Chapter 3

The multiprocessing.Pool method applies function square to the input element to
perform a simple calculation. The total number of parallel processes is four:

pool = multiprocessing.Pool (processes=4)
The pool . map method submits to the process pool as separate tasks
pool outputs = pool.map(function square, inputs)
The parameter inputs is a list of integer from 0 to 100:
inputs = list (range (100))
The result of the calculation is stored in pool outputs. Then, the final result is printed:
print ('Pool :', pool outputs)

It is important to note that the result of the pool .map () method is equivalent to Python's
built-in function map (), except that the processes run parallelly.

Using the mpi4py Python module

The Python programming language provides a number of MPI modules to write parallel
programs. The most interesting of these is the mpi4py library. It is constructed on top of the
MPI-1/2 specifications and provides an object-oriented interface, which closely follows MPI-2
C++ bindings. A C MPI user could use this module without learning a new interface. Therefore,
it is widely used as an almost full package of an MPI library in Python.

The main applications of the module, which will be described in this chapter, are:

» Point-to-point communication
» Collective communication

» Topologies

o7}

Process-based Parallelism

Getting ready

The installation procedure of mpi4py using a Windows machine is, as follows (for other 0OS,
referto http://mpi4py.scipy.org/docs/usrman/install.html#):

1. Download the MPI software library mpich
from http://www.mpich.org/downloads/.

[5 v -cuoown = el g O —— i o ——

3 mpicherg O S mpih +fow windows 4B + h 4BR- 0 0 =

& piavistat | Come inioare

M PI c H High-Performance Portable MPI "

Home About Downloads Documentation Support ABI Compatibility Initiative

Searr.:h-
Downloads
= News
s sy . . . = Documentation
MPICH is distributed under a BSD-like license. NOTE: MPICH binary packages are = Downloads
available in many UNIX distributions and for Windows. For example, you can search for it = Support
using “yum” (on Fedora), “apt” (Debian/Ubuntu), “pkg_add” (FreeBSD) or “port”/"brew” (Mac ERBRGE

0S). If available for your platform, this is likely the easiest installation method since it
automatically checks for dependency packages and installs them, Otherwise you can use the

installation guide for installing MPICH from the source code below. MPICHZ Was awardad an

Release Platform Download Size R&D100 award in 2005
mpich-3.1.4 (stable release) MPICH [http] 11 MB
hydra-3.1.4 (stable release) Hydra [http] 3MB

(mpiexec)

The MPICH download page
2. Open an admin Command Prompt by right-clicking on the command prompt icon and
select Run as administrator.

3. Runmsiexec /i mpich installation file.msi from the admin Command
Prompt to install MPICH2.

During the installation, select the option that installs MPICH2 for all users.

5. Run wmpiconfig and store the username/password. Use your real Windows login
name and password.

6. Add C:\Program Files\MPICH2\bin tothe system path—no need to reboot the
machine.

7. Check smpd using smpd -status. It should return smpd running on
Shostnames.

8. To test the execution environment, go to the SMPICHROOT\ examples directory and
run cpi.exe using mpiexec -n 4 cpi.

5]

Chapter 3

9. Download the Python installer pip from https://pip.pypa.io/en/stable/
installing.html.

It will create a pip.exe file in the Scripts directory of your Python distribution.

G Veey-coawin x| o SRl % | Mg Wiles NADRE- W x| O Dowrkonh{MIICH x| [E] bl —pt L1 doc < | T
- oypaio mpich ~fow windows @ 3 8 sOR-0 B =
8 pisvitn = Cama mai
Docs »Installation ©) Edit on GitHub

Installation

Installation

Python & C

support Python & OS Support «

pip included with Python
install pip pip works with CPython versions 2.6, 2.7, 3.2, 3.3, 3.4 and also pypy.
bl pip works on Unix/Linux, O5 X, and Windows.

Using OS Package Managers

Python 2.5 was supported throughv1.3.1, and Python 2.4 was supported through v1.1.

pip included with Python

Python 2.7.9 and later (on the python2 series), and Python 3.4 and later include pip by default [1] 5o
you may have pip already.

Install pip

8 Read the Docs Toinstall pip, securely download get-pip.py. [2]

The PIP download page
10. Then, from the Command Prompt, type the following to install mpi4py:

C:> pip install mpidpy

How to do it...

Let's start our journey to the MPI library by examining the classic code or a program that prints
the phrase "Hello, world!" on each process that is instantiated:

#thello.py

from mpi4py import MPI

comm = MPI.COMM WORLD

rank = comm.Get_rank ()

print ("hello world from process ", rank)

To execute the code, type the following command line:

C:> mpiexec -n 5 python helloWorld MPI.py

[}

Process-based Parallelism
This is the result that we would get after we execute this code:

('hello world from process ', 1)
('hello world from process ', 0)
('hello world from process ', 2)
('hello world from process ', 3)

('hello world from process ', 4)

In MPI, the processes involved in the execution of a parallel program are identified by a
sequence of non-negative integers called ranks. If we have a number p of processes that runs
a program, the processes will then have a rank that goes from 0 to p-1. The function MPI that
comes to us to solve this problem has the following function calls:

rank = comm.Get_ rank ()

This function returns the rank of the process that called it. The comm argument is called a
communicator, as it defines its own set of all processes that can communicate together,
namely:

comm = MPI.COMM WORLD

An example of communication between processes in MPL.COMM_WORLD

There's more...

It should be noted that, for illustration purposes only, the stdout output will not always

be ordered, as multiple processes can apply at the same time by writing on the screen

and the operating system arbitrarily chooses the order. So, we are ready for a fundamental
observation: every process involved in the execution of MPI runs the same compiled binary,
so each process receives the same instructions to be executed.

100

Chapter 3

Point-to-point communication

One of the most important features among those provided by MPI is the point-to-point
communication, which is a mechanism that enables data transmission between two
processes: a process receiver, and process sender.

The Python module mpi4py enables point-to-point communication via two functions:

» Comm.Send(data, process_destination): This sends data to the destination
process identified by its rank in the communicator group

» Comm.Recv(process_source): This receives data from the source process, which
is also identified by its rank in the communicator group

The comm parameter, which stands for communicator, defines the group of processes, that
may communicate through message passing:

comm = MPI.COMM WORLD

How to do it...

In the following example, we show you how to utilize the comm. send and comm. recv
directives to exchange messages between different processes:

from mpi4py import MPI

comm=MPI .COMM_WORLD
rank = comm.rank

print ("my rank is : " , rank)
if rank==0:
data= 10000000
destination process = 4

comm.send (data,dest=destination process)
print ("sending data %s " %data + \
"to process %d" %destination process)

if rank==1:
destination process = 8
data= "hello"
comm.send (data,dest=destination process)
print ("sending data %s :" %data + \
"to process %d" %destination process)

Process-based Parallelism

if rank==4:
data=comm.recv (source=0)
print ("data received is = %s" %data)

if rank==8:
datal=comm.recv (source=1)
print ("datal received is = %s" %datal)

To run the script, type the following:
C:\>mpiexec -n 9 python pointToPointCommunication.py
This is the output that you'll get after you run the script:

('"my rank is : ', 5)

('"my rank is : ', 1)

sending data hello :to process 8
('"my rank is : ', 3)

('"my rank is : ', 0)

sending data 10000000 to process 4
('"my rank is : ', 2)

('"my rank is : ', 7)

('"my rank is : ', 4)

data received is = 10000000

('"my rank is : ', 8)

datal received is = hello

('"my rank is : ', 6)

We ran the example with a total number of processes equal to nine. So in the communicator
group, comm, we have nine tasks that can communicate with each other:

comm=MPI.COMM_ WORLD
Also, to identify a task or processes inside the group, we use their rank value:
rank = comm.rank

We have two sender processes and two receiver processes.

102

Chapter 3

The process of a rank equal to zero sends numerical data to the receiver process of a rank
equal to four:

if rank==0:
data= 10000000
destination process = 4
comm.send (data,dest=destination process)

Similarly, we must specify the receiver process of rank equal to four. Also, we note that the
comm. recv statement must contain as an argument, the rank of the sender process:

if rank==4:
data=comm.recv (source=0)

For the other sender and receiver processes, the process of a rank equal to one and the
process of a rank equal to eight, respectively, the situation is the same but the only difference
is the type of data. In this case, for the sender process, we have a string that is to be sent:

if rank==1:
destination process = 8
data= "hello"
comm.send (data,dest=destination process)

For the receiver process of a rank equal to eight, the rank of the sender process is pointed out:

if rank==8:
datal=comm.recv (source=1)

The following figure summarizes the point-to-point communication protocol in mpi4py:

sender receiver

send Request to send

receive

Permission to send

P
\

DATA

\

~
pd

y

The send/receive transmission protocol

Process-based Parallelism

It is a two-step process, consisting of sending some data from one task (sender) and of
receiving these data by another task (receiver). The sending task must specify the data to be
sent and their destination (the receiver process), while the receiving task has to specify the
source of the message to be received.

There's more...

The comm. send () and comm.recv () functions are blocking functions; they block the caller
until the buffered data involved can safely be used. Also in MPI, there are two management
methods of sending and receiving messages:

» The buffered mode
» The synchronous mode

In the buffered mode, the flow control returns to the program as soon as the data to be sent
has been copied to a buffer. This does not mean that the message is sent or received. In
the synchronous mode, however, the function only gets terminated when the corresponding
receive function begins receiving the message.

Avoiding deadlock problems

A common problem we face is that of the deadlock. This is a situation where two (or more)
processes block each other and wait for the other to perform a certain action that serves
to another, and vice versa. The mpi4py module doesn't provide any specific functionality to
resolve this but only some measures, which the developer must follow to avoid problems of
deadlock.

How to do it...

Let's first analyze the following Python code, which will introduce a typical deadlock problem;
we have two processes, rank equal to one and rank equal to five, that communicate which
each other and both have the data sender and data receiver functionality:

from mpi4py import MPI
comm=MPTI .COMM_WORLD

rank = comm.rank
print ("my rank is : " , rank)

104

if rank==1:
data send= "a"
destination process = 5
source_process = 5

data received=comm.recv (source=source process)
comm.send (data send,dest=destination process)

print ("sending data %s " %data_send + \
"to process %d" %destination process)
print ("data received is = %s" %data received)

if rank==5:
data_send= "b"
destination process = 1
source_process = 1

comm.send (data send,dest=destination process)
data received=comm.recv(source=source process)

print ("sending data %s :" %data_send + \
"to process %d" %destination process)
print ("data received is = %s" %data received)

Chapter 3

If we try to run this program (it makes sense to execute it with only two processes), we note

that none of the two processes are able to proceed:

C:\>mpiexec -n

9 python deadLockProblems.py

('"my rank is : ', 8)
('"my rank is : ', 3)
('"my rank is : ', 2)
('"my rank is : ', 7)
('"my rank is : ', 0)
('"my rank is : ', 4)
('"my rank is : ', 6)

Process-based Parallelism

Both prepare to receive a message from the other and get stuck there. This happens because
the function MPI comm. recv () as well as the comm. send () MPI blocks them. It means that
the calling process waits for their completion. As for the comm. send () MPI, the completion
occurs when the data has been sent and may be overwritten without modifying the message.
The completion of the comm. recv () MPI, instead, is when the data has been received and
can be used. To solve the problem, the first idea that occurs is to invert the comm. recv ()
MPI with the comm. send () MPI in this way:

if rank==1:
data_send= "a"
destination process = 5
source_process = 5
comm.send (data_send,dest=destination process)
data received=comm.recv (source=source_ process)

if rank==5:
data_send= "b"
destination process = 1
source_process = 1
data received=comm.recv (source=source_ process)
comm.send (data_send,dest=destination process)

This solution, however, even if correct from the logical point of view, not always ensures the
avoidance of a deadlock. Since the communication is carried out through a buffer, where the
comm. send () MPI copies the data to be sent, the program runs smoothly only if this buffer
is able to hold them all. Otherwise, there is a deadlock: the sender cannot finish sending
data because the buffer is committed and the receiver cannot receive data as it is blocked
by a comm. send () MPI, which is not yet complete. At this point, the solution that allows us
to avoid deadlocks is used to swap the sending and receiving functions so as to make them
asymmetrical:

if rank==1:
data_send= "a"
destination process = 5
source_process = 5
comm.send (data_send,dest=destination process)
data received=comm.recv (source=source_ process)

if rank==5:
data_send= "b"
destination process = 1
source_process = 1
comm.send (data_send,dest=destination process)
data received=comm.recv (source=source_ process)

106

Chapter 3

Finally, we get the correct output:

C:\>mpiexec -n 9 python deadLockProblems.py

('"my rank is : ', 7)
('‘my rank is : ', 0)
('‘my rank is : ', 8)
('"my rank is : ', 1)

sending data a to process 5
data received is = b

('‘my rank is : ', 5)

sending data b :to process 1

data received is = a

('"my rank is : ', 2)
('‘my rank is : ', 3)
('‘my rank is : ', 4)
('‘my rank is : ', 6)

The solution to the deadlock is not the only solution. There is, for example, a particular
function that unifies the single call that sends a message to a given process and receives
another message that comes from another process. This function is called Sendrecv:

Sendrecv (self, sendbuf, int dest=0, int sendtag=0, recvbuf=None, int
source=0, int recvtag=0, Status status=None)

As you can see, the required parameters are the same as the comm. send () MPI and the
comm.recv () MPI. Also, in this case, the function blocks, but compared to the two already
seen previously it offers the advantage of leaving the communication subsystem responsible
for checking the dependencies between sending and receiving, thus avoiding the deadlock. In
this way the code of the previous example becomes as shown:

if rank==1:
data_send= "a"
destination process = 5
source_process = 5
data received=comm.sendrecv(data send,dest=destination process,
source =source_process)
if rank==5:
data_send= "b"

Process-based Parallelism

destination process = 1

source_process = 1

data received=comm.sendrecv(data send,dest=destination process,
source=source_process)

Collective communication using broadcast

During the development of a parallel code, we often find ourselves in the situation where we
have to share between multiple processes the value of a certain variable at runtime or certain
operations on variables that each process provides (presumably with different values).

To resolve this type of situations, the communication trees are used (for example the process
0 sends data to the processes 1 and 2, which respectively will take care of sending them to
the processes 3, 4, 5, and 6, and so on).

Instead, MPI libraries provide functions ideal for the exchange of information or the use of
multiple processes that are clearly optimized for the machine in which they are performed.

O O O D

Broadcasting data from process O to processes 1, 2, 3, and 4

A communication method that involves all the processes belonging to a communicator is
called a collective communication. Consequently, a collective communication generally
involves more than two processes. However, instead of this, we will call the collective
communication broadcast, wherein a single process sends the same data to any other
process. The mpi4py functionalities in the broadcast are offered by the following method:

buf = comm.bcast (data to share, rank of root process)

This function simply sends the information contained in the message process root to every
other process that belongs to the comm communicator; each process must, however, call it by
the same values of root and comm.

108

How to do it...

Chapter 3

Let's now see an example wherein we've used the broadcast function. We have a root process

of rank equal to zero that shares its own data, variable to_ share, with the other
processes defined in the communicator group:

from mpi4py import MPI

comm = MPI.COMM WORLD
rank = comm.Get rank ()

if rank == 0:
variable to share = 100
else:
variable to share = None
variable to share = comm.bcast (variable to share, root=0)
print ("process = %d" %$rank + " variable shared = %4 " \

$variable to share)
The output obtained with a communicator group of ten processes is:

C:\>mpiexec -n 10 python broadcast.py

process = 0 variable shared = 100
process = 8 variable shared = 100
process = 2 variable shared = 100
process = 3 variable shared = 100
process = 4 variable shared = 100
process = 5 variable shared = 100
process = 9 variable shared = 100
process = 6 variable shared = 100
process = 1 variable shared = 100
process = 7 variable shared = 100

The process root of rank zero instantiates a variable, variabile to share, equal to 100.

This variable will be shared with the other processes of the communication group:

if rank == 0:
variable to share = 100

Process-based Parallelism

To perform this, we also introduce the broadcasting communication statement:

variable to share = comm.bcast (variable to share, root=0)

Here, the parameters in the function are the data to be shared and the root process or main
sender process, as denoted in the previous figure. When we run the code, in our case, we
have a communication group of ten processes, variable to_share is shared between the
others processes in the group. Finally, the print statement visualizes the rank of the running
process and the value of its variable:

print ("process = %d" %rank + " variable shared = %d " \
$variable to share)

There's more...

Collective communication allows simultaneous data transmission between multiple processes
in a group. In mpi4py the collective communication are provided only in their blocking version
(they block the caller method until the buffered data involved can safely be used.)

The most commonly collective operations are:
» Barrier synchronization across the group's processes
» Communication functions:

o Broadcasting data from one process to all process in the group
o Gathering data from all process to one process
o Scattering data from one process to all process

» Reduction operation

Collective communication using scatter

The scatter functionality is very similar to a scatter broadcast but has one major difference,
while comm.bcast sends the same data to all listening processes, comm. scatter can
send the chunks of data in an array to different processes. The following figure illustrates
the functionality of scatter:

