
Signal Processing Toolbox™ Release Notes

How to Contact MathWorks

Latest news: www.mathworks.com

Sales and services: www.mathworks.com/sales_and_services

User community: www.mathworks.com/matlabcentral

Technical support: www.mathworks.com/support/contact_us

Phone: 508-647-7000

The MathWorks, Inc.
1 Apple Hill Drive
Natick, MA 01760-2098

Signal Processing Toolbox™ Release Notes
© COPYRIGHT 2004–2020 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used or copied
only under the terms of the license agreement. No part of this manual may be photocopied or reproduced in any form
without prior written consent from The MathWorks, Inc.
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by, for, or through
the federal government of the United States. By accepting delivery of the Program or Documentation, the government
hereby agrees that this software or documentation qualifies as commercial computer software or commercial computer
software documentation as such terms are used or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014.
Accordingly, the terms and conditions of this Agreement and only those rights specified in this Agreement, shall pertain
to and govern the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government) and shall
supersede any conflicting contractual terms or conditions. If this License fails to meet the government's needs or is
inconsistent in any respect with federal procurement law, the government agrees to return the Program and
Documentation, unused, to The MathWorks, Inc.

Trademarks
MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand names may be
trademarks or registered trademarks of their respective holders.
Patents
MathWorks products are protected by one or more U.S. patents. Please see www.mathworks.com/patents for
more information.

https://www.mathworks.com
https://www.mathworks.com/sales_and_services
https://www.mathworks.com/matlabcentral
https://www.mathworks.com/support/contact_us
https://www.mathworks.com/trademarks
https://www.mathworks.com/patents

R2020b

Signal Labeler App: Perform faster labeling . 1-2

Signal Labeler App: View spectra and spectrograms 1-2

Signal Labeler App: Import data from files . 1-2

Signal Segmentation: Extract and convert signal regions of interest in
preparation for deep learning . 1-2

European Data Format Files: Read EDF and EDF+ files and obtain
information about them . 1-2

Short-Time Fourier Transform: Reconstruct signals from their STFT
magnitudes and compute one-sided estimates . 1-2

Signal Labeling: Point to signal collections in the workspace or in files
using signalDatastore objects . 1-3

Signal Resampling: Change sample rates of N-D arrays or resample them
to uniform grids . 1-3

chirp Function: Generate complex-valued swept-frequency cosine signals
. 1-3

pmtm Function: Perform spectral analysis using sine tapers 1-3

Deep Learning Examples: Use generative adversarial network and
generate Raspberry Pi code . 1-3

C/C++ Code Generation Support: Generate code for feature extraction,
signal measurements, and vibration analysis . 1-3

GPU acceleration for spectral analysis and time-frequency analysis
functions . 1-4

GPU code generation support for zero-phased filtering and Fourier
synchrosqueezed transform functions . 1-4

tall Array Support: Operate on tall arrays with the pwelch function 1-4

iii

Contents

R2020a

Signal Labeler App: Perform interactive or automated signal labeling . . 2-2

Signal Datastores: Work with signal collections that exist in the
workspace or in files . 2-2

Time-Frequency Analysis: Use variational mode decomposition to extract
intrinsic modes . 2-2

Deep Learning Examples: Use time-frequency analysis and neural
networks for classification and labeling . 2-2

tall Arrays: Operate on tall arrays with the spectrogram and stft functions
. 2-3

GPU code generation support for fftfilt, stft, and istft functions 2-3

GPU acceleration for spectrogram, czt, stft, and wvd functions 2-3

C/C++ Code Generation Support: Generate code for time-frequency
analysis, feature extraction, spectral analysis, multirate signal
processing, and filter design . 2-3

Functionality being removed or changed . 2-3
Label button removed from Signal Analyzer . 2-3

R2019b

Signal Labeling: Perform automated labeling using user-defined
functions . 3-2

Signal Labeling: Automatically find and label signal peaks and valleys
. 3-2

Signal Analyzer App: Analyze complex signals . 3-2

Tall Array Support: Compute spectrograms of signals too large to fit in
memory . 3-2

stft and istft Functions: Compute and invert short-time Fourier
transforms of multichannel signals . 3-2

Time-Frequency Gallery: Examine features and limitations of time-
frequency analysis methods . 3-2

C/C++ Code Generation Support: Generate code for time-frequency
analysis, spectral analysis of nonuniformly sampled signals, and digital
filtering . 3-2

iv Contents

R2019a

Signal Labeling: Label signals interactively and visualize labeled signals
. 4-2

Time-Frequency Analysis: Compute short-time Fourier transforms and
inverse short-time Fourier transforms . 4-2

Signal Analyzer App: Remove trends from signals and estimate their
envelopes . 4-2

Signal Analyzer App: Enhanced management of multichannel signals . . 4-2

C/C++ Code Generation Support: Generate code for filter design, spectral
analysis, and spectral windowing . 4-2

R2018b

Signal Analyzer App: Preprocess signals using user-defined functions
. 5-2

Signal Analyzer App: Change sample rates of signals and convert
nonuniformly sampled signals to uniformly sampled signals 5-2

Time-Frequency Analysis: Analyze signals using the Wigner-Ville
distribution . 5-2

Deep Learning Example: Identify morphological features of signals using
recurrent neural networks . 5-2

Signal Labeling: Define labels and create sets of labeled signals 5-2

R2018a

Signal Analyzer App: Preprocess signals by smoothing and filtering 6-2

Signal Analyzer App: Detect transients and perform time-frequency
analysis using scalogram view . 6-2

One-Step Filtering: Filter signals using lowpass, highpass, bandpass, and
bandstop responses . 6-2

Time-Frequency Analysis: Perform empirical mode decomposition,
Hilbert-Huang transform, and instantaneous frequency estimation . . 6-2

v

Time-Frequency Analysis: Estimate kurtogram, spectral kurtosis, and
spectral entropy . 6-2

poctave Function: Compute 1/N octave spectra and perform octave
smoothing . 6-3

Rotating Machinery: Estimate and track rotational speed from vibration
signals . 6-3

Deep Learning Example: Classify signals using long short-term memory
networks . 6-3

Functionality being removed or changed . 6-3

R2017b

Signal Analyzer App: Analyze sporadic signals with persistence spectrum
and sharpen time-frequency estimates using reassignment 7-2

Signal Analyzer App: Extract and export signal regions of interest 7-2

Signal Analyzer App: Generate MATLAB scripts to automate analysis . . . 7-2

pspectrum Function: Analyze power spectrum, spectrogram, and
persistence spectrum of signals . 7-2

Rotating Machinery: Remove noise coherently with time-synchronous
averaging and analyze wear using envelope spectra 7-2

Modal Analysis: Use parametric methods for FRF and modal parameter
estimation . 7-2

Fatigue Analysis: Perform high-cycle rainflow counting 7-3

findchangepts Function: Find changepoints in spectrograms and other
multivariate signals . 7-3

Functionality being removed or changed . 7-3

R2017a

Signal Analyzer App: Perform time-frequency analysis using spectrogram
view . 8-2

Signal Analyzer App: Analyze timestamped signals 8-2

vi Contents

Modal Analysis: Estimate frequency-response functions and modal
parameters of mechanical systems . 8-2

Cross-Spectrogram: Compare time-frequency content of nonstationary
signals . 8-2

MIMO Spectral Analysis: Estimate cross-spectral density and coherence
for multi-input/multi-output systems . 8-2

Transfer Function Estimation: Compute unbiased estimates for SISO and
MIMO systems containing additive input noise 8-2

dct and idct Functions: Compute four standard types of discrete cosine
transform . 8-3

Code Generation Support: Generate code for an expanded set of Signal
Processing Toolbox functions . 8-3

findpeaks Function: Single-precision support and improved code
generation functionality . 8-3

R2016b

Signal Analyzer App: Perform time- and frequency-domain analysis of
multiple time series . 9-2

Similarity Matching: Find patterns in data using edit distance or dynamic
time warping . 9-2

Order Analysis: Track orders and extract waveforms to analyze rotational
machinery . 9-2

Fourier Synchrosqueezing Transform: Obtain sharp time-frequency
estimates and extract signal modes . 9-2

Distortion Measurement Functions: Measure aliased harmonics in
undersampled signals . 9-2

GPU acceleration: Enhance performance of dct, idct, and sinc functions
. 9-3

Filter Design and Analysis Tool renamed to Filter Designer 9-3

Window Design and Analysis Tool renamed to Window Designer 9-3

Functionality being removed or changed . 9-3

vii

R2016a

Gap Filling: Reconstruct missing samples using autoregressive modeling
. 10-2

Changepoint Detection: Find abrupt changes and statistical shifts in
signals . 10-2

Dynamic Time Warping: Stretch, align, and compare signals with
different time scales . 10-2

Reassigned Periodogram: Sharpen the frequency localization of spectral
estimates . 10-2

Signal Analyzer App: Visualize and compare multiple time series 10-2

datetime Support: Use datetime arrays in Signal Processing Toolbox
functions . 10-2

xcorr Function: Generate faster code for long input vectors 10-2

chebwin Function: Compute Dolph-Chebyshev windows faster 10-3

R2015b

Reassigned Spectrogram: Sharpen the time-frequency localization of
spectral estimates . 11-2

Hampel Filter and Improved Median Filtering: Detect outliers and
remove them from data . 11-2

Order Analysis: Analyze vibrations in rotational machinery with order and
frequency maps . 11-2

Envelope Detection: Extract analytic, peak, and RMS envelopes 11-2

Signal Alignment: Measure delay and align signals in time 11-2

R2015a

Frequency Measurements: Compute mean and median frequencies using
spectral estimates . 12-2

Bandwidth Measurements: Compute occupied bandwidth and bandwidth
at specified power levels . 12-2

viii Contents

resample function accepts signals with nonuniform sampling or missing
data . 12-2

pwelch function computes maximum-hold and minimum-hold spectra
. 12-2

spectrogram function computes two-sided, centered, power, and PSD
spectra . 12-2

Fast chirp Z-transform support for spectral analysis functions 12-2

R2014b

Spectral estimation of signals with nonuniform sampling or missing data
. 13-2

Multichannel support for spectral analysis functions 13-2

Peak finding with visualization and enhanced peak selection 13-2

R2014a

Simplified workflow for specification-based filter design 14-2

Visualization of harmonic distortion measurements 14-2

Changes in name-value pair arguments of measurement functions 14-2

R2013b

Distortion, intermodulation, and SNR measurement functions 15-2

Design raised cosine and Gaussian pulse-shaping filters 15-2

Functionality Being Removed or Changed . 15-2

ix

R2013a

Functions to measure equivalent noise bandwidth, band power, and
spurious-free dynamic range . 16-2

Function interface to compute power spectrum with confidence intervals
and DC-centered spectra . 16-2

Function interface for analysis and implementation of single-precision
filters . 16-2

Function interface for analysis of second-order section (biquad) filters
. 16-2

Code generation support for Signal Processing Toolbox functions 16-2

Functionality Being Removed or Changed . 16-3

R2012b

Signal Browser in SPTool . 17-2

GPU acceleration for xcorr, xcorr2, fftfilt, xcov, and cconv functions . . . 17-3

R2012a

Measurements for Bilevel Pulse Waveforms . 18-2

Signal Statistics . 18-2

R2011b

Passband and Stopband Weights for Fixed-Order Unconstrained Partial
Band Differentiator Filters . 19-2

Numerator and Denominator Order Specifications Added to filterbuilder
for Lowpass and Highpass Butterworth Designs 19-2

Conversion of Error and Warning Message Identifiers 19-2

x Contents

R2011a

Enhancements to filtfilt . 20-2

Symmetric Window Option for Blackman-Harris Windows 20-2

rectpuls Returns Double-Precision Vector . 20-2

Code Generation from MATLAB and Fixed-Point MEX-File Generation
. 20-2

R2010b

Embedded MATLAB Support for Additional Signal Processing Toolbox
Functions . 21-2

R2010a

Single-Precision Support Added for dfilt Objects 22-2

Embedded MATLAB Support for Additional Signal Processing Toolbox
Functions . 22-2

Functions, Objects, Object Methods, and Object Properties Being
Removed . 22-2

Warning for Filter Designer in SPTool . 22-3

R2009b

Embedded MATLAB Support Added to Signal Processing Toolbox
Functions . 23-2

Ability to Export Filter Coefficients Added to realizemdl 23-2

xi

R2009a

New filter design approach using fdesign and filterbuilder 24-2

New dfilt method to specify filter coefficients at block ports 24-2

R2008b

New Walsh–Hadamard Transform functions . 25-2

R2008a

New Marcum Q Function . 26-2

Conversion Between Magnitude and dB Added . 26-2

PMTM Function Enhanced with Ability to Keep or Drop Last Taper 26-2

R2007b

Confidence Interval Estimation Added . 27-2

Spurious-Free Dynamic Range (SFDR) Measurement Added 27-2

Local Maxima/Peak Finder Added . 27-2

Conversions Between Power and dB Added . 27-2

R2007a

lsf2poly and latcfilt Multi-Channel Input Support Added 28-2

Circular Convolution (cconv) Function Added . 28-2

Spectrum Objects Partial Frequency Range Input Support Added 28-2

xii Contents

cceps Factorize Algorithm Information Clarified 28-2

dfilt.statespace Now Supports realizemdl Method 28-2

ellip and ellipap Functions Enhanced . 28-2

R2006b

Frequency Vector Input Added to Spectral Analysis Functions 29-2

FFT Length in Spectral Analyses Changed . 29-2

sosfilt and dfilt filter Method Support Multidimensional Array Input . . 29-2

dfilt block Method Supports Target Subsystem Destination and Link
Between Command Line and Model . 29-2

gaussfir Algorithm Updated . 29-2

R2006a

Taylor Window Function Added . 30-2

SPTool Filter Designer Replaced by FDATool . 30-2

sgolay Example Improved . 30-2

zp2sos zeroflag Parameter Added . 30-2

Help for Objects Changed . 30-2

R14SP3

dfilt (Discrete-Time Filters) Delay Structure Added 31-2

WinTool/WVTool Normalize Magnitude Added . 31-2

FDATool/FVTool Plot Displays Improved . 31-2

FVTool Passband Zoom Added . 31-2

xiii

R14SP2

FDATool and FVTool Changes . 32-2
FDATool Spectral Rejection Masks Added . 32-2
FDATool Generated C Header File Complex Filter Support 32-2
FDATool Tip of the Day Added . 32-2
FDATool State Space Filters Support Removed . 32-2
FDATool/FVTool New Analysis Parameters Magnitude Response Options

. 32-2
FVTool SOS Filter Coefficients Display Enhancement 32-2
FVTool Default Phase Units Changed . 32-2

dfilt Changes . 32-3
dfilt Coefficients Method Changed . 32-3
dfilt Filter States Changed to Use States Property 32-3

Spectral Analysis Changes . 32-3
spectrogram Function Replaces specgram . 32-3
Spectral Analysis Functions Inputs Changed . 32-3
PSD Objects and Function Output Plots Changed 32-3

Other Changes . 32-4
gaussfir Function Replaces firgauss . 32-4
firpm and cfirpm Inputs Changed . 32-4
New Demos . 32-4
Filter Wizard Product Dependency Removed . 32-4

xiv Contents

R2020b

Version: 8.5

New Features

Bug Fixes

Compatibility Considerations

1

Signal Labeler App: Perform faster labeling
Starting this release, the Signal Labeler app lets users perform faster labeling by drawing regions
and points of interest. The app also has a new fast navigation mode that enables users to navigate
quickly through datasets and label members.

Signal Labeler App: View spectra and spectrograms
The Signal Labeler app now shows signal spectra and spectrograms to aid in the labeling process.
You can draw region-of-interest or point labels on the spectrogram or the time plot.

Signal Labeler App: Import data from files
The Signal Labeler app now lets users import data from files.

Signal Segmentation: Extract and convert signal regions of interest in
preparation for deep learning
This release introduces the signalMask object and the binmask2sigroi, sigroi2binmask,
extendsigroi, extractsigroi, mergesigroi, removesigroi, and shortensigroi functions.
With the new functionality, you can:

• Express region-of-interest (ROI) signal masks as tables of ROI limits, as categorical sequences, or
as matrices of binary sequences, and convert between formats

• Manipulate masks: Extend, remove, or merge regions of interest
• Extract signal regions defined by masks to prepare data for training machine learning or deep

learning models
• Plot signals with color-coded regions

European Data Format Files: Read EDF and EDF+ files and obtain
information about them
The European Data Format (EDF) is a widely used storage and file exchange format for biological and
medical signals. This release introduces the edfread and edfinfo functions.

• edfread enables users to read data stored in EDF and EDF+ files into the MATLAB® Workspace.
• edfinfo returns information about the header and contents of an EDF file.

Short-Time Fourier Transform: Reconstruct signals from their STFT
magnitudes and compute one-sided estimates
This release introduces the stftmag2sig function, which allows users to reconstruct a signal time-
domain waveform starting from the magnitude of its short-time Fourier transform.

Starting this release, the stft and istft functions can compute one-sided forward and inverse
short-time Fourier transforms of real-valued signals.

R2020b

1-2

Signal Labeling: Point to signal collections in the workspace or in files
using signalDatastore objects
Starting this release, the labeledSignalSet object accepts input specified by signalDatastore
objects.

Signal Resampling: Change sample rates of N-D arrays or resample
them to uniform grids
This release enhances the resample function to accept N-D arrays as input. You can use the function
to resample multidimensional arrays or to interpolate nonuniformly sampled N-D arrays to uniform
grids.

Compatibility Considerations
In previous releases, resample accepted arrays with more than two dimensions but returned two-
dimensional matrices. As a result of this behavior, the resampled output was correct in some cases
but not all. Starting this release, the function has a dim argument that allows users to specify the
dimension along which to operate. If dim is not specified, resample operates along the first array
dimension with size greater than 1. The output has the same number of dimensions as the input.

chirp Function: Generate complex-valued swept-frequency cosine
signals
The chirp function now generates complex-valued chirps. You can now specify negative initial or
final chirp frequencies.

pmtm Function: Perform spectral analysis using sine tapers
Starting this release, the pmtm function lets you compute multitaper power spectral density estimates
of signals using either Slepian tapers or sine tapers.

Deep Learning Examples: Use generative adversarial network and
generate Raspberry Pi code
This release introduces two examples that use signal processing techniques and deep learning
networks:

• “Generate Synthetic Signals Using Conditional Generative Adversarial Network” uses a
conditional generative adversarial network to produce synthetic signals.

• “Deploy Signal Segmentation Deep Network on Raspberry Pi” generates a MEX function and a
standalone executable that perform waveform segmentation on a Raspberry Pi™.

C/C++ Code Generation Support: Generate code for feature
extraction, signal measurements, and vibration analysis
These Signal Processing Toolbox™ functions now support C/C++ code generation:

1-3

• Feature Extraction — cusum, edr, findsignal, and rssq
• Spectral Measurements — instfreq, sinad, pentropy, pkurtosis, snr, thd, and toi
• Transition Measurements — falltime, risetime, and statelevels
• Vibration Analysis — orderspectrum, rpmfreqmap, rpmordermap, and tachorpm

You must have MATLAB Coder™ to generate standalone C and C++ code for supported functions. For
more information on usage and limitations, see the Extended Capabilities section at the bottom of
each reference page.

GPU acceleration for spectral analysis and time-frequency analysis
functions
The cpsd, fsst, goertzel, istft, mscohere, periodogram, and pwelch functions now support
gpuArray objects. The czt function now supports 3-D input for both numeric arrays and gpuArray
objects. Starting this release, you also can use the spectrogram function on a GPU to compute
short-time Fourier transforms at nonuniformly spaced frequencies.

You must have Parallel Computing Toolbox™ to use gpuArray objects with supported functions. For
more details, see “Run MATLAB Functions on a GPU” (Parallel Computing Toolbox). To see which
GPUs are supported, see “GPU Support by Release” (Parallel Computing Toolbox).

GPU code generation support for zero-phased filtering and Fourier
synchrosqueezed transform functions
The filtfilt, fsst, and ifsst functions now support code generation for graphical processing
units (GPUs).

You must have MATLAB Coder and GPU Coder™ to generate CUDA® code.

tall Array Support: Operate on tall arrays with the pwelch function
The pwelch function now accepts tall arrays as input.

R2020b

1-4

R2020a

Version: 8.4

New Features

Bug Fixes

Compatibility Considerations

2

Signal Labeler App: Perform interactive or automated signal labeling
The Signal Labeler app can now be opened from the Apps tab on the MATLAB Toolstrip or from the
Command Window. The app enables you to import data from the MATLAB workspace and export
labeled data to the workspace or to a file. The app's label viewer is now enhanced to let you edit
labels interactively.

Signal Labeler now enables you to autolabel plotted signals and inspect labeling results before
committing. When in autolabeling mode, you can run any function that labels attributes, regions of
interest, or points of interest. You can then inspect the labeling, modify the autolabeling function, edit
labels, and save the labeling when it is satisfactory. For easier label inspection, the autolabeling mode
displays only the labels generated by the most recently called function.

Signal Datastores: Work with signal collections that exist in the
workspace or in files
This release introduces datastores that make it possible to read, preprocess, and transform signal
collections that exist in the MATLAB workspace or in files. signalDatastore objects enable users
to work with large data collections for easier processing in machine learning and artificial
intelligence applications. For an example of signalDatastore usage, see Waveform Segmentation
Using Deep Learning.

Time-Frequency Analysis: Use variational mode decomposition to
extract intrinsic modes
This release introduces the vmd function, which performs variational mode decomposition. VMD
decomposes a real signal into a number of narrowband mode functions whose envelopes and
instantaneous frequencies vary much more slowly than their central frequencies. The algorithm
determines all mode waveforms and central frequencies simultaneously and thus distributes errors
among them in a balanced way. Variational mode decomposition is suitable for the study of
nonstationary or nonlinear signals.

Deep Learning Examples: Use time-frequency analysis and neural
networks for classification and labeling
This release introduces three examples that employ signal processing techniques and deep learning:

• Iterative Approach for Creating Labeled Signal Sets with Reduced Human Effort uses a train-as-
you-label iterative method for deep learning classifier training.

• Pedestrian and Bicyclist Classification Using Deep Learning (Phased Array System Toolbox) uses a
deep learning network to classify pedestrians and bicyclists based on their micro-Doppler
characteristics.

• Modulation Classification with Deep Learning (Communications Toolbox) performs modulation
classification using a convolutional neural network.

R2020a

2-2

https://www.mathworks.com/help/releases/R2020a/signal/ref/signallabeler-app.html
https://www.mathworks.com/help/releases/R2020a/signal/ref/signallabeler-app.html
https://www.mathworks.com/help/releases/R2020a/signal/ref/signaldatastore.html
https://www.mathworks.com/help/releases/R2020a/signal/examples/waveform-segmentation-using-deep-learning.html
https://www.mathworks.com/help/releases/R2020a/signal/examples/waveform-segmentation-using-deep-learning.html
https://www.mathworks.com/help/releases/R2020a/signal/ref/vmd.html
https://www.mathworks.com/help/releases/R2020a/signal/examples/iterative-labeling-for-time-domain-signals-using-deep-learning.html
https://www.mathworks.com/help/releases/R2020a/phased/examples/pedestrian-and-bicyclist-classification-using-deep-learning.html
https://www.mathworks.com/help/releases/R2020a/comm/examples/modulation-classification-with-deep-learning.html

tall Arrays: Operate on tall arrays with the spectrogram and stft
functions
The spectrogram and stft functions now support tall arrays as inputs. For more information on
usage and limitations, see the Extended Capabilities section at the bottom of each reference page.

GPU code generation support for fftfilt, stft, and istft functions
The fftfilt, stft, and istft functions now support code generation for graphical processing
units (GPUs). You must have MATLAB Coder and GPU Coder to generate CUDA code.

GPU acceleration for spectrogram, czt, stft, and wvd functions
The spectrogram, czt, stft, and wvd functions now support gpuArray objects. You must have
Parallel Computing Toolbox to use gpuArray objects with supported functions. For more details, see
Run MATLAB Functions on a GPU (Parallel Computing Toolbox). To see which GPUs are supported,
see GPU Support by Release (Parallel Computing Toolbox).

C/C++ Code Generation Support: Generate code for time-frequency
analysis, feature extraction, spectral analysis, multirate signal
processing, and filter design
These Signal Processing Toolbox functions now support C/C++ code generation:

• Time-Frequency Analysis — hht, kurtogram, pspectrum, spectrogram, and xspectrogram
• Feature Extraction — dtw
• Spectral Analysis — tfestimate
• Spectral Measurements — bandpower, enbw, meanfreq, medfreq, obw, powerbw, and sfdr
• Multirate Signal Processing — resample and upfirdn
• Filter Design — bilinear, butter, lp2bp, lp2bs, lp2hp, lp2lp, and zp2ss
• Transforms — cceps, icceps, fwht, and ifwht
• Linear Predictive Coding — levinson

You must have MATLAB Coder to generate standalone C and C++ code for supported functions. For
more information on usage and limitations, see the Extended Capabilities section at the bottom of
each reference page.

Functionality being removed or changed
Label button removed from Signal Analyzer
Behavior change

Signal Analyzer no longer opens Signal Labeler, which is now available as an app. If you want to
label signals, open Signal Labeler from the MATLAB Toolstrip or the Command Window.

2-3

https://www.mathworks.com/help/releases/R2020a/signal/ref/spectrogram.html
https://www.mathworks.com/help/releases/R2020a/signal/ref/stft.html
https://www.mathworks.com/help/releases/R2020a/signal/ref/fftfilt.html
https://www.mathworks.com/help/releases/R2020a/signal/ref/stft.html
https://www.mathworks.com/help/releases/R2020a/signal/ref/istft.html
https://www.mathworks.com/help/releases/R2020a/signal/ref/spectrogram.html
https://www.mathworks.com/help/releases/R2020a/signal/ref/czt.html
https://www.mathworks.com/help/releases/R2020a/signal/ref/stft.html
https://www.mathworks.com/help/releases/R2020a/signal/ref/wvd.html
https://www.mathworks.com/help/releases/R2020a/parallel-computing/run-matlab-functions-on-a-gpu.html
https://www.mathworks.com/help/releases/R2020a/parallel-computing/gpu-support-by-release.html
https://www.mathworks.com/help/releases/R2020a/signal/ref/hht.html
https://www.mathworks.com/help/releases/R2020a/signal/ref/kurtogram.html
https://www.mathworks.com/help/releases/R2020a/signal/ref/pspectrum.html
https://www.mathworks.com/help/releases/R2020a/signal/ref/spectrogram.html
https://www.mathworks.com/help/releases/R2020a/signal/ref/xspectrogram.html
https://www.mathworks.com/help/releases/R2020a/signal/ref/dtw.html
https://www.mathworks.com/help/releases/R2020a/signal/ref/tfestimate.html
https://www.mathworks.com/help/releases/R2020a/signal/ref/bandpower.html
https://www.mathworks.com/help/releases/R2020a/signal/ref/enbw.html
https://www.mathworks.com/help/releases/R2020a/signal/ref/meanfreq.html
https://www.mathworks.com/help/releases/R2020a/signal/ref/medfreq.html
https://www.mathworks.com/help/releases/R2020a/signal/ref/obw.html
https://www.mathworks.com/help/releases/R2020a/signal/ref/powerbw.html
https://www.mathworks.com/help/releases/R2020a/signal/ref/sfdr.html
https://www.mathworks.com/help/releases/R2020a/signal/ref/resample.html
https://www.mathworks.com/help/releases/R2020a/signal/ref/upfirdn.html
https://www.mathworks.com/help/releases/R2020a/signal/ref/bilinear.html
https://www.mathworks.com/help/releases/R2020a/signal/ref/butter.html
https://www.mathworks.com/help/releases/R2020a/signal/ref/lp2bp.html
https://www.mathworks.com/help/releases/R2020a/signal/ref/lp2bs.html
https://www.mathworks.com/help/releases/R2020a/signal/ref/lp2hp.html
https://www.mathworks.com/help/releases/R2020a/signal/ref/lp2lp.html
https://www.mathworks.com/help/releases/R2020a/signal/ref/zp2ss.html
https://www.mathworks.com/help/releases/R2020a/signal/ref/cceps.html
https://www.mathworks.com/help/releases/R2020a/signal/ref/icceps.html
https://www.mathworks.com/help/releases/R2020a/signal/ref/fwht.html
https://www.mathworks.com/help/releases/R2020a/signal/ref/ifwht.html
https://www.mathworks.com/help/releases/R2020a/signal/ref/levinson.html
https://www.mathworks.com/help/releases/R2020a/signal/ref/signalanalyzer-app.html
https://www.mathworks.com/help/releases/R2020a/signal/ref/signallabeler-app.html

R2019b

Version: 8.3

New Features

Bug Fixes

3

Signal Labeling: Perform automated labeling using user-defined
functions
The Signal Labeler now enables you to label your data using custom automated labeling functions.
You can label signal attributes, regions of interest, or points of interest.

Signal Labeling: Automatically find and label signal peaks and valleys
The Signal Labeler now enables you to find and label local maxima and minima of signals. Signal
Labeler uses the MATLAB functions islocalmax and islocalmin to search for the peaks and
valleys.

Signal Analyzer App: Analyze complex signals
The Signal Analyzer app now accepts complex data. You can view real (inphase) and imaginary
(quadrature) parts and estimate two-sided spectra and spectrograms of complex signals.

Tall Array Support: Compute spectrograms of signals too large to fit in
memory
The stft and spectrogram functions now accept tall arrays as input.

stft and istft Functions: Compute and invert short-time Fourier
transforms of multichannel signals
The stft and istft functions now accept multichannel signals as input.

Time-Frequency Gallery: Examine features and limitations of time-
frequency analysis methods
Use the new Time-Frequency Gallery to examine the features and limitations of the different time-
frequency analysis methods provided by Signal Processing Toolbox and Wavelet Toolbox™. The
Gallery presents the potential application of specific time-frequency methods to the analysis of
seismic data, music and speech signals, biomedical data, and vibration measurements.

C/C++ Code Generation Support: Generate code for time-frequency
analysis, spectral analysis of nonuniformly sampled signals, and
digital filtering
These Signal Processing Toolbox functions now support C/C++ code generation:

• Time-Frequency Analysis — fsst, ifsst, tfridge, wvd, and xwvd
• Spectral Analysis of Nonuniformly Sampled Signals — plomb
• Transforms — dftmtx and rceps
• Digital Filtering — eqtflength, fftfilt, and tf2ss
• Waveform Generation — chirp, diric, gmonopuls, and sawtooth

R2019b

3-2

https://www.mathworks.com/help/releases/R2019b/signal/ref/signallabeler.html
https://www.mathworks.com/help/releases/R2019b/signal/ref/signallabeler.html
https://www.mathworks.com/help/releases/R2019b/signal/ref/signallabeler.html
https://www.mathworks.com/help/releases/R2019b/signal/ref/signallabeler.html
https://www.mathworks.com/help/releases/R2019b/matlab/ref/islocalmax.html
https://www.mathworks.com/help/releases/R2019b/matlab/ref/islocalmin.html
https://www.mathworks.com/help/releases/R2019b/signal/ref/signalanalyzer-app.html
https://www.mathworks.com/help/releases/R2019b/signal/ref/stft.html
https://www.mathworks.com/help/releases/R2019b/signal/ref/spectrogram.html
https://www.mathworks.com/help/releases/R2019b/signal/ref/stft.html
https://www.mathworks.com/help/releases/R2019b/signal/ref/istft.html
https://www.mathworks.com/help/releases/R2019b/signal/ug/time-frequency-gallery.html
https://www.mathworks.com/help/releases/R2019b/signal/ref/fsst.html
https://www.mathworks.com/help/releases/R2019b/signal/ref/ifsst.html
https://www.mathworks.com/help/releases/R2019b/signal/ref/tfridge.html
https://www.mathworks.com/help/releases/R2019b/signal/ref/wvd.html
https://www.mathworks.com/help/releases/R2019b/signal/ref/xwvd.html
https://www.mathworks.com/help/releases/R2019b/signal/ref/plomb.html
https://www.mathworks.com/help/releases/R2019b/signal/ref/dftmtx.html
https://www.mathworks.com/help/releases/R2019b/signal/ref/rceps.html
https://www.mathworks.com/help/releases/R2019b/signal/ref/eqtflength.html
https://www.mathworks.com/help/releases/R2019b/signal/ref/fftfilt.html
https://www.mathworks.com/help/releases/R2019b/signal/ref/tf2ss.html
https://www.mathworks.com/help/releases/R2019b/signal/ref/chirp.html
https://www.mathworks.com/help/releases/R2019b/signal/ref/diric.html
https://www.mathworks.com/help/releases/R2019b/signal/ref/gmonopuls.html
https://www.mathworks.com/help/releases/R2019b/signal/ref/sawtooth.html

• Spectral Windows — chebwin

You must have MATLAB Coder to generate standalone C and C++ code for supported functions.

3-3

https://www.mathworks.com/help/releases/R2019b/signal/ref/chebwin.html

R2019a

Version: 8.2

New Features

Bug Fixes

4

Signal Labeling: Label signals interactively and visualize labeled
signals
The Signal Labeler enables you to label signals interactively and visualize labeled signals. You can
annotate signals and prepare signal datasets for machine learning and deep learning classification
and regression tasks. You can access the Signal Labeler from the Signal Analyzer app.

Time-Frequency Analysis: Compute short-time Fourier transforms and
inverse short-time Fourier transforms
This release introduces a set of functions that provide enhanced support for the short-time Fourier
transform. The short-time Fourier transform is the most widely used tool for time-frequency analysis.
The transform has applications in all fields that involve nonstationary signals.

• The stft function computes the short-time Fourier transform of a signal.
• The istft function reconstructs a signal from its short-time Fourier transform.
• The iscola function checks whether a window-overlap combination satisfies a necessary

condition for perfect reconstruction.

All three functions support C/C++ code generation.

Signal Analyzer App: Remove trends from signals and estimate their
envelopes
The Signal Analyzer app now enables you to compute the upper and lower envelopes of a waveform.
You can find the envelopes using an FFT-based analytic function, an FIR Hilbert filter, the function
peaks, or the signal RMS values.

This release also introduces functionality to remove trends from signals. You can remove constant
trends, linear trends, and piecewise linear trends.

Signal Analyzer App: Enhanced management of multichannel signals
Starting this release, Signal Analyzer displays an expandable hierarchy of any multichannel signal
that you import. The app maintains the hierarchy as you work with the different channels, enabling
better and easier signal management and export.

C/C++ Code Generation Support: Generate code for filter design,
spectral analysis, and spectral windowing
The following Signal Processing Toolbox functions now support C/C++ code generation:

• Filter Design and Filtering:

buttap, filtfilt, filtord, fir1, firls, kaiserord, and sos2tf
• Spectral Analysis:

cpsd, czt, goertzel, mscohere, periodogram, and pwelch
• Spectral Windows:

R2019a

4-2

https://www.mathworks.com/help/releases/R2019a/signal/ref/signallabeler.html
https://www.mathworks.com/help/releases/R2019a/signal/ref/signalanalyzer-app.html
https://www.mathworks.com/help/releases/R2019a/signal/ref/stft.html
https://www.mathworks.com/help/releases/R2019a/signal/ref/istft.html
https://www.mathworks.com/help/releases/R2019a/signal/ref/iscola.html
https://www.mathworks.com/help/releases/R2019a/signal/ref/signalanalyzer-app.html
https://www.mathworks.com/help/releases/R2019a/signal/ref/signalanalyzer-app.html
https://www.mathworks.com/help/releases/R2019a/signal/ref/buttap.html
https://www.mathworks.com/help/releases/R2019a/signal/ref/filtfilt.html
https://www.mathworks.com/help/releases/R2019a/signal/ref/filtord.html
https://www.mathworks.com/help/releases/R2019a/signal/ref/fir1.html
https://www.mathworks.com/help/releases/R2019a/signal/ref/firls.html
https://www.mathworks.com/help/releases/R2019a/signal/ref/kaiserord.html
https://www.mathworks.com/help/releases/R2019a/signal/ref/sos2tf.html
https://www.mathworks.com/help/releases/R2019a/signal/ref/cpsd.html
https://www.mathworks.com/help/releases/R2019a/signal/ref/czt.html
https://www.mathworks.com/help/releases/R2019a/signal/ref/goertzel.html
https://www.mathworks.com/help/releases/R2019a/signal/ref/mscohere.html
https://www.mathworks.com/help/releases/R2019a/signal/ref/periodogram.html
https://www.mathworks.com/help/releases/R2019a/signal/ref/pwelch.html

barthannwin, bartlett, blackman, blackmanharris, bohmanwin, flattopwin, gausswin,
nuttallwin, parzenwin, rectwin, taylorwin, triang, and tukeywin now accept variable
input.

• Waveform Generation:

gauspuls, pulstran, rectpuls, square, and tripuls
• Linear Predictive Coding:

lsf2poly, poly2ac, poly2lsf, poly2rc, rc2ac, rc2poly, and rlevinson

You must have MATLAB Coder to generate standalone C and C++ code for supported functions.

4-3

https://www.mathworks.com/help/releases/R2019a/signal/ref/barthannwin.html
https://www.mathworks.com/help/releases/R2019a/signal/ref/bartlett.html
https://www.mathworks.com/help/releases/R2019a/signal/ref/blackman.html
https://www.mathworks.com/help/releases/R2019a/signal/ref/blackmanharris.html
https://www.mathworks.com/help/releases/R2019a/signal/ref/bohmanwin.html
https://www.mathworks.com/help/releases/R2019a/signal/ref/flattopwin.html
https://www.mathworks.com/help/releases/R2019a/signal/ref/gausswin.html
https://www.mathworks.com/help/releases/R2019a/signal/ref/nuttallwin.html
https://www.mathworks.com/help/releases/R2019a/signal/ref/parzenwin.html
https://www.mathworks.com/help/releases/R2019a/signal/ref/rectwin.html
https://www.mathworks.com/help/releases/R2019a/signal/ref/taylorwin.html
https://www.mathworks.com/help/releases/R2019a/signal/ref/triang.html
https://www.mathworks.com/help/releases/R2019a/signal/ref/tukeywin.html
https://www.mathworks.com/help/releases/R2019a/signal/ref/gauspuls.html
https://www.mathworks.com/help/releases/R2019a/signal/ref/pulstran.html
https://www.mathworks.com/help/releases/R2019a/signal/ref/rectpuls.html
https://www.mathworks.com/help/releases/R2019a/signal/ref/square.html
https://www.mathworks.com/help/releases/R2019a/signal/ref/tripuls.html
https://www.mathworks.com/help/releases/R2019a/signal/ref/lsf2poly.html
https://www.mathworks.com/help/releases/R2019a/signal/ref/poly2ac.html
https://www.mathworks.com/help/releases/R2019a/signal/ref/poly2lsf.html
https://www.mathworks.com/help/releases/R2019a/signal/ref/poly2rc.html
https://www.mathworks.com/help/releases/R2019a/signal/ref/rc2ac.html
https://www.mathworks.com/help/releases/R2019a/signal/ref/rc2poly.html
https://www.mathworks.com/help/releases/R2019a/signal/ref/rlevinson.html

R2018b

Version: 8.1

New Features

Bug Fixes

5

Signal Analyzer App: Preprocess signals using user-defined functions
The Signal Analyzer app now enables you to preprocess your data within the app itself, using
custom preprocessing functions.

Signal Analyzer App: Change sample rates of signals and convert
nonuniformly sampled signals to uniformly sampled signals
The Signal Analyzer app now enables you to resample signals. You can interpolate nonuniformly
sampled signals onto uniform grids. You can also change the sample rate of uniformly sampled
signals. Generate MATLAB functions to resample any number of signals according to your
specifications.

Time-Frequency Analysis: Analyze signals using the Wigner-Ville
distribution
This release adds support for the Wigner-Ville distribution, which provides a high-resolution time-
frequency representation of a signal. The distribution has applications in signal visualization,
detection, and estimation.

• wvd computes the Wigner-Ville distribution of a signal. The function also computes the smoothed
pseudo Wigner-Ville distribution, which uses independent windows to smooth in time and
frequency.

• xwvd computes the cross Wigner-Ville distribution of two signals. The function also computes the
cross smoothed pseudo Wigner-Ville distribution, which uses independent windows to smooth in
time and frequency.

Deep Learning Example: Identify morphological features of signals
using recurrent neural networks
This release introduces an example, Waveform Segmentation using Deep Learning, that shows one
way to combine signal processing and long short-term memory (LSTM) networks for the analysis of
signals.

Signal Labeling: Define labels and create sets of labeled signals
This release introduces functionality to define labels for signals and to create sets of labeled signals.
You can store signal values and annotations in a form that keeps all data together.

• signalLabelDefinition enables users to create signal label definitions. The definitions can be
for attributes, regions, or points of interest.

• labeledSignalSet enables users to group signals, label definitions, and label values that can be
used in learning algorithms.

R2018b

5-2

https://www.mathworks.com/help/releases/R2018b/signal/ref/signalanalyzer-app.html
https://www.mathworks.com/help/releases/R2018b/signal/ref/signalanalyzer-app.html
https://www.mathworks.com/help/releases/R2018b/signal/ref/wvd.html
https://www.mathworks.com/help/releases/R2018b/signal/ref/xwvd.html
https://www.mathworks.com/help/releases/R2018b/signal/examples/waveform-segmentation-using-deep-learning.html
https://www.mathworks.com/help/releases/R2018b/signal/ref/signallabeldefinition.html
https://www.mathworks.com/help/releases/R2018b/signal/ref/labeledsignalset.html

R2018a

Version: 8.0

New Features

Bug Fixes

Compatibility Considerations

6

Signal Analyzer App: Preprocess signals by smoothing and filtering
The Signal Analyzer app now enables you to perform basic preprocessing of your data within the
app itself. Generate MATLAB scripts to apply the same preprocessing steps to any number of signals.

• You can lowpass, highpass, bandpass, or bandstop filter the signals.
• You can smooth signals using any of several available methods: Savitzky-Golay, Gaussian, moving

mean or median, linear or quadratic regression, or robust linear or quadratic regression. The app
uses the MATLAB function smoothdata to perform the smoothing.

Signal Analyzer App: Detect transients and perform time-frequency
analysis using scalogram view
The Signal Analyzer app now computes scalograms. Scalograms enable you to detect transients and
perform time-frequency analysis. You must have a Wavelet Toolbox license to view scalograms.

One-Step Filtering: Filter signals using lowpass, highpass, bandpass,
and bandstop responses
This release introduces four functions that enable users to filter single- and multichannel signals and
timetables in one step and without having to design the filter: lowpass, highpass, bandpass, and
bandstop.

Each function designs and applies a minimum-order filter and compensates for the delay.

Time-Frequency Analysis: Perform empirical mode decomposition,
Hilbert-Huang transform, and instantaneous frequency estimation
This release introduces the emd, hht, and instfreq functions.

• emd performs empirical mode decomposition. Use emd to decompose a nonlinear/nonstationary
process into its intrinsic modes of oscillation. emd iterates on an input signal to extract the natural
AM-FM modes, or intrinsic mode functions, contained in the data.

• hht implements the Hilbert-Huang transform. Use hht to obtain a time-frequency representation
of a signal similar but complementary to the spectrogram or continuous wavelet transform. hht
uses the data-adaptive intrinsic mode functions obtained from the empirical mode decomposition
to obtain instantaneous frequency estimates of a multicomponent nonlinear/nonstationary signal.

• instfreq computes the instantaneous frequency of a signal, either as the first conditional
spectral moment of a time-frequency distribution or as the derivative of the phase of an analytic
signal.

Time-Frequency Analysis: Estimate kurtogram, spectral kurtosis, and
spectral entropy
This release introduces three functions that perform spectral measurements.

• pkurtosis computes the spectral kurtosis of a signal. Spectral kurtosis is a statistical tool that
indicates and pinpoints nonstationary or non-Gaussian behavior in the frequency domain.

R2018a

6-2

https://www.mathworks.com/help/releases/R2018a/signal/ref/signalanalyzer-app.html
https://www.mathworks.com/help/releases/R2018a/matlab/ref/smoothdata.html
https://www.mathworks.com/help/releases/R2018a/signal/ref/signalanalyzer-app.html
https://www.mathworks.com/help/releases/R2018a/signal/ref/lowpass.html
https://www.mathworks.com/help/releases/R2018a/signal/ref/highpass.html
https://www.mathworks.com/help/releases/R2018a/signal/ref/bandpass.html
https://www.mathworks.com/help/releases/R2018a/signal/ref/bandstop.html
https://www.mathworks.com/help/releases/R2018a/signal/ref/emd.html
https://www.mathworks.com/help/releases/R2018a/signal/ref/hht.html
https://www.mathworks.com/help/releases/R2018a/signal/ref/instfreq.html
https://www.mathworks.com/help/releases/R2018a/signal/ref/pkurtosis.html

• kurtogram computes and displays the fast kurtogram of a signal. The kurtogram is a tool for
detecting and characterizing signal nonstationarities that provides key information for performing
spectral kurtosis analysis.

• pentropy computes the spectral entropy of a signal. Spectral entropy measures how spiky or flat
the spectrum of a signal is. A signal with a spiky spectrum, like a sum of sinusoids, has low
spectral entropy. A signal with a flat spectrum, like white noise, has high spectral entropy.

poctave Function: Compute 1/N octave spectra and perform octave
smoothing
The poctave function enables you to compute the octave spectrum of a single- or multichannel
signal or timetable. The function determines the average power over octave bands defined by the
ANSI S1.11 standard.

Rotating Machinery: Estimate and track rotational speed from
vibration signals
The rpmtrack function enables users to measure and track time-dependent rotational speed. The
function displays an interactive plot on which you can select ridge points using the mouse.

Deep Learning Example: Classify signals using long short-term
memory networks
This release introduces an example that shows one way to combine signal processing and deep
learning for the analysis of physiologic signals. Classify ECG Signals Using Long Short-Term Memory
Networks classifies electrocardiogram data using time-frequency analysis and a type of recurrent
neural network that is well-suited to study time series.

Functionality being removed or changed
The sptool function will be removed in a future release.

Compatibility Considerations
Functionality What Happens When

You Use This
Functionality?

Use This Instead Compatibility
Considerations

Signal Browser Still runs but issues a
warning

Signal Analyzer app Replace relevant
instances of sptool
with signalAnalyzer.

Filter Design and
Analysis Tool

Still runs but issues a
warning

Filter Designer app Replace relevant
instances of sptool
with filterDesigner.

Filter Visualization Tool Still runs but issues a
warning

fvtool Replace relevant
instances of sptool
with fvtool.

6-3

https://www.mathworks.com/help/releases/R2018a/signal/ref/kurtogram.html
https://www.mathworks.com/help/releases/R2018a/signal/ref/pentropy.html
https://www.mathworks.com/help/releases/R2018a/signal/ref/poctave.html
https://www.mathworks.com/help/releases/R2018a/signal/ref/rpmtrack.html
https://www.mathworks.com/help/releases/R2018a/signal/examples/classify-ecg-signals-using-long-short-term-memory-networks.html
https://www.mathworks.com/help/releases/R2018a/signal/examples/classify-ecg-signals-using-long-short-term-memory-networks.html
https://www.mathworks.com/help/releases/R2018a/signal/ref/signalanalyzer-app.html
https://www.mathworks.com/help/releases/R2018a/signal/ref/filterdesigner-app.html
https://www.mathworks.com/help/releases/R2018a/signal/ref/fvtool.html

Functionality What Happens When
You Use This
Functionality?

Use This Instead Compatibility
Considerations

Spectrum Viewer Still runs but issues a
warning

Signal Analyzer app Replace relevant
instances of sptool
with signalAnalyzer.

R2018a

6-4

https://www.mathworks.com/help/releases/R2018a/signal/ref/signalanalyzer-app.html

R2017b

Version: 7.5

New Features

Bug Fixes

Compatibility Considerations

7

Signal Analyzer App: Analyze sporadic signals with persistence
spectrum and sharpen time-frequency estimates using reassignment
The Signal Analyzer app now computes persistence spectra and reassigned spectrograms.

• The persistence spectrum contains time-dependent probabilities of occurrence of signals at given
frequency locations and power levels. This type of spectrum is useful for detecting brief events.

• The reassignment technique sharpens the time and frequency localization of spectrograms and
makes them easier to read and interpret.

Signal Analyzer App: Extract and export signal regions of interest
The Signal Analyzer app now enables you to extract regions of interest from signals. You can
analyze the regions of interest in more depth in the app itself, export them to the MATLAB
workspace, or save them to a MAT-file.

Signal Analyzer App: Generate MATLAB scripts to automate analysis
The Signal Analyzer app now generates MATLAB scripts to extract signal regions of interest and to
compute power spectrum, spectrogram, or persistence spectrum estimates.

pspectrum Function: Analyze power spectrum, spectrogram, and
persistence spectrum of signals
The pspectrum function enables users to compute, display, and analyze power spectra,
spectrograms, reassigned spectrograms, and persistence spectra of signals. The function's smart
defaults provide reasonable spectral estimates without the need to specify many parameters.

Rotating Machinery: Remove noise coherently with time-synchronous
averaging and analyze wear using envelope spectra
The tsa and envspectrum functions enable you to analyze rotating machinery.

• Use the tsa function to remove noise coherently. The function interpolates a signal and averages
the values occurring at equal values of rotational phase.

• The envspectrum function enables you to study wear in bearings. The function finds the envelope
of a vibration signal and computes the spectrum of the envelope.

For an example that uses these functions, see Vibration Analysis of Rotating Machinery.

Modal Analysis: Use parametric methods for FRF and modal
parameter estimation
This release enhances the modalfrf, modalfit, and modalsd functions.

• modalfrf and modalsd now enable you to estimate frequency-response functions using a state-
space model.

• modalfit can use a least-squares rational function method to estimate modal parameters.

R2017b

7-2

https://www.mathworks.com/help/releases/R2017b/signal/ref/signalanalyzer-app.html
https://www.mathworks.com/help/releases/R2017b/signal/ref/signalanalyzer-app.html
https://www.mathworks.com/help/releases/R2017b/signal/ref/signalanalyzer-app.html
https://www.mathworks.com/help/releases/R2017b/signal/ref/pspectrum.html
https://www.mathworks.com/help/releases/R2017b/signal/ref/tsa.html
https://www.mathworks.com/help/releases/R2017b/signal/ref/envspectrum.html
https://www.mathworks.com/help/releases/R2017b/signal/examples/vibration-analysis-of-rotating-machinery.html
https://www.mathworks.com/help/releases/R2017b/signal/ref/modalfrf.html
https://www.mathworks.com/help/releases/R2017b/signal/ref/modalfit.html
https://www.mathworks.com/help/releases/R2017b/signal/ref/modalsd.html

• modalfrf and modalfit accept identified systems as input. You must have a System
Identification Toolbox™ license to use this functionality.

Fatigue Analysis: Perform high-cycle rainflow counting
This release introduces the rainflow function for fatigue analysis.

findchangepts Function: Find changepoints in spectrograms and other
multivariate signals
The findchangepts function can now find changepoints of spectrograms and multivariate signals.

Functionality being removed or changed
Functionality What Happens When

You Use This
Functionality?

Use This Instead Compatibility
Considerations

spectrum Errors periodogram or
pspectrum

Replace all instances of
spectrum with
periodogram or
pspectrum.

psd Errors periodogram or
pwelch

Replace all instances of
psd with periodogram
or pwelch.

7-3

https://www.mathworks.com/help/releases/R2017b/signal/ref/rainflow.html
https://www.mathworks.com/help/releases/R2017b/signal/ref/findchangepts.html
https://www.mathworks.com/help/releases/R2017b/signal/ref/periodogram.html
https://www.mathworks.com/help/releases/R2017b/signal/ref/pspectrum.html
https://www.mathworks.com/help/releases/R2017b/signal/ref/periodogram.html
https://www.mathworks.com/help/releases/R2017b/signal/ref/pspectrum.html
https://www.mathworks.com/help/releases/R2017b/signal/ref/periodogram.html
https://www.mathworks.com/help/releases/R2017b/signal/ref/pwelch.html
https://www.mathworks.com/help/releases/R2017b/signal/ref/periodogram.html
https://www.mathworks.com/help/releases/R2017b/signal/ref/pwelch.html

R2017a

Version: 7.4

New Features

Bug Fixes

8

Signal Analyzer App: Perform time-frequency analysis using
spectrogram view
The Signal Analyzer app now enables time-frequency analysis of any signals in the MATLAB
workspace.

Signal Analyzer App: Analyze timestamped signals
The Signal Analyzer app now accepts signal time values defined using vectors, timeseries objects,
or MATLAB timetables.

Modal Analysis: Estimate frequency-response functions and modal
parameters of mechanical systems
The modalfrf, modalfit, and modalsd functions perform experimental modal analysis of signals
associated with mechanical systems.

• modalfrf uses measured input and output signals to estimate H1, H2, and Hv frequency-response
functions. The function accepts multiple inputs and outputs.

• modalfit extracts natural frequencies, damping ratios, and mode-shape vectors from a set of
frequency-response functions.

• modalsd plots the stabilization diagram of a SISO or MIMO system starting from its frequency-
response functions.

For an example that uses these functions, see Modal Analysis of a Simulated System and a Wind
Turbine Blade.

Cross-Spectrogram: Compare time-frequency content of nonstationary
signals
The xspectrogram function uses the short-time Fourier transform to compute cross-spectra of
signals whose frequency content changes with time. Use the cross-spectrogram to identify time-
frequency regions where two different signals have energy, or to measure time-varying phase shifts.

MIMO Spectral Analysis: Estimate cross-spectral density and
coherence for multi-input/multi-output systems
The cpsd and mscohere functions now support systems with multiple inputs and outputs.

Transfer Function Estimation: Compute unbiased estimates for SISO
and MIMO systems containing additive input noise
The tfestimate function now returns the H2 estimate of the transfer function in addition to the
already available H1 estimate. It also supports systems with multiple inputs and outputs.

R2017a

8-2

https://www.mathworks.com/help/releases/R2017a/signal/ref/signalanalyzer-app.html
https://www.mathworks.com/help/releases/R2017a/signal/ref/signalanalyzer-app.html
https://www.mathworks.com/help/releases/R2017a/signal/ref/modalfrf.html
https://www.mathworks.com/help/releases/R2017a/signal/ref/modalfit.html
https://www.mathworks.com/help/releases/R2017a/signal/ref/modalsd.html
https://www.mathworks.com/help/releases/R2017a/signal/examples/modal-analysis-of-a-simulated-system-and-a-wind-turbine-blade.html
https://www.mathworks.com/help/releases/R2017a/signal/examples/modal-analysis-of-a-simulated-system-and-a-wind-turbine-blade.html
https://www.mathworks.com/help/releases/R2017a/signal/ref/xspectrogram.html
https://www.mathworks.com/help/releases/R2017a/signal/ref/cpsd.html
https://www.mathworks.com/help/releases/R2017a/signal/ref/mscohere.html
https://www.mathworks.com/help/releases/R2017a/signal/ref/tfestimate.html

dct and idct Functions: Compute four standard types of discrete
cosine transform
The dct and idct functions now compute the DCT-1, DCT-3, and DCT-4 variants of the discrete
cosine transform, in addition to the already available DCT-2. You can also choose the array dimension
along which to transform a multidimensional array.

Code Generation Support: Generate code for an expanded set of
Signal Processing Toolbox functions
The following Signal Processing Toolbox functions now support C and C++ code generation:

• alignsignals
• cconv
• convmtx
• corrmtx
• envelope
• finddelay
• hilbert
• sgolayfilt
• sinc
• xcorr2
• xcov

You must have MATLAB Coder and Signal Processing Toolbox software to generate standalone C and
C++ code for supported functions. See Signal Processing Toolbox (MATLAB Coder) for a complete list
of Signal Processing Toolbox functions with code generation support.

findpeaks Function: Single-precision support and improved code
generation functionality
The findpeaks function now accepts single-precision input. Its code generation functionality has
improved performance and supports plotting.

8-3

https://www.mathworks.com/help/releases/R2017a/signal/ref/dct.html
https://www.mathworks.com/help/releases/R2017a/signal/ref/idct.html
https://www.mathworks.com/help/releases/R2017a/signal/ref/alignsignals.html
https://www.mathworks.com/help/releases/R2017a/signal/ref/cconv.html
https://www.mathworks.com/help/releases/R2017a/signal/ref/convmtx.html
https://www.mathworks.com/help/releases/R2017a/signal/ref/corrmtx.html
https://www.mathworks.com/help/releases/R2017a/signal/ref/envelope.html
https://www.mathworks.com/help/releases/R2017a/signal/ref/finddelay.html
https://www.mathworks.com/help/releases/R2017a/signal/ref/hilbert.html
https://www.mathworks.com/help/releases/R2017a/signal/ref/sgolayfilt.html
https://www.mathworks.com/help/releases/R2017a/signal/ref/sinc.html
https://www.mathworks.com/help/releases/R2017a/signal/ref/xcorr2.html
https://www.mathworks.com/help/releases/R2017a/signal/ref/xcov.html
https://www.mathworks.com/help/releases/R2017a/coder/ug/functions-supported-for-code-generation--categorical-list.html#bq1h2z8-28
https://www.mathworks.com/help/releases/R2017a/signal/ref/findpeaks.html

R2016b

Version: 7.3

New Features

Bug Fixes

Compatibility Considerations

9

Signal Analyzer App: Perform time- and frequency-domain analysis of
multiple time series
The Signal Analyzer app now enables plotting, alignment, and comparison of any signals in the
MATLAB workspace, both in the time domain and in the frequency domain. The new panner enables
you to zoom in on and scroll through signals. The app also now has a command-line interface.

Similarity Matching: Find patterns in data using edit distance or
dynamic time warping
The edr function measures how similar two signals are by computing the minimum number of insert,
delete, or replace operations needed to convert one of the signals into the other. This measure, called
edit distance, is similar to the measure used in dtw but is robust to outliers.

The findsignal function finds the region of a data set that best matches a specified pattern. You
can search by minimizing a distance metric, by dynamic time warping, or by using edit distance.

Order Analysis: Track orders and extract waveforms to analyze
rotational machinery
This release introduces four functions for order analysis of rotational machinery.

• To extract an RPM signal from a series of tachometer pulses, use the tachorpm function.
• To estimate the average spectrum of a vibration signal as a function of order, use the

orderspectrum function.
• To track and extract orders in a vibration signal, use the ordertrack function.
• To extract time-domain order waveforms from a vibration signal, use the orderwaveform

function.

Fourier Synchrosqueezing Transform: Obtain sharp time-frequency
estimates and extract signal modes
This release adds support for the FFT-based synchrosqueezed transform and mode extraction for 1-D
signals. Synchrosqueezing is a time-frequency reassignment technique that enables you to
reconstruct a signal from the reassigned transform. This technique enables you to extract and
visualize oscillatory modes in the signal.

• To obtain the Fourier synchrosqueezed transform of a signal, use the fsst function.
• To invert a Fourier synchrosqueezed transform, use the ifsst function.
• To extract time-frequency ridges from a signal, use the tfridge function.

Distortion Measurement Functions: Measure aliased harmonics in
undersampled signals
The snr and thd functions now incorporate any harmonics of the fundamental that are aliased into
the Nyquist range.

• By default, snr treats aliased harmonics as part of the noise. Now it is possible to treat them as
part of the signal.

R2016b

9-2

https://www.mathworks.com/help/releases/R2016b/signal/ref/signalanalyzer-app.html
https://www.mathworks.com/help/releases/R2016b/signal/ref/edr.html
https://www.mathworks.com/help/releases/R2016b/signal/ref/dtw.html
https://www.mathworks.com/help/releases/R2016b/signal/ref/findsignal.html
https://www.mathworks.com/help/releases/R2016b/signal/ref/tachorpm.html
https://www.mathworks.com/help/releases/R2016b/signal/ref/orderspectrum.html
https://www.mathworks.com/help/releases/R2016b/signal/ref/ordertrack.html
https://www.mathworks.com/help/releases/R2016b/signal/ref/orderwaveform.html
https://www.mathworks.com/help/releases/R2016b/signal/ref/fsst.html
https://www.mathworks.com/help/releases/R2016b/signal/ref/ifsst.html
https://www.mathworks.com/help/releases/R2016b/signal/ref/tfridge.html
https://www.mathworks.com/help/releases/R2016b/signal/ref/snr.html
https://www.mathworks.com/help/releases/R2016b/signal/ref/thd.html
https://www.mathworks.com/help/releases/R2016b/signal/ref/snr.html

• By default, thd treats aliased harmonics as part of the noise. Now it is possible to treat them as
harmonics.

GPU acceleration: Enhance performance of dct, idct, and sinc
functions
This release introduces GPU acceleration for dct, idct, and sinc. GPU acceleration for these
functions requires Parallel Computing Toolbox software. See GPU Computing for details. The
supported Signal Processing Toolbox functions accept gpuArray objects as inputs.

Filter Design and Analysis Tool renamed to Filter Designer
The Filter Design and Analysis Tool (FDATool) has been renamed to Filter Designer. To open the
Filter Designer app from the command line, use filterDesigner instead of fdatool.

Compatibility Considerations
Change all calls to fdatool, which opens the app, to the new filterDesigner command. The
functionality remains unchanged.

Window Design and Analysis Tool renamed to Window Designer
The Window Design and Analysis Tool (WinTool) has been renamed to Window Designer. To open the
Window Designer app from the command line, use windowDesigner instead of wintool.

Compatibility Considerations
Change all calls to wintool, which opens the app, to the new windowDesigner command. The
functionality remains unchanged.

Functionality being removed or changed
Functionality What Happens When

You Use This
Functionality?

Use This Instead Compatibility
Considerations

fdatool Still opens the Filter
Designer app.

filterDesigner Update instances of
fdatool to use the new
filterDesigner
command.

wintool Still opens the Window
Designer app.

windowDesigner Update instances of
wintool to use the new
windowDesigner
command.

9-3

https://www.mathworks.com/help/releases/R2016b/signal/ref/thd.html
https://www.mathworks.com/help/releases/R2016b/signal/ref/dct.html
https://www.mathworks.com/help/releases/R2016b/signal/ref/idct.html
https://www.mathworks.com/help/releases/R2016b/signal/ref/sinc.html
https://www.mathworks.com/help/releases/R2016b/distcomp/gpu-computing.html
https://www.mathworks.com/help/releases/R2016b/distcomp/gpuarray_object.html
https://www.mathworks.com/help/releases/R2016b/signal/ref/filterdesigner-app.html
https://www.mathworks.com/help/releases/R2016b/signal/ref/windowdesigner-app.html
https://www.mathworks.com/help/releases/R2016b/signal/ref/filterdesigner-app.html
https://www.mathworks.com/help/releases/R2016b/signal/ref/filterdesigner-app.html
https://www.mathworks.com/help/releases/R2016b/signal/ref/windowdesigner-app.html
https://www.mathworks.com/help/releases/R2016b/signal/ref/windowdesigner-app.html

R2016a

Version: 7.2

New Features

Bug Fixes

10

Gap Filling: Reconstruct missing samples using autoregressive
modeling
The fillgaps function uses autoregressive modeling to interpolate missing large contiguous
portions of signals. For an example that uses this function, see Reconstructing Missing Data.

Changepoint Detection: Find abrupt changes and statistical shifts in
signals
The findchangepts function locates the points at which a signal significantly changes its mean, its
variance, or both. The cusum function detects small incremental changes in the mean of a process by
monitoring where the cumulative sum of the signal drifts beyond a target mean. For an example that
uses these functions, see Detecting Outbreaks and Significant Changes in Signals.

Dynamic Time Warping: Stretch, align, and compare signals with
different time scales
The dtw function stretches two nonlinearly related signals onto a common time axis such that a
global measure of distance between the signals is smallest. The process highlights similarities
between signals by making equivalent features appear at the same location on the common axis. For
an example that uses this function, see Extracting Classification Features from Physiological Signals.

Reassigned Periodogram: Sharpen the frequency localization of
spectral estimates
The periodogram function now computes reassigned spectra. The reassignment technique sharpens
the frequency localization of spectral estimates and produces periodograms that are easier to read
and interpret. For an example that uses this feature, see Measuring the Power of Deterministic
Periodic Signals.

Signal Analyzer App: Visualize and compare multiple time series
The Signal Analyzer app enables plotting, alignment, and comparison of any signals in the MATLAB
workspace.

datetime Support: Use datetime arrays in Signal Processing Toolbox
functions
The findpeaks, plomb, and resample functions now accept datetime arrays as input arguments.

xcorr Function: Generate faster code for long input vectors
For long input vectors, code generation for xcorr now uses a frequency-domain calculation instead
of a time-domain calculation. The resulting code can be faster than in previous releases.

R2016a

10-2

https://www.mathworks.com/help/releases/R2016a/signal/ref/fillgaps.html
https://www.mathworks.com/help/releases/R2016a/signal/examples/reconstructing-missing-data.html
https://www.mathworks.com/help/releases/R2016a/signal/ref/findchangepts.html
https://www.mathworks.com/help/releases/R2016a/signal/ref/cusum.html
https://www.mathworks.com/help/releases/R2016a/signal/examples/detecting-outbreaks-and-significant-changes-in-signals.html
https://www.mathworks.com/help/releases/R2016a/signal/ref/dtw.html
https://www.mathworks.com/help/releases/R2016a/signal/examples/extracting-classification-features-from-physiological-signals.html
https://www.mathworks.com/help/releases/R2016a/signal/ref/periodogram.html
https://www.mathworks.com/help/releases/R2016a/signal/examples/measuring-the-power-of-deterministic-periodic-signals.html
https://www.mathworks.com/help/releases/R2016a/signal/examples/measuring-the-power-of-deterministic-periodic-signals.html
https://www.mathworks.com/help/releases/R2016a/signal/ref/signalanalyzer-app.html
https://www.mathworks.com/help/releases/R2016a/signal/ref/findpeaks.html
https://www.mathworks.com/help/releases/R2016a/signal/ref/plomb.html
https://www.mathworks.com/help/releases/R2016a/signal/ref/resample.html
https://www.mathworks.com/help/releases/R2016a/signal/ref/xcorr.html

chebwin Function: Compute Dolph-Chebyshev windows faster
The chebwin function has been rewritten and exhibits improved performance for windows of any
size.

10-3

https://www.mathworks.com/help/releases/R2016a/signal/ref/chebwin.html

R2015b

Version: 7.1

New Features

Bug Fixes

11

Reassigned Spectrogram: Sharpen the time-frequency localization of
spectral estimates
The spectrogram function now computes reassigned spectra. The reassignment technique sharpens
the time and frequency localization of spectral estimates and produces spectrograms that are easier
to read and interpret. See the spectrogram reference page for examples. The enhanced function
also enables you to specify a threshold such that spectrum values with less power are set to zero.

Hampel Filter and Improved Median Filtering: Detect outliers and
remove them from data
The new hampel function detects and removes outliers from data. The function computes a moving
median and considers as outliers those data points that deviate from the median by more than an
adjustable number of standard deviations.

The medfilt1 function now uses a faster algorithm and enables you to choose how to treat signals
with NaNs and how to filter signal edges.

Order Analysis: Analyze vibrations in rotational machinery with order
and frequency maps
The new rpmordermap and rpmfreqmap functions perform order analysis on rotational machinery.
rpmordermap computes order maps of rotating systems, helping you visualize vibrations that vary
linearly with rotational speed. rpmfreqmap computes frequency maps. You can also use these
functions to plot the maps on interactive figures.

Envelope Detection: Extract analytic, peak, and RMS envelopes
The new envelope function computes the upper and lower envelopes of a waveform. You can
compute the envelopes using an FFT-based analytic function, an FIR Hilbert filter, or the function
peaks or RMS values.

Signal Alignment: Measure delay and align signals in time
The new finddelay and alignsignals functions compute the delay between two signals and align
signals in time.

R2015b

11-2

https://www.mathworks.com/help/releases/R2015b/signal/ref/spectrogram.html
https://www.mathworks.com/help/releases/R2015b/signal/ref/spectrogram.html
https://www.mathworks.com/help/releases/R2015b/signal/ref/hampel.html
https://www.mathworks.com/help/releases/R2015b/signal/ref/medfilt1.html
https://www.mathworks.com/help/releases/R2015b/signal/ref/rpmordermap.html
https://www.mathworks.com/help/releases/R2015b/signal/ref/rpmfreqmap.html
https://www.mathworks.com/help/releases/R2015b/signal/ref/rpmordermap.html
https://www.mathworks.com/help/releases/R2015b/signal/ref/rpmfreqmap.html
https://www.mathworks.com/help/releases/R2015b/signal/ref/envelope.html
https://www.mathworks.com/help/releases/R2015b/signal/ref/finddelay.html
https://www.mathworks.com/help/releases/R2015b/signal/ref/alignsignals.html

R2015a

Version: 7.0

New Features

Bug Fixes

12

Frequency Measurements: Compute mean and median frequencies
using spectral estimates
This release introduces two functions that use spectral estimates to measure signal frequency:

• meanfreq estimates the mean frequency of the spectrum of a signal.
• medfreq estimates the median frequency of the spectrum of a signal.

These functions accept a time-domain signal, a power spectral density, or a power spectrum as input.
They have visualization functionality and support multichannel signals.

Bandwidth Measurements: Compute occupied bandwidth and
bandwidth at specified power levels
This release introduces two functions that measure signal bandwidth:

• obw returns the occupied bandwidth of a signal at a specified percentage.
• powerbw returns the power bandwidth of a signal at a specified level.

These functions accept a time-domain signal, a power spectral density, or a power spectrum as input.
They have visualization functionality and support multichannel signals.

resample function accepts signals with nonuniform sampling or
missing data
This release enhances the resample function to accept nonuniformly sampled signals and
reconstruct them on a regular grid. The function also accepts NaNs in the input signal and treats
them as missing data.

pwelch function computes maximum-hold and minimum-hold spectra
The pwelch function now computes the maximum-hold and minimum-hold power spectral density
(PSD) estimates of a signal.

spectrogram function computes two-sided, centered, power, and PSD
spectra
The spectrogram function now computes two-sided or centered spectra and can output the mean-
square spectrum instead of the power spectral density. The enhanced function also plots a color bar
with units.

Fast chirp Z-transform support for spectral analysis functions
All the spectral analysis functions offered by the Signal Processing Toolbox product let you input a
vector with the frequencies at which to compute PSD estimates. The functions traditionally have used
the Goertzel algorithm in those cases. Starting with this release, the functions might switch to a
faster method based on the chirp Z-transform when the input frequency vector has many points and
the points are uniformly spaced. The change applies to the following functions:

R2015a

12-2

https://www.mathworks.com/help/releases/R2015a/signal/ref/meanfreq.html
https://www.mathworks.com/help/releases/R2015a/signal/ref/medfreq.html
https://www.mathworks.com/help/releases/R2015a/signal/ref/obw.html
https://www.mathworks.com/help/releases/R2015a/signal/ref/powerbw.html
https://www.mathworks.com/help/releases/R2015a/signal/ref/resample.html
https://www.mathworks.com/help/releases/R2015a/signal/ref/pwelch.html
https://www.mathworks.com/help/releases/R2015a/signal/ref/spectrogram.html

• Nonparametric methods: cpsd, mscohere, periodogram, pmtm, pwelch, spectrogram,
tfestimate

• Parametric methods: pburg, pcov, pmcov, pyulear

12-3

https://www.mathworks.com/help/releases/R2015a/signal/ref/cpsd.html
https://www.mathworks.com/help/releases/R2015a/signal/ref/mscohere.html
https://www.mathworks.com/help/releases/R2015a/signal/ref/periodogram.html
https://www.mathworks.com/help/releases/R2015a/signal/ref/pmtm.html
https://www.mathworks.com/help/releases/R2015a/signal/ref/pwelch.html
https://www.mathworks.com/help/releases/R2015a/signal/ref/spectrogram.html
https://www.mathworks.com/help/releases/R2015a/signal/ref/tfestimate.html
https://www.mathworks.com/help/releases/R2015a/signal/ref/pburg.html
https://www.mathworks.com/help/releases/R2015a/signal/ref/pcov.html
https://www.mathworks.com/help/releases/R2015a/signal/ref/pmcov.html
https://www.mathworks.com/help/releases/R2015a/signal/ref/pyulear.html

R2014b

Version: 6.22

New Features

Bug Fixes

13

Spectral estimation of signals with nonuniform sampling or missing
data
This release introduces a new spectral estimation function, plomb. The function can compute spectra
of nonuniformly sampled signals or signals with missing samples by using the Lomb-Scargle
algorithm. plomb also provides visualization functionality and support for multichannel data.

Multichannel support for spectral analysis functions
This release enhances several parametric and nonparametric spectral analysis functions by offering
support for multichannel data. The functions continue to process vector data as single channels. For
matrix input, the functions process the data column by column and return a matrix of spectra.

• Nonparametric methods: bandpower, cpsd, mscohere, periodogram, pmtm, pwelch,
tfestimate.

• Parametric methods: arburg, arcov, armcov, aryule, pburg, pcov, pmcov, pyulear.

Peak finding with visualization and enhanced peak selection
The function findpeaks now lets you estimate the width of any peak and limit the results of peak
searches by width or prominence. When called with no output arguments, the function plots the
signal and annotates the value, width, and prominence of every peak.

R2014b

13-2

https://www.mathworks.com/help/releases/R2014b/signal/ref/plomb.html
https://www.mathworks.com/help/releases/R2014b/signal/ref/bandpower.html
https://www.mathworks.com/help/releases/R2014b/signal/ref/cpsd.html
https://www.mathworks.com/help/releases/R2014b/signal/ref/mscohere.html
https://www.mathworks.com/help/releases/R2014b/signal/ref/periodogram.html
https://www.mathworks.com/help/releases/R2014b/signal/ref/pmtm.html
https://www.mathworks.com/help/releases/R2014b/signal/ref/pwelch.html
https://www.mathworks.com/help/releases/R2014b/signal/ref/tfestimate.html
https://www.mathworks.com/help/releases/R2014b/signal/ref/arburg.html
https://www.mathworks.com/help/releases/R2014b/signal/ref/arcov.html
https://www.mathworks.com/help/releases/R2014b/signal/ref/armcov.html
https://www.mathworks.com/help/releases/R2014b/signal/ref/aryule.html
https://www.mathworks.com/help/releases/R2014b/signal/ref/pburg.html
https://www.mathworks.com/help/releases/R2014b/signal/ref/pcov.html
https://www.mathworks.com/help/releases/R2014b/signal/ref/pmcov.html
https://www.mathworks.com/help/releases/R2014b/signal/ref/pyulear.html
https://www.mathworks.com/help/releases/R2014b/signal/ref/findpeaks.html

R2014a

Version: 6.21

New Features

Bug Fixes

Compatibility Considerations

14

Simplified workflow for specification-based filter design
This release introduces a new filter design function, designfilt. A single command allows you to
design lowpass, highpass, bandpass, bandstop, differentiator, and Hilbert filters, including minimum-
order designs, in one step. The designfilt interface leads to readable and self-documenting code
that is easy to maintain.

Use filter to filter signals with the digitalFilter objects generated by designfilt.

Use fvtool to visualize digital filters created using designfilt.

All the filter analysis and data filtering functions offered by the Signal Processing Toolbox product
can be used with digital filters designed with designfilt.

designfilt also features a Filter Design Assistant—a smart run-time error-recovery mechanism
that helps you correct faulty syntax and generates MATLAB code at the Command Window or in the
Editor.

Visualization of harmonic distortion measurements
This release enhances SNR, distortion, intermodulation, and spurious free dynamic range
measurement functions to provide visualization functionality.

The function sfdr plots the spectrum of the input signal and labels its fundamental component and
largest spur. The plot shades the spurious free dynamic range and displays its value; it shows the
fundamental, the DC value, and the rest of the signal in different colors. sfdr now uses a Kaiser
window by default.

The function sinad plots the spectrum of the input signal, labels its fundamental component, and
displays its signal to noise and distortion ratio. The plot shows the fundamental component, the DC
value, and the noise in different colors.

The function snr plots the spectrum of the input signal, labels its fundamental component and higher
harmonics, and displays its signal-to-noise ratio. The plot shows the fundamental, the noise, and the
DC value and harmonics using different colors.

The function thd plots the spectrum of the input signal, labels its fundamental component and
harmonics, and displays its total harmonic distortion. The plot shows the fundamental, the harmonics,
and the DC level and noise using different colors.

The function toi plots the spectrum of the input signal, annotates its lower and upper fundamentals
and intermodulation products, and displays its third-order intercept point.

Changes in name-value pair arguments of measurement functions
The R2014a release changes the name-value pair arguments 'MidPct' and 'PctRefLevels' to
'MidPercentReferenceLevel' and 'PercentReferenceLevels' for the following signal
measurement functions: dutycycle, falltime, midcross, pulseperiod, pulsesep,
pulsewidth, risetime, settlingtime, slewrate, overshoot, and undershoot.

R2014a

14-2

https://www.mathworks.com/help/releases/R2014a/signal/ref/designfilt.html
https://www.mathworks.com/help/releases/R2014a/signal/ref/designfilt.html
https://www.mathworks.com/help/releases/R2014a/signal/ref/filter.html
https://www.mathworks.com/help/releases/R2014a/signal/ref/digitalfilter-class.html
https://www.mathworks.com/help/releases/R2014a/signal/ref/designfilt.html
https://www.mathworks.com/help/releases/R2014a/signal/ref/fvtool.html
https://www.mathworks.com/help/releases/R2014a/signal/ref/designfilt.html
https://www.mathworks.com/help/releases/R2014a/signal/ref/designfilt.html
https://www.mathworks.com/help/releases/R2014a/signal/ref/designfilt.html
https://www.mathworks.com/help/releases/R2014a/signal/ref/sfdr.html
https://www.mathworks.com/help/releases/R2014a/signal/ref/sfdr.html
https://www.mathworks.com/help/releases/R2014a/signal/ref/sinad.html
https://www.mathworks.com/help/releases/R2014a/signal/ref/snr.html
https://www.mathworks.com/help/releases/R2014a/signal/ref/thd.html
https://www.mathworks.com/help/releases/R2014a/signal/ref/toi.html
https://www.mathworks.com/help/releases/R2014a/signal/ref/dutycycle.html
https://www.mathworks.com/help/releases/R2014a/signal/ref/falltime.html
https://www.mathworks.com/help/releases/R2014a/signal/ref/midcross.html
https://www.mathworks.com/help/releases/R2014a/signal/ref/pulseperiod.html
https://www.mathworks.com/help/releases/R2014a/signal/ref/pulsesep.html
https://www.mathworks.com/help/releases/R2014a/signal/ref/pulsewidth.html
https://www.mathworks.com/help/releases/R2014a/signal/ref/risetime.html
https://www.mathworks.com/help/releases/R2014a/signal/ref/settlingtime.html
https://www.mathworks.com/help/releases/R2014a/signal/ref/slewrate.html
https://www.mathworks.com/help/releases/R2014a/signal/ref/overshoot.html
https://www.mathworks.com/help/releases/R2014a/signal/ref/undershoot.html

Compatibility Considerations
Functionality What Happens When

You Use This
Functionality?

Use This Instead Compatibility
Considerations

'MidPct' name-value
pair of measurement
functions

Still runs 'MidPercentReferen
ceLevel'

Replace all instances of
'MidPct' with
'MidPercentReferen
ceLevel'

'PctRefLevels'
name-value pair of
measurement functions

Still runs 'PercentReferenceL
evels'

Replace all instances of
'PctRefLevels' with
'PercentReferenceL
evels'

14-3

R2013b

Version: 6.20

New Features

Bug Fixes

Compatibility Considerations

15

Distortion, intermodulation, and SNR measurement functions
This release introduces four frequency-domain measurement functions that allow you to characterize
the nonlinearity of a system. Quantitative measures of system linearity are important in a number of
applications including audio system analysis, power electronics, and radio-frequency (RF) network
analysis.

Use thd to measure the total harmonic distortion (THD) of a sinusoidal signal. THD is appropriate for
signals with discrete spectra consisting of a fundamental frequency and one or more harmonics.

Use sinad to measure the signal to noise and distortion ratio (SINAD) of a signal. SINAD is
appropriate for signals with mixed spectra consisting of a fundamental frequency with one or more
harmonics and additive noise.

Use toi to measure the third-order intercept (TOI) point. TOI is used to quantify the intermodulation
distortion of a system in response to a two-tone input.

Use snr to measure the signal-to-noise ratio (SNR) of a signal. SNR is appropriate when you want to
measure the power of the fundamental frequency in comparison to the variance of additive noise.

Design raised cosine and Gaussian pulse-shaping filters
This release introduces two new functions for raised cosine and Gaussian pulse-shaping filter design.
The new functions provide a uniform interface for transmit and receive pulse-shaping filters that is
designed specifically for communication engineers.

Raised cosine filters are used to minimize intersymbol interference (ISI) by shaping pulses with a
filter that satisfies the Nyquist ISI criterion. Use rcosdesign to design a raised cosine or square-
root raised cosine finite impulse response pulse-shaping filter.

Gaussian pulse-shaping filters are used in modulation schemes such as Gaussian minimum shift
keying (GMSK) to limit the bandwidth of pulse waveforms. Use gaussdesign to design a Gaussian
finite impulse response pulse-shaping filter.

Functionality Being Removed or Changed
Functionality What Happens When

You Use This
Functionality?

Use This Instead Compatibility
Considerations

firrcos Still runs rcosdesign Replace all instances of
firrcos with
rcosdesign. See Migrate
from firrcos to
rcosdesign.

gaussfir Still runs gaussdesign Replace all instances of
gaussfir with
gaussdesign. See
Migrate from gaussfir to
gaussdesign.

R2013b

15-2

https://www.mathworks.com/help/releases/R2013b/signal/ref/thd.html
https://www.mathworks.com/help/releases/R2013b/signal/ref/sinad.html
https://www.mathworks.com/help/releases/R2013b/signal/ref/toi.html
https://www.mathworks.com/help/releases/R2013b/signal/ref/snr.html
https://www.mathworks.com/help/releases/R2013b/signal/ref/rcosdesign.html
https://www.mathworks.com/help/releases/R2013b/signal/ref/gaussdesign.html
https://www.mathworks.com/help/releases/R2013b/signal/ref/rcosdesign.html
https://www.mathworks.com/help/releases/R2013b/signal/ref/rcosdesign.html
https://www.mathworks.com/help/releases/R2013b/signal/ref/gaussdesign.html
https://www.mathworks.com/help/releases/R2013b/signal/ref/gaussdesign.html

Functionality What Happens When
You Use This
Functionality?

Use This Instead Compatibility
Considerations

fdesign.pulseshaping Still runs rcosdesign or
gaussdesign

Replace all instances of
fdesign.pulseshaping
with rcosdesign or
gaussdesign, as
appropriate. See Migrate
from
fdesign.pulseshaping
to rcosdesign or
gaussdesign.

Migrate from firrcos to rcosdesign

When you update legacy code using firrcos to use rcosdesign instead, keep in mind that
rcosdesign designs a square-root raised cosine filter by default. If you want a normal raised cosine
filter you must set the optional parameter, shape, to 'normal'. firrcos has the opposite default
behavior.

The number of samples per symbol must be an integer. Equivalently, the ratio Fs/(2*Fc), where Fs
is the sampling frequency and Fc is the cutoff frequency of the filter, must be an integer.

firrcos and rcosdesign use different normalizations for the filter coefficients. firrcos
normalizes the coefficient so that the nominal passband gain is 1. rcosdesign sets the filter energy
to 1.

firrcos rcosdesign
Fs = 7000;
N = 16;
Fc = 500;
df = 375;

ag = firrcos(N,Fc,df,Fs)

R = df/2/Fc;
sps = Fs/2/Fc;

ga = rcosdesign(R,N/sps,sps,'normal');
ga = ga/max(ga)/sps

ug = firrcos(N,Fc,df,Fs,'sqrt') gu = rcosdesign(R,N/sps,sps);
gu = gu/max(gu)*(1+R*(4/pi-1))/sps

N = 16;
Fc = 1000;
R = 0.25;
Fs = 8000;

b1 = firrcos(N,Fc,R,Fs, ...
 'rolloff','normal')

beta = R;
sps = Fs/(2*Fc);
span = N / sps;

b1n = rcosdesign(beta,span,sps,'normal');
b1n = b1n / max(b1n) / sps

N = 16;
Fc = 1000;
R = 0.25;
Fs = 8000;

b2 = firrcos(N,Fc,R,Fs, ...
 'rolloff','sqrt')

beta = R;
sps = Fs/(2*Fc);
span = N / sps;

b2n = rcosdesign(beta,span,sps,'sqrt');
b2n = b2n / max(b2n) /(pi*sps) ...
 * (pi*(1-beta) + 4*beta)

15-3

https://www.mathworks.com/help/releases/R2013b/signal/ref/rcosdesign.html
https://www.mathworks.com/help/releases/R2013b/signal/ref/gaussdesign.html
https://www.mathworks.com/help/releases/R2013b/signal/ref/rcosdesign.html
https://www.mathworks.com/help/releases/R2013b/signal/ref/gaussdesign.html

Migrate from gaussfir to gaussdesign

When you update legacy code using gaussfir to use gaussdesign instead, keep in mind the
differences between the arguments in each function. In gaussfir, the second argument, nt, is the
number of symbol periods between the start of the impulse response of the filter and its peak. It is
thus equal to half the second argument, span, of gaussdesign. Moreover, gaussdesign has no
default values for its second and third arguments. gaussfir respectively has 3 and 2.

gaussfir gaussdesign
bt = 0.3;
h = gaussfir(bt)

hn = gaussdesign(bt,6,2)

nt = 5;
h = gaussfir(bt,nt)

span = 2*nt;
hn = gaussdesign(bt,span,2)

of = 3;
h = gaussfir(bt,nt,of)

sps = of;
hn = gaussdesign(bt,span,sps)

Migrate from fdesign.pulseshaping to rcosdesign or gaussdesign

The use of fdesign.pulseshaping is not recommended. Use rcosdesign or gaussdesign, as
appropriate.

fdesign.pulseshaping rcosdesign, gaussdesign
sps = 6;
span = 4;
Beta = 0.25;
f1 = fdesign.pulseshaping(sps, ...
 'Square Root Raised Cosine', ...
 'Nsym,Beta',span,Beta);
d1 = design(f1);
n1 = d1.Numerator

n1n = rcosdesign(Beta,span,sps);
n1n = n1n / max(n1n) * (-1/(pi*sps) ...
 * (pi*(Beta-1) - 4*Beta))

g1 = fdesign.pulseshaping(sps, ...
 'Square Root Raised Cosine', ...
 'N,Beta',sps*span,Beta);
h1 = design(g1);
k1 = h1.Numerator

k1n = rcosdesign(Beta,span,sps);
k1n = k1n / max(k1n) * (-1/(pi*sps) ...
 * (pi*(Beta-1) - 4*Beta))

f2 = fdesign.pulseshaping(sps, ...
 'Raised Cosine', ...
 'Nsym,Beta',span,Beta);
d2 = design(f2);
n2 = d2.Numerator

n2n = rcosdesign(Beta,span,sps,'normal');
n2n = n2n/max(abs(n2n))/sps

g2 = fdesign.pulseshaping(sps, ...
 'Raised Cosine', ...
 'N,Beta',sps*span,Beta);
h2 = design(g2);
k2 = h2.Numerator

k2n = rcosdesign(Beta,span,sps,'normal');
k2n = k2n/max(abs(k2n))/sps

BT = 0.3;
f3 = fdesign.pulseshaping(sps, ...
 'Gaussian', ...
 'Nsym,BT',span,BT);
d3 = design(f3);
n3 = d3.Numerator

n3n = gaussdesign(BT,span,sps)

R2013b

15-4

https://www.mathworks.com/help/releases/R2013b/signal/ref/rcosdesign.html
https://www.mathworks.com/help/releases/R2013b/signal/ref/gaussdesign.html

R2013a

Version: 6.19

New Features

Bug Fixes

Compatibility Considerations

16

Functions to measure equivalent noise bandwidth, band power, and
spurious-free dynamic range
This release introduces three new functions for power measurements in the frequency domain. To
measure the average power contained in a specified frequency interval, use bandpower. You can
measure the spurious-free dynamic range using sfdr. The spurious-free dynamic range is the ratio of
powers for the fundamental, or carrier frequency, to the next largest component. The function enbw
measures the equivalent noise bandwidth of a window. The equivalent noise bandwidth is the width of
an ideal rectangular filter with peak power equal to the peak power of the window. The product of the
peak power and the equivalent noise bandwidth is equal to the power obtained by integrating under
the magnitude-squared Fourier transform of the window function.

Function interface to compute power spectrum with confidence
intervals and DC-centered spectra
This release enhances functions for nonparametric and parametric power spectral density (PSD)
function estimation. In R2013a, nonparametric PSD estimators provide confidence intervals based on
the chi-square probability distribution. Parametric PSD estimators provide confidence intervals based
on the Gaussian probability distribution. All nonparametric and parametric PSD estimators include
the ability to obtain a two-sided PSD estimate with 0 frequency (DC) in the center. See
periodogram , pwelch, and pmtm for information on obtaining confidence intervals and DC centered
spectra for nonparametric PSD estimation. See pburg , pcov, pmcov, and pyulear for information
on obtaining confidence intervals and DC centered spectra for parametric PSD estimation.

Function interface for analysis and implementation of single-precision
filters
This release enhances a number of filter analysis and implementation functions to accept single-
precision floating point inputs. In R2013a, you can use single-precision filter coefficients with filter
analysis functions, such as freqz, fvtool, grpdelay, impz, phasez, and zerophase. If you input
single-precision filter coefficients, the analysis function outputs are single precision.

In R2013a, the filtering function, sosfilt, accepts single-precision inputs for both the filter
coefficients and data. If either the second-order section matrix input or the data is single-precision,
sosfilt outputs single-precision data.

The filtering functions fftfilt , filtfilt, and latcfilt still require double-precision inputs.

Function interface for analysis of second-order section (biquad) filters
The R2013a release adds SOS matrix input support for filter analysis functions, such as freqz,
fvtool, grpdelay, impz, phasez, and zerophase.

