomitant with

the GW. The electric current is directed along the direction of propagation of the

GW. This observation allows us to suggest the following experimental verification of

the GW and nonperturbative spinor vacuum models considered here: It is possible

to try to measure the weak electric charge and current densities together with the

standard measurements of GWs (LIGO, LISA, and so on).
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