GPU Programming with Python

Using the PyOpenCL module

Open Computing Language (OpenCL) is a framework used to develop programs that work
across heterogeneous platforms, which can be made either by the CPU or GPU that are
produced by different manufacturers. This platform was created by Apple, but has been
developed and maintained by a non-profit consortium called the Khronos Group. This
framework is the main alternative for the CUDA execution of software on a GPU, but has a
point of view that is diametrically opposed. However, CUDA makes specialization its strong
point (produced, developed, and compatible with NVIDIA), ensuring excellent performance at
the expense of portability. OpenCL offers a solution compatible with nearly all devices on the
market. Software written in OpenCL can run on processor products from all major industries,
such as Intel, NVIDIA, IBM, and AMD. OpenCL includes a language to write kernels based on
C99 (with some restrictions), allowing you to use the hardware available directly in the same
way as with CUDA-C-Fortran or CUDA. OpenCL provides functions to run highly parallel and
synchronization primitives, such as indicators for regions of memory and control mechanisms
for the different platforms of execution. The portability of OpenCL programs, however, is limited
to the ability to run the same code on different devices, and this ensures that the performance
is equally reliable. To get the best performance possible, it is fundamental that you refer to

the execution platform, optimizing the code based on the characteristics of the device. In the
following recipes, we'll examine the Python implementation of OpenCL called PyOpenCL.

Getting ready

PyOpenCL is to OpenCL what PyCUDA is to CUDA: a Python wrapper to those GPGPU platforms
(PyOpenCL can run alternatively on both NVIDIA and the AMD GPU card.) It is developed

and maintained by Andreas Kldckner. Installing PyOpenCL on Windows is easy when using
the binary package provided by Christoph Gohlke. His webpage contains Windows binary
installers for the most recent versions of hundreds of Python packages. It is of invaluable help
for those Python users that use Windows.

With these instructions, you will build a 32-bit PyOpenCL library for a Python 2.7 distro on a
Windows 7 machine with a NVIDIA GPU card:

1. Gotohttp://www.lfd.uci.edu/~gohlke/pythonlibs/#pyopencl and
download the file from pyopencl-2015.1-cp27-none-win32.whl (and the
relative dependencies if required).

2. Download and install the Win32 OpenCL driver (from Intel) from http://
registrationcenter.intel.com/irc nas/5198/opencl runtime 15.1
x86_ setup.msi.

3. Finally, install the pyOpencL file from Command Prompt with the command:

pip install pyopencl-2015.1-cp27-none-win32.whl

240

Chapter 6

How to do it...

In this first example, we verify that the PyOpenCL environment is correctly installed.

So, a simple script that can enumerate all major hardware features using the OpenCL library

is presented as:

import pyopencl as cl

def print device info()

print ('\n' + '=' * 60 + '\nOpenCL Platforms and Devices')
for platform in cl.get platforms():
print ('=' * 60)
print ('Platform - Name: ' + platform.name)
print ('Platform - Vendor: ' + platform.vendor)
print ('Platform - Version: ' + platform.version)
print ('Platform - Profile: ' + platform.profile)

for device in platform.get devices():
print (' '+ '-' * 56)
print (' Device - Name: ' \
+ device.name)

print (' Device - Type: ' \

+ cl.device type.to string(device.type))
Device - Max Clock Speed: {0} Mhz'\

print (!
.format (device.max clock frequency))
print (' Device - Compute Units: {0}'\
.format (device.max compute units))
print (!
.format (device.local mem size/1024.0))
print ('

Device - Local Memory: {0:.0f} KB'\

Device - Constant Memory: {0:.0f} KB'\

.format (device.max_constant buffer size/1024.0))
print (' Device - Global Memory: {0:.0f} GB'\

.format (device.global mem size/1073741824.0))
Device - Max Buffer/Image Size: {0:.0f} MB'\
.format (device.max_mem alloc size/1048576.0))

print (!

print (' Device - Max Work Group Size: {0
.format (device.max work group size))

print ('\n")

if name == " main ":

print device info()

241

GPU Programming with Python

The output that shows the main characteristics of the CPU and GPU card that is installed
should be like this:

C:\Python CookBook\Chapter 6 - GPU Programming with Python\>python
PyOpenCLDeviceInfo.py

Platform - Name: NVIDIA CUDA
Platform - Vendor: NVIDIA Corporation
Platform - Version: OpenCL 1.1 CUDA 6.0.1
Platform - Profile: FULL PROFILE

Device - Name: GeForce GT 240

Device - Type: GPU

Device - Max Clock Speed: 1340 Mhz

Device - Compute Units: 12

Device - Local Memory: 16 KB

Device - Constant Memory: 64 KB

Device - Global Memory: 1 GB

Platform - Name: Intel(R) OpenCL
Platform - Vendor: Intel(R) Corporation
Platform - Version: OpenCL 1.2
Platform - Profile: FULL PROFILE
Device - Name: Intel(R) Core(TM)2 Duo CPU E6550 @ 2.33GHz
Device - Type: CPU
Device - Max Clock Speed: 2330 Mhz
Device - Compute Units: 2
Device - Local Memory: 32 KB
Device - Constant Memory: 128 KB

Device - Global Memory: 2 GB

242

Chapter 6

The code is very simple. In the first line, we import the pyopencl module:

import pyopencl as cl

Then, the platform.get devices () method is used to get a list of devices. For each
device, the set of its main features are printed on the screen:

» The name and device type

» Max clock speed

» Compute units

» Local/constant/global memory

How to build a PyOpenCL application

As for programming with PyCUDA, the first step to build a program for PyOpenCL is the
encoding of the host application. In fact, it is performed on the host computer (typically,
the user's PC) and then it dispatches the kernel application on the connected devices (GPU
cards).

The host application must contain five data structures:

» Device: This identifies the hardware where the kernel code must be executed. A
PyOpenCL application can be executed on CPU and GPU cards but also in embedded
devices, such as Field Programmable Gate Array (FPGA).

» Program: This is a group of kernels. A program selects the kernel that must be
executed on the device.

» Kernel: This is the code to be executed on the device. A kernel is essentially a C-like
function that enables it to be compiled for execution on any device that supports
OpenCL drivers. A kernel is the only way the host can call a function that will run on a
device. When the host invokes a kernel, many work items start running on the device.
Each work item runs the code of the kernel, but works on a different part of the
dataset.

» Command queue: Here, each device receives kernels through this data structure. A
command queue orders the execution of kernels on the device.

243

GPU Programming with Python

>

Context: This is a group of devices. A context allows devices to receive kernels and

transfer data.

Program

context

a

Kernels
|

A BO CO

Device O Device 1 Device 2

Device 3

D()

PyOpenCL programming

The preceding figure shows how these data structures can work in a host application. Note
that a program can contain multiple functions to be executed on the device, and each kernel
encapsulates only a single function from the program.

How to do it...

In this example, we show you the basic steps to build a PyOpenCL program. The task here is to
execute the parallel sum of two vectors. In order to maintain a readable output, let's consider
two vectors each from the 100 elements. The resulting vector will be for each ith element,
which is the sum of the ith element vector a and vector_b.

Of course, to be able to appreciate the parallel execution of this code, you can also increase
some orders whose magnitude is of the size of the vector_ dimension input:

import numpy as np
import pyopencl as cl
import numpy.linalg as la

vector dimension = 100
vector a = np.random.randint (vector dimension,
vector b = np.random.randint (vector dimension,

size=vector dimension)
size=vector dimension)

Chapter 6

platform = cl.get platforms() [0]
device = platform.get devices() [0]

context = cl.Context ([devicel])
queue = cl.CommandQueue (context)

mf = cl.mem flags
a g = cl.Buffer(context, mf.READ ONLY | mf.COPY HOST PTR,
hostbuf=vector_a)
b g = cl.Buffer(context, mf.READ ONLY | mf.COPY HOST PTR,
hostbuf=vector_ b)

program = cl.Program(context, """
__kernel void vectorSum(_ global const int *a g, = global const int
*b g, _global int *res g) {
int gid = get_global id(0) ;
res_glgid]l = a_glgid]l + b_glgid]l;
}

nn ll) bulld()

res g = cl.Buffer(context, mf.WRITE ONLY, vector a.nbytes)
program.vectorSum(queue, vector a.shape, None, a g, b g, res g)

res np = np.empty like(vector a)
cl.enqueue_copy (queue, res np, res_g)
print ("PyOPENCL SUM OF TWO VECTORS")
print ("Platform Selected = %s" %$platform.name)
print ("VECTOR LENGTH = %s" %$vector dimension)
"INPUT VECTOR A")

print vector_a

print ("INPUT VECTOR B")

print vector b

print ("OUTPUT VECTOR RESULT A + B ")

print res np

(
(
print ("Device Selected = %s" %device.name)
(
(

print

assert (la.norm(res np - (vector a + vector b))) < le-5
The output from Command Prompt should be like this:

C:\Python CookBook\ Chapter 6 - GPU Programming with Python\Chapter 6 -
codes>python PyOpenCLParallellSum.py

245

GPU Programming with Python

Platform Selected = NVIDIA CUDA
Device Selected = GeForce GT 240

VECTOR LENGTH = 100
INPUT VECTOR A

[0 29 88 46 68 93 81 3 58 44 95 20 81 69 85 25 89 39 47 29 47 48 20 86
59 99 3 26 68 62 16 13 63 28 77 57 59 45 52 89 16 6 18 95 30 66 19 29

31 18 42 34 70 21 28 0 42 96 23 86 64 88 20 26 96 45 28 53 75 53 39 83

85 99 49 93 23 39 1 89 39 87 62 29 51 66 5 66 48 53 66 8 51 3 29 96

67 38 22 88]

INPUT VECTOR B

[98 43 16 28 63 1 83 18 6 58 47 86 59 29 60 68 19 51 37 46 99 27 4 94
5 22 3 96 18 84 29 34 27 31 37 94 13 89 3 90 57 85 66 63 8 74 21 18 34
93 17 26 9 88 38 28 14 68 88 90 18 6 40 30 70 93 75 0 45 86 15 10 29
84 47 74 22 72 69 33 81 31 45 62 81 66 69 14 71 96 91 51 35 4 63 36 28
65 10 41]

OUTPUT VECTOR RESULT A + B
[98 72 104 74 131 94 164 21 64 102 142 106 140 98 145 93 108 90
84 75 146 75 24 180 64 121 6 122 86 146 45 47 90 59 114 151
72 134 55 179 73 91 84 158 38 140 40 47 65 111 59 60 79 109
66 28 56 164 111 176 82 94 60 56 166 138 103 53 120 139 54 93
114 183 96 167 45 111 70 122 120 118 107 91 132 132 74 80 119 149
157 59 86 7 92 132 95 103 32 129]

In the first line of the code after the required module import, we defined the input vectors:

vector dimension = 100
vector a = np.random.randint (vector dimension, size= vector dimension)
vector b = np.random.randint (vector dimension, size= vector dimension)

Each vector contains 100 integers items that are randomly selected thought the NumPy
function np.random.randint (max integer , size of the vector).

Then, we must select the device to run the kernel code. To do this, we must first select the
platform using the PyOpenCL's get platform()statement:

platform = cl.get platforms() [0]

246

Chapter 6

This platform, as you can see from the output, corresponds to the NVIDIA CUDA platform.
Then, we must select the device using the platform's get device () method:

device = platform.get devices() [0]

In the following code, the context and queue are defined. PyOpenCL provides the method
context (device selected) and queue (context selected):

context = cl.Context ([device])
queue = cl.CommandQueue (context)

To perform the computation in the device, the input vector must be transferred to the device's
memory. So, two input buffers in the device memory must be created:

mf = cl.mem flags

a g = cl.Buffer(context, mf.READ ONLY | mf.COPY HOST_PTR,
hostbuf=vector_a)

b g = cl.Buffer(context, mf.READ ONLY | mf.COPY HOST PTR,
hostbuf=vector_b)

Also, we prepare the buffer for the resulting vector:
res_g = cl.Buffer(context, mf.WRITE ONLY, vector a.nbytes)
Finally, the core of the script, that is, the kernel code is defined inside program:

program = cl.Program(context, """
_ _kernel void vectorSum(__global const int *a_g, _ global const int
*b g, global int *res g) {

int gid = get _global id(0);

res_g[gid]l = a glgid] + b_glgid];

}

nn n) bulld()

The kernel's name is vectorSum, while the parameter list defines the data types of the input
arguments (vectors of integers) and output data type (a vector of the integer).

In the body of the kernel function, the sum of two vectors is defined as follows:

» Initialize the vector index: int gid = get global id(0)

» Sum up the vector's components: res_gl[gid] = a _glgid] + b_glgid];

In OpenCL and PyOpenCL, buffers are attached to a context and are only moved to a device
once the buffer is used on that device. Finally, we execute vectorSum in the device:

program.vectorSum(queue, vector_ a.shape, None, a g, b g, res g)

247

GPU Programming with Python

To visualize the results, an empty vector is built:
res np = np.empty like(vector_a)
Then, the result is copied into this vector:
cl.enqueue copy (queue, res_np, res g)
Finally, the results are displayed:

print ("VECTOR LENGTH = %s" %vector_dimension)
print ("INPUT VECTOR A")

print vector_a

print ("INPUT VECTOR B")

print vector_b

print ("OUTPUT VECTOR RESULT A + B ")

print res np

To check the result, we use the assert statement. It tests the result and triggers an error if
the condition is false:

assert (la.norm(res np - (vector_a + vector b))) < le-5

Evaluating element-wise expressions with

PyOpenCli

Similar to PyCUDA, PyOpenCL provides the functionality in the pyopencl.elementwise
class that allows us to evaluate the complicated expressions in a single computational pass.
The method that realized this is:

ElementwiseKernel (context, argument, operation, name,",",",
optional parameters)

Here:
» context: This is the device or the group of devices on which the element-wise

operation will be executed

» argument: This is a C-like argument list of all the parameters involved in the
computation

» operation: This is a string that represents the operation that is to be performed
on the argument list

» name: This is the kernel name associated with ElementwiseKernel

» optional parameters: These are notimportant for this recipe.

248