Code generation support for Signal Processing Toolbox functions
This release removes the requirement for DSP System Toolbox™ to generate standalone C and C++
code for supported Signal Processing Toolbox functions. You must have MATLAB Coder and Signal
Processing Toolbox software to generate standalone C and C++ code for supported functions. See

R2013a

16-2

https://www.mathworks.com/help/releases/R2013a/signal/ref/bandpower.html
https://www.mathworks.com/help/releases/R2013a/signal/ref/sfdr.html
https://www.mathworks.com/help/releases/R2013a/signal/ref/enbw.html
https://www.mathworks.com/help/releases/R2013a/signal/ref/periodogram.html
https://www.mathworks.com/help/releases/R2013a/signal/ref/pwelch.html
https://www.mathworks.com/help/releases/R2013a/signal/ref/pmtm.html
https://www.mathworks.com/help/releases/R2013a/signal/ref/pburg.html
https://www.mathworks.com/help/releases/R2013a/signal/ref/pcov.html
https://www.mathworks.com/help/releases/R2013a/signal/ref/pmcov.html
https://www.mathworks.com/help/releases/R2013a/signal/ref/pyulear.html
https://www.mathworks.com/help/releases/R2013a/signal/ref/freqz.html
https://www.mathworks.com/help/releases/R2013a/signal/ref/fvtool.html
https://www.mathworks.com/help/releases/R2013a/signal/ref/grpdelay.html
https://www.mathworks.com/help/releases/R2013a/signal/ref/impz.html
https://www.mathworks.com/help/releases/R2013a/signal/ref/phasez.html
https://www.mathworks.com/help/releases/R2013a/signal/ref/zerophase.html
https://www.mathworks.com/help/releases/R2013a/signal/ref/sosfilt.html
https://www.mathworks.com/help/releases/R2013a/signal/ref/freqz.html
https://www.mathworks.com/help/releases/R2013a/signal/ref/fvtool.html
https://www.mathworks.com/help/releases/R2013a/signal/ref/grpdelay.html
https://www.mathworks.com/help/releases/R2013a/signal/ref/impz.html
https://www.mathworks.com/help/releases/R2013a/signal/ref/phasez.html
https://www.mathworks.com/help/releases/R2013a/signal/ref/zerophase.html

Functions Supported for Code Generation for a list of Signal Processing Toolbox functions with code
generation support if you have MATLAB Coder software.

Functionality Being Removed or Changed
Functionality What Happens

When You Use This
Functionality?

Use This Instead Compatibility
Considerations

dspdata.avgpower Still runs bandpower Replace all instances of
dspdata.avgpower with
bandpower

dspdata.msspectrum Still runs periodogram, pwelch Replace all instances of
dspdata.msspectrum with
the appropriate function
interface

dspdata.psd Still runs pburg, pcov,
periodogram, pmcov,
pmtm, pwelch, pyulear

Replace all instances of
dspdata.psd with the
appropriate function interface

dspdata.pseudospectrum Still runs peig, pmusic Replace all instances of
dspdata.pseudospectrum
with the appropriate function
interface

dspdata.sfdr Still runs sfdr Replace all instances of
dspdata.sfdr with sfdr

sigwin.barthannwin Still runs barthannwin Replace all instances of
sigwin.barthannwin with
barthannwin

sigwin.bartlett Still runs bartlett Replace all instances of
sigwin.bartlett with
bartlett

sigwin.blackman Still runs blackman Replace all instances of
sigwin.blackman with
blackman

sigwin.blackmanharris Still runs blackmanharris Replace all instances of
sigwin.blackmanharris
with blackmanharris

sigwin.bohmanwin Still runs bohmanwin Replace all instances of
sigwin.bohmanwin with
bohmanwin

sigwin.chebwin Still runs chebwin Replace all instances of
sigwin.chebwin with
chebwin

sigwin.flattopwin Still runs flattopwin Replace all instances of
sigwin.flattopwin with
flattopwin

16-3

https://www.mathworks.com/help/releases/R2013a/coder/functions-supported-for-code-generation.html
https://www.mathworks.com/help/releases/R2013a/signal/ref/bandpower.html
https://www.mathworks.com/help/releases/R2013a/signal/ref/periodogram.html
https://www.mathworks.com/help/releases/R2013a/signal/ref/pwelch.html
https://www.mathworks.com/help/releases/R2013a/signal/ref/pburg.html
https://www.mathworks.com/help/releases/R2013a/signal/ref/pcov.html
https://www.mathworks.com/help/releases/R2013a/signal/ref/periodogram.html
https://www.mathworks.com/help/releases/R2013a/signal/ref/pmcov.html
https://www.mathworks.com/help/releases/R2013a/signal/ref/pmtm.html
https://www.mathworks.com/help/releases/R2013a/signal/ref/pwelch.html
https://www.mathworks.com/help/releases/R2013a/signal/ref/pyulear.html
https://www.mathworks.com/help/releases/R2013a/signal/ref/peig.html
https://www.mathworks.com/help/releases/R2013a/signal/ref/pmusic.html
https://www.mathworks.com/help/releases/R2013a/signal/ref/sfdr.html
https://www.mathworks.com/help/releases/R2013a/signal/ref/barthannwin.html
https://www.mathworks.com/help/releases/R2013a/signal/ref/bartlett.html
https://www.mathworks.com/help/releases/R2013a/signal/ref/blackman.html
https://www.mathworks.com/help/releases/R2013a/signal/ref/blackmanharris.html
https://www.mathworks.com/help/releases/R2013a/signal/ref/bohmanwin.html
https://www.mathworks.com/help/releases/R2013a/signal/ref/chebwin.html
https://www.mathworks.com/help/releases/R2013a/signal/ref/flattopwin.html

Functionality What Happens
When You Use This
Functionality?

Use This Instead Compatibility
Considerations

sigwin.gausswin Still runs gausswin Replace all instances of
sigwin.gausswin with
gausswin

sigwin.hamming Still runs hamming Replace all instances of
sigwin.hamming with
hamming

sigwin.hann Still runs hann Replace all instances of
sigwin.hann with hann

sigwin.kaiser Still runs kaiser Replace all instances of
sigwin.kaiser with kaiser

sigwin.nuttallwin Still runs nuttallwin Replace all instances of
sigwin.nuttallwin with
nuttallwin

sigwin.parzenwin Still runs parzenwin Replace all instances of
sigwin.parzenwin with
parzenwin

sigwin.rectwin Still runs rectwin Replace all instances of
sigwin.rectwin with
rectwin

sigwin.taylorwin Still runs taylorwin Replace all instances of
sigwin.taylorwin with
taylorwin

sigwin.triang Still runs triang Replace all instances of
sigwin.triang with triang

sigwin.tukeywin Still runs tukeywin Replace all instances of
sigwin.tukeywin with
tukeywin

spectrum.burg Still runs pburg Replace all instances of
spectrum.burg with pburg

spectrum.cov Still runs pcov Replace all instances of
spectrum.cov with pcov

spectrum.eig Still runs peig Replace all instances of
spectrum.eig with peig

spectrum.mcov Still runs pmcov Replace all instances of
spectrum.mcov with pmcov

spectrum.mtm Still runs pmtm Replace all instances of
spectrum.mtm with pmtm

spectrum.music Still runs pmusic Replace all instances of
spectrum.music with
pmusic

R2013a

16-4

https://www.mathworks.com/help/releases/R2013a/signal/ref/gausswin.html
https://www.mathworks.com/help/releases/R2013a/signal/ref/hamming.html
https://www.mathworks.com/help/releases/R2013a/signal/ref/hann.html
https://www.mathworks.com/help/releases/R2013a/signal/ref/kaiser.html
https://www.mathworks.com/help/releases/R2013a/signal/ref/nuttallwin.html
https://www.mathworks.com/help/releases/R2013a/signal/ref/parzenwin.html
https://www.mathworks.com/help/releases/R2013a/signal/ref/rectwin.html
https://www.mathworks.com/help/releases/R2013a/signal/ref/taylorwin.html
https://www.mathworks.com/help/releases/R2013a/signal/ref/triang.html
https://www.mathworks.com/help/releases/R2013a/signal/ref/tukeywin.html
https://www.mathworks.com/help/releases/R2013a/signal/ref/pburg.html
https://www.mathworks.com/help/releases/R2013a/signal/ref/pcov.html
https://www.mathworks.com/help/releases/R2013a/signal/ref/peig.html
https://www.mathworks.com/help/releases/R2013a/signal/ref/pmcov.html
https://www.mathworks.com/help/releases/R2013a/signal/ref/pmtm.html
https://www.mathworks.com/help/releases/R2013a/signal/ref/pmusic.html

Functionality What Happens
When You Use This
Functionality?

Use This Instead Compatibility
Considerations

spectrum.periodogram Still runs periodogram Replace all instances of
spectrum.periodogram with
periodogram

spectrum.welch Still runs pwelch Replace all instances of
spectrum.welch with
pwelch

16-5

https://www.mathworks.com/help/releases/R2013a/signal/ref/periodogram.html
https://www.mathworks.com/help/releases/R2013a/signal/ref/pwelch.html

R2012b

Version: 6.18

New Features

Bug Fixes

Compatibility Considerations

17

Signal Browser in SPTool
The R2012b release introduces a revamped Signal Browser GUI. Whenever you select one or more
signals in the Signals list box and click the View button, The Signal Browser GUI launches from the
SPTool GUI. The Signal Browser allows you to perform the following additional operations:

• Time Domain Measurements Panels — The Signal Browser includes new side panels labeled Trace
Selection, Cursor Measurements, Signal Statistics, Bilevel Measurements, and Peak
Finder.

• The Trace Selection panel allows you to choose which signal to make the active signal when
you select multiple input signals in the Signals list box in SPTool. This panel replaces the

Select Trace toolbar button () and Select a trace dialog box that were used in previous
releases to choose an active signal. In the Signal Browser menu, select Tools >
Measurements > Trace Selection.

• The Cursor Measurements panel displays screen cursors. This panel replaces the Markers
menu and all the corresponding toolbar buttons that were used in previous releases to show
and configure markers. In the Signal Browser toolbar, click the Cursor Measurements button

(). Alternatively, in the Signal Browser menu, select Tools > Measurements > Cursor
Measurements.

• The Signal Statistics panel displays the maximum, minimum, peak-to-peak difference, mean,
median, and RMS values of a selected signal. It also displays the times at which the maximum
and minimum values occur. In the Signal Browser toolbar, click the Signal Statistics button

(). Alternatively, in the Signal Browser menu, select Tools > Measurements > Signal
Statistics.

• The Bilevel Measurements panel displays information about a selected signal’s transitions,
overshoots or undershoots, and cycles. In the Signal Browser toolbar, click the Bilevel

Measurements button (). Alternatively, in the Signal Browser menu, select Tools >
Measurements > Bilevel Measurements.

• The Peak Finder panel displays maxima and the times at which they occur. These displays
allow you to modify the settings for peak threshold, maximum number of peaks, and peak

excursion. In the Signal Browser toolbar, click the Peak Finder button (). Alternatively, in
the Signal Browser menu, select Tools > Measurements > Peak Finder.

• Multiple Display Support — R2012b enhances the Signal Browser by allowing you to choose to
have multiple displays. This feature allows you to tile your screen into a number of separate
displays, up to a grid of 4 rows and 4 columns. You may find multiple displays useful when you
select multiple input signals in the Signals list box in SPTool. To set the number of displays, in the

Signal Browser toolbar, click the Layout button (). Alternatively, in the Signal Browser menu,
select View > Layout.

• Style dialog box — R2012b enhances the Signal Browser by allowing you to customize the style of
displays using a Style dialog box. You can change the color of the figure containing the displays,
the background and foreground colors of display axes, and properties of lines in a display. The
Style dialog box replaces the Line Properties toolbar button and Edit Line dialog box that were
used in previous releases for customizing line properties. To view or modify the line style of the
active signal, in the Signal Browser menu, select View > Style. You can also right-click on the
display and select Style. The Signal Browser — Style dialog box opens.

R2012b

17-2

• Sampled data as stairs — The Signal Browser can display a signal as a stairstep graph. A
stairstep graph includes only horizontal lines and vertical lines. Each horizontal line represents
the signal value for a discrete sample period and is connected to two vertical lines. Each
vertical line represents a change in values occurring at a sample. Using this approach is
equivalent to using the MATLAB stairs function. Stairstep graphs are useful for drawing time
history graphs of digitally sampled data. To display a sampled signal as a Stairstep graph, in
the Signal Browser — Style dialog box, set the Plot type parameter to Stairs.

• Properties dialog box — R2012b enhances the Signal Browser by providing a central location
where you can modify the properties of a display. To change options for a display, in the Signal
Browser menu, select View > Properties. You can also right-click on the display and select
Properties. The Signal Browser — Visuals:Time Domain Options dialog box opens.

• Complex data support — The Signal Browser accepts complex-valued input signals and can
visualize them in two distinct fashions. By default, the complex data is displayed in real and
imaginary form as different-colored lines on the same axes. Alternately, you can display the
magnitude and phase of the signal on separate axes in the same display. To change the complex
data options, in the Signal Browser — Visuals:Time Domain Options dialog box, select the
Display tab. Then, select or clear the Plot signal(s) as magnitude and phase check box.

• Ability to change the time units of the display — The Signal Browser allows you to label the
time-axis in three different ways. First, you can confirm the default operation, in which the
Signal Browser displays time in metric units. The Signal Browser chooses the appropriate
metric units, based on the minimum time-axis limit and the maximum time-axis limit of the
scope window. Second, you can verify that the time-axis is always labeled as Time (seconds)
and that the appropriate power of 10 appears in the bottom-right corner of the Time Scope
display. Finally, you remove the units in the time-axis label entirely. To change the manner in
which the time units are displayed, in the Signal Browser — Visuals:Time Domain Options
dialog box, select the Main tab. Then, set the Time Units parameter to either Metric
(based on Time Span), Seconds, or None, respectively.

See the Signal Browser reference topic for more information.

Compatibility Considerations
The R2012b Signal Browser GUI replaces the tool available in previous releases that was also named
Signal Browser. In R2012b, you can still use the Signal Browser from previous releases, which is
hereafter referred to as the Legacy Browser. To do so, execute the following steps.

1 In the SPTool menu, select File > Preferences.
2 In the list at the left side, select Signal Browser.
3 Under Signal Browser, select the Use Legacy Browser (to be removed) check box.
4 Click OK.

Now when you select one or more signals from the Signals list and click the View button, the Legacy
Browser opens.

GPU acceleration for xcorr, xcorr2, fftfilt, xcov, and cconv functions
The R2012b release introduces GPU acceleration for xcorr, xcorr2, fftfilt, xcov, and cconv.
GPU acceleration for these functions requires Parallel Computing Toolbox software.

17-3

https://www.mathworks.com/help/releases/R2012b/matlab/ref/stairs.html
https://www.mathworks.com/help/releases/R2012b/signal/ref/sptool.html#btihbdu
https://www.mathworks.com/help/releases/R2012b/signal/ref/xcorr.html
https://www.mathworks.com/help/releases/R2012b/signal/ref/xcorr2.html
https://www.mathworks.com/help/releases/R2012b/signal/ref/fftfilt.html
https://www.mathworks.com/help/releases/R2012b/signal/ref/xcov.html
https://www.mathworks.com/help/releases/R2012b/signal/ref/cconv.html

If you have the Parallel Computing Toolbox, you can use gpuArray to create a GPUArray object. The
supported Signal Processing Toolbox functions accept GPUArray objects as inputs.

R2012b

17-4

https://www.mathworks.com/help/releases/R2012b/distcomp/gpuarray.html

R2012a

Version: 6.17

New Features

18

Measurements for Bilevel Pulse Waveforms
In R2012a, you can perform a number of basic measurements on bilevel pulse waveforms. These
measurements include:

• State levels — You can estimate the state levels of a bilevel waveform using the histogram method
with statelevels.

• Transition metrics — You can measure the rise time, fall time, and mid-reference level instants of
waveform transitions. See the help for midcross, risetime, falltime, and slewrate for
details. Additionally, R2012a introduces pulse metrics to measure bilevel waveform behavior in
pretransition and posttransition regions including, overshoot, undershoot, and
settlingtime.

• Duration metrics — See the help for pulsewidth, pulseperiod, pulsesep, and dutycycle for
details.

Signal Statistics
The R2012a release introduces a number of basic signal statistics to augment the statistical
measurements available in base MATLAB. See the function reference pages for rms, rssq,
peak2peak, and peak2rms for details.

R2012a

18-2

https://www.mathworks.com/help/releases/R2012a/signal/ref/statelevels.html
https://www.mathworks.com/help/releases/R2012a/signal/ref/midcross.html
https://www.mathworks.com/help/releases/R2012a/signal/ref/risetime.html
https://www.mathworks.com/help/releases/R2012a/signal/ref/falltime.html
https://www.mathworks.com/help/releases/R2012a/signal/ref/slewrate.html
https://www.mathworks.com/help/releases/R2012a/signal/ref/overshoot.html
https://www.mathworks.com/help/releases/R2012a/signal/ref/undershoot.html
https://www.mathworks.com/help/releases/R2012a/signal/ref/settlingtime.html
https://www.mathworks.com/help/releases/R2012a/signal/ref/pulsewidth.html
https://www.mathworks.com/help/releases/R2012a/signal/ref/pulseperiod.html
https://www.mathworks.com/help/releases/R2012a/signal/ref/pulsesep.html
https://www.mathworks.com/help/releases/R2012a/signal/ref/dutycycle.html
https://www.mathworks.com/help/releases/R2012a/signal/ref/rms.html
https://www.mathworks.com/help/releases/R2012a/signal/ref/rssq.html
https://www.mathworks.com/help/releases/R2012a/signal/ref/peak2peak.html
https://www.mathworks.com/help/releases/R2012a/signal/ref/peak2rms.html

R2011b

Version: 6.16

New Features

Bug Fixes

Compatibility Considerations

19

Passband and Stopband Weights for Fixed-Order Unconstrained
Partial Band Differentiator Filters
In R2011b, you can specify passband and stopband weights for a fixed-order unconstrained partial
band differentiator filter design. You can access this capability through filterbuilder and
fdesign.differentiator. With fdesign.differentiator, use the specification string
'N,Fp,Fst', and set the design method to 'equiripple'. The following example shows you how to
see the passband weight, Wpass, and stopband weight, Wstop, design options.

d = fdesign.differentiator('N,Fp,Fst',30,0.25,0.5);
designopts(d,'equiripple')

Specify the passband or stopband weight values when you design your equiripple filter. For example:

Hd = design(d,'equiripple','Wstop',4);

Numerator and Denominator Order Specifications Added to
filterbuilder for Lowpass and Highpass Butterworth Designs
In R2011b, you can specify different numerator and denominator orders in filterbuilder for
lowpass and highpass Butterworth (maxflat) designs.

Access this option in filterbuilder by setting Impulse response under Filter specifications to
IIR and Order mode to Specify. The default is equal order for both the numerator and
denominator. Check Denominator order to specify a different denominator order.

Conversion of Error and Warning Message Identifiers
For R2011b, Signal Processing Toolbox error and warning message identifiers have changed.

Compatibility Considerations
If you have scripts or functions that use these changed message identifiers, you must update the code
to use the new identifiers. Typically, message identifiers are used to turn off specific warning
messages. You can also use them in code that uses a try/catch statement and performs an action
based on a specific error identifier.

If your code checks for a message identifier in a warning or error, you must update it to check for the
new warning or error instead. To determine the identifier for a warning, run the following command
just after you see the warning:

 [MSG,MSGID] = lastwarn;

This command saves the message identifier to the variable MSGID.

To determine the identifier for an error, run the following command just after you see the error:

 exception = MException.last;
 MSGID = exception.identifier;

R2011b

19-2

https://www.mathworks.com/help/releases/R2012a/toolbox/signal/ref/filterbuilder.html
https://www.mathworks.com/help/releases/R2012a/toolbox/signal/ref/fdesign.differentiator.html
https://www.mathworks.com/help/releases/R2012a/toolbox/signal/ref/filterbuilder.html

Note Warning messages indicate a potential issue with your code. While you can turn off a warning,
a suggested alternative is to change your code so that your code does not generate warnings.

19-3

R2011a

Version: 6.15

New Features

Bug Fixes

Compatibility Considerations

20

Enhancements to filtfilt
In R2011a, there are two major enhancements to filtfilt:

1 filtfilt has been completely rewritten to improve performance. Actual performance
improvement depends on your hardware, filter length, signal length, and number of channels.

2 filtfilt now accepts IIR filters in second-order section (biquad) form.

Symmetric Window Option for Blackman-Harris Windows
In R2011a, blackmanharris and nuttallwin have a symmetric window design option. The input
argument SFLAG controls the window option and defaults to 'symmetric'. 'periodic' returns a
N-periodic window. The default symmetric option is preferred in FIR filter design because it results in
linear phase. In spectral analysis applications, the periodic option is preferred.

Compatibility Considerations
In releases previous to R2011a, blackmanharris and nuttallwin only return N-periodic windows.
To reproduce behavior in R2011a consistent with behavior in previous releases, use:

win = blackman(N,'periodic'); % N is the window length

or

win = nuttallwin(N,'periodic'); % N is the window length

rectpuls Returns Double-Precision Vector
In R2011a, rectpuls returns a double-precision vector instead of a logical vector.

Compatibility Considerations
In previous releases, rectpuls returns a logical vector. To produce behavior in R2011a consistent
with previous releases, cast the output of rectpuls to a logical vector.

t = linspace(0,1,0.01);
y = logical(rectpuls(t));

Code Generation from MATLAB and Fixed-Point MEX-File Generation
In R2011a, MathWorks® is no longer using the term Embedded MATLAB to refer to the language
subset that supports code generation from MATLAB algorithms. This nomenclature incorrectly
implies that the generated code is used in embedded systems only.

The new term is code generation from MATLAB. This terminology better reflects the full extent of the
capability for translating MATLAB algorithms into readable, efficient, and compact MEX and C/C++
code for deployment to both desktop and embedded systems.

Signal Processing Toolbox users who have the DSP System Toolbox and MATLAB Coder software can
generate deployable C/C++ code and MEX files using supported functions in the Signal Processing
Toolbox.

R2011a

20-2

https://www.mathworks.com/help/releases/R2012a/toolbox/signal/ref/filtfilt.html
https://www.mathworks.com/help/releases/R2012a/toolbox/signal/ref/filtfilt.html
https://www.mathworks.com/help/releases/R2012a/toolbox/signal/ref/filtfilt.html
https://www.mathworks.com/help/releases/R2012a/toolbox/signal/ref/blackmanharris.html
https://www.mathworks.com/help/releases/R2012a/toolbox/signal/ref/nuttallwin.html
https://www.mathworks.com/help/releases/R2012a/toolbox/signal/ref/blackmanharris.html
https://www.mathworks.com/help/releases/R2012a/toolbox/signal/ref/nuttallwin.html
https://www.mathworks.com/help/releases/R2012a/toolbox/signal/ref/rectpuls.html
https://www.mathworks.com/help/releases/R2012a/toolbox/signal/ref/rectpuls.html

You can find material on using Code Generation from MATLAB with the Signal Processing Toolbox
software in Code Generation from MATLAB Support in Signal Processing Toolbox.

Users who have the DSP System Toolbox and Fixed-Point Toolbox™ can accelerate MEX-files for fixed-
point applications using fiaccel.

Compatibility Considerations
The functionality associated with C/C++ and MEX code generation from MATLAB has changed in
R2011a. These changes include:

• The compiler flag #codegen replaces #eml.
• codegen replaces emlc and emlmex for generating deployable C/C++ code and MEX-files from

MATLAB algorithms. You must have the DSP System Toolbox and the MATLAB Coder software to
use codegen.

• fiaccel replaces emlmex for generating fixed-point MEX code from MATLAB algorithms. To use
fiaccel, you must have the DSP System Toolbox and Fixed-Point Toolbox software and your
MATLAB code must satisfy the conditions described on the fiaccel reference page.

20-3

https://www.mathworks.com/help/releases/R2012a/toolbox/signal/ug/br7exek.html
https://www.mathworks.com/help/releases/R2012a/toolbox/fixedpoint/ref/fiaccel.html
https://www.mathworks.com/help/releases/R2012a/toolbox/coder/ref/codegen.html
https://www.mathworks.com/help/releases/R2012a/toolbox/fixedpoint/ref/fiaccel.html
https://www.mathworks.com/help/releases/R2012a/toolbox/fixedpoint/ref/fiaccel.html

R2010b

Version: 6.14

New Features

Bug Fixes

21

Embedded MATLAB Support for Additional Signal Processing Toolbox
Functions
In R2010b, Embedded MATLAB® supports upsample and downsample in the Signal Processing
Toolbox.

R2010b

21-2

https://www.mathworks.com/help/releases/R2012a/toolbox/signal/ref/upsample.html
https://www.mathworks.com/help/releases/R2012a/toolbox/signal/ref/downsample.html

R2010a

Version: 6.13

New Features

Bug Fixes

Compatibility Considerations

22

Single-Precision Support Added for dfilt Objects
In R2010a, users can construct dfilt objects with single-precision floating point arithmetic. Set the
Arithmetic property to 'single' to obtain a single-precision floating point representation of the
filter coefficients.

Embedded MATLAB Support for Additional Signal Processing Toolbox
Functions
In R2010a, Embedded MATLAB supports additional functions in the Signal Processing Toolbox. You
can find a comprehensive list of supported functions in the Function Library Reference. You can find
examples of using supported functions with the Signal Processing Toolbox software at Code
Generation from MATLAB Support in Signal Processing Toolbox.

Functions, Objects, Object Methods, and Object Properties Being
Removed
Name What Happens When

you use the Function,
Object, Object
Method, or Object
Property

Use Instead Compatibility
Considerations

addsection (Method
for dfilt.cascade
and dfilt.parallel
objects)

Errors addstage method Replace all instances of
the addsection
method with the
addstage method for
dfilt.cascade and
dfilt.parallel
objects.

FFTLength (Property of
spectrum objects)

Errors 'NFFT' parameter in
psd or msspectrum
methods

Replace all instances of
the FFTLength
property in spectrum
objects by the 'NFFT'
parameter in the psd or
msspectrum methods.

freqzplot Warns fvtool Replace all instances of
freqzplot with
fvtool.

removesection
(Method for
dfilt.cascade and
dfilt.parallel
objects)

Errors removestage method Replace all instances of
the removesection
method with the
removestage method
for dfilt.cascade
and dfilt.parallel
objects.

R2010a

22-2

https://www.mathworks.com/help/releases/R2012a/toolbox/signal/ref/dfilt.html
https://www.mathworks.com/help/releases/R2012a/toolbox/signal/ug/br7exek.html
https://www.mathworks.com/help/releases/R2012a/toolbox/signal/ug/br7exek.html
https://www.mathworks.com/help/releases/R2012a/toolbox/signal/ref/dfilt.cascade.html
https://www.mathworks.com/help/releases/R2012a/toolbox/signal/ref/dfilt.parallel.html
https://www.mathworks.com/help/releases/R2012a/toolbox/signal/ref/spectrum.html
https://www.mathworks.com/help/releases/R2012a/toolbox/signal/ref/fvtool.html
https://www.mathworks.com/help/releases/R2012a/toolbox/signal/ref/fvtool.html
https://www.mathworks.com/help/releases/R2012a/toolbox/signal/ref/dfilt.cascade.html
https://www.mathworks.com/help/releases/R2012a/toolbox/signal/ref/dfilt.parallel.html

Name What Happens When
you use the Function,
Object, Object
Method, or Object
Property

Use Instead Compatibility
Considerations

Section (Property of
dfilt.cascade and
dfilt.parallel
objects)

Errors Stage property Replace all instances of
the Section property
with the Stage
property for
dfilt.cascade and
dfilt.parallel
objects.

Sidelobe_atten
(Property of
sigwin.chebwin
object)

Errors SidelobeAtten
property

Replace all instances of
the Sidelobe_atten
property with the
SidelobeAtten
property for
sigwin.chebwin
objects.

specplot Warns plot method with
DSPDATA object

Replace all instances of
specplot with the
plot method for
DSPDATA objects.

Warning for Filter Designer in SPTool
In R2010a, the use of Filter Designer in sptool is not recommended. Use fdatool instead. Under
File —> Preferences-> Filter Designer in SPTool, you may still select to use Filter Designer,
but you will receive a warning that Filter Designer will be removed in a future release. If you select
Filter Designer, you will be prompted to change your preferences in the sigprefs.mat and
startup.spt files when you exit SPTool. Changing your preferences to use Filter Designer results in
a warning each time SPTool starts. See Setting Preferences and Saving and Loading Sessions for
details.

Compatibility Considerations
Because a future release will remove Filter Designer , use fdatool instead. Filters created in Filter
Designer are not compatible with FDATool. Under File —> Preferences-> Filter Designer in
sptool, you can select to use FDATool. You receive a prompt to convert filters created in Filter
Designer to a format compatible with FDATool. When you exit sptool after changing your
preferences, you receive another prompt, instructing you to update your preferences to use FDATool.

22-3

https://www.mathworks.com/help/releases/R2012a/toolbox/signal/ref/dfilt.cascade.html
https://www.mathworks.com/help/releases/R2012a/toolbox/signal/ref/dfilt.parallel.html
https://www.mathworks.com/help/releases/R2012a/toolbox/signal/ref/sigwin.chebwinclass.html
https://www.mathworks.com/help/releases/R2012a/toolbox/signal/ref/sptool.html
https://www.mathworks.com/help/releases/R2012a/toolbox/signal/ref/fdatool.html
https://www.mathworks.com/help/releases/R2012a/toolbox/signal/ug/f0-83611.html
https://www.mathworks.com/help/releases/R2012a/toolbox/signal/ug/f0-137219.html
https://www.mathworks.com/help/releases/R2012a/toolbox/signal/ref/fdatool.html
https://www.mathworks.com/help/releases/R2012a/toolbox/signal/ref/sptool.html
https://www.mathworks.com/help/releases/R2012a/toolbox/signal/ref/sptool.html

R2009b

Version: 6.12

New Features

Bug Fixes

23

Embedded MATLAB Support Added to Signal Processing Toolbox
Functions
In R2009b, Embedded MATLAB supports the generation of embeddable C code for a subset of Signal
Processing Toolbox filter design and window generation functions. You must install both the Signal
Processing Toolbox and Signal Processing Blockset™ software to use this feature. Depending on
which Embedded MATLAB feature you wish to use, additional products are required. The generated C
code meets the strict memory and data type requirements of embedded target environments. See
Code Generation from MATLAB Support in Signal Processing Toolbox for a list of supported Signal
Processing Toolbox functions and examples.

Ability to Export Filter Coefficients Added to realizemdl
If you use Simulink®, you can now use the new MapCoeffstoPorts property with realizemdl to
map filter coefficients from dfilt objects to constant blocks. The coefficients also appear in the
MATLAB workspace providing tunability