

8th International IUPAC Symposium «Macro- and Supramolecular Architectures and Materials» (MAM-17)

Multifunctional Materials and Structures

Book of Abstracts

www.mam-17.org

6-10 June 2017 Sochi, Russia www.mam-17.org

225

Khrebtov A.A., Fedorenko E.V., Lim L.A., Reutov V.A., Trifonov A.V. RESEARCH OF THE INFLUENCE OF LUMINESCENCE OF BORON DIFLUORIDE DIBENZOYLMETHANATE ON THE SPECTRAL PROPERTIES OF BORON DIFLUORIDE ANTHRACENOYLACETONATE	49
Neelova O.V., Gazzaeva R.A., Koblova L.B. POLIORGANOSYLSESKVIOXAN COMPOSITION, INTENDED FOR USE IN NANO- AND MICROELECTRONICS	50
Kononov A.I., Ramazanov R.R., Reveguk Z.V., Sych T.S., Vdovichev A.A DNA-BASED FLUORESCENT METAL CLUSTERS	51
THE EFFECT OF SOLVENT TO THE CONFORMATIONAL STRUCTURES OF COPOLYMERS ELEMENTARY UNITS: METHODS OF VIBRATIONAL SPECTROSCOPY IN THE INVESTIGATIONS COPOLYMERS OF STYRENE AND N-BUTYL ACRYLATE	52
Kulikov L.A., Maximov A.L., Karakhanov E.A.MESOPOROUS AROMATIC FRAMEWORKS:EFFICIENT SUPPORTS FOR HETEROGENEOUS CATALYSTS5	53
Kydralieva K.A., Dzhardimalieva G.I., Yaroslavov A.A., Jorobekova Sh.J. FUNCTIONAL MATERIALS BASED ON HUMIC SUBSTANCES FOR ENVIRONMENTAL APPLICATION	54
Lebedeva A.Yu., Tkachenko S.V., Chernikova E.Yu., Fedorova O.A. COMPETITIVE INTERACTION BETWEEN BIS(STYRYL) DYES DERIVATIZED WITH CROWN-ETHER, DOUBLE-STRANDED DNA AND CUCURBIT[7]URIL	55
Levchenko V.A., Buyanovskii I.A., Bol'shakov A.N., Matveenko V.N. GREEN TRIBOLOGY OF FUNCTIONAL MATERIALS	56
DETOXIFICATION OF UREA FORMALDEHYDE RESINS (UFR) AND UFR-BASED WOOD BOARD MATERIALS (WBM)	57
Milaeva E.R., Shpakovsky D.B., Nazarov A.A., Tyurin V.Yu., Gracheva Yu.A., Antonenko T.A., Kharitonashvili E.V. HYBRID METAL COMPLEXES WITH OPPOSED BIOLOGICAL MODES OF ACTION – CANDIDATES FOR BIOMEDICAL APPLICATION	
Mun G.A., Yermukhambetova B.B., Mangazbayeva R.A., Farrell S., Agibayeva L., Rapagatova K. THE RADIATION CHEMICAL SYNTHESIS OF NEW THERMOSENSITIVE HYDROGELS BASED ON COPOLYMERS 2-HYDROXYETHYL METHACRYLATE	
AND THEIR PHYSICO-CHEMICAL BEHAVIOR	
NICKEL (II) AND IRON (II,III) DICARBOXYLATES	

Naseer M.M.

HETEROATOM BRIDGED CALIXAROMATICS:	
SYNTHETIC STRATEGIES, CONFORMATION AND FUNCTIONALIZATION	 51

6-10 June 2017 Sochi, Russia www.mam-17.org

THE RADIATION CHEMICAL SYNTHESIS OF NEW THERMOSENSITIVE HYDROGELS BASED ON COPOLYMERS 2-HYDROXYETHYL METHACRYLATE AND THEIR PHYSICO-CHEMICAL BEHAVIOR

Mun G.A.,¹ Yermukhambetova B.B.,¹ Mangazbayeva R.A.,¹ Farrell S.,² Agibayeva L.,¹ Rapagatova K.¹

> ¹al-Farabi Kazakh National University, Almaty, Kazakhstan ²Rowan University, Glassboro, New Jersey, USA *mungrig@yandex.kz*

we approach that was previously proposed [1] for the synthesis of thermally sensitive polymers was ed. This approach is based on the radical copolymerization of monomers with a significant differin hydrophilic-hydrophobic balance of the structure. In present work vinyl ether of ethylene glycol G) and 2-hydroxyethyl acrylate (HEA) were used as hydrophilic comonomers, and 2-hydroxyethyl acrylate (HEMA) as a relatively hydrophobic comonomer. Water-soluble and water-swellable copos were obtained by radiation polymerization. The kinetics of copolymerisation process was studied. copolymers were allocated on the initial stages of conversion and their compositions were deterd by ¹H and ¹³C NMR spectroscopy; the copolymerization constants were calculated. The obtained hymers show properties typical for thermosensitive polymers at a certain ratio of hydrophilic and phobic units in macrochains, i.e. their aqueous solutions are characterized by a lower critical solutemperature. In this case the temperature of phase separation can be regulated within a wide range by ing the copolymer composition.

Hydrogels obtained by three-dimensional radiation copolymerization of HEMA and hydrophilic conomers mentioned above in the presence of a crosslinking agent, also have a pronounced thermal estitivity and show the ability to thermo-inducted collapse or contraction. The possibility of adjusting thermosensitive parameters within a wide range is provided by varying the nature and content of the drophobic component in polymer networks as well as complexing with the surfactants and polycarboxic acids.

In this work firstly the thermosensitive polymers were obtained by radiation initiated grafting copomerization of HEMA and gellan (Gel) in the presence of crosslinking agent N,N'-methylenebisacrylide. The main patterns of forming the three-dimensional structure of HEMA-Gel hydrogel were studthe increase of HEMA content in the initial monomer mixture leads to the decrease of gel fraction eld, as well as to the raise of swelling degree for obtained hydrogels. HEMA-Gel hydrogels possess inifest thermosensitivity. With the increase of temperature the synthesized hydrogel undergo to the mraction, which parameters can be regulated by changing the copolymer composition, as well as by meraction with the surfactants of anionic and cationic nature.

 Nam I.K., Mun G.A., Urkimbaeva P.I., Nurkeeva Z.S. γ-Rays-induced synthesis of hydrogels of vinyl ethers with stimuli-sensitive behavior // Rad. Phys. Chem. 66 (2003), 281-287.

59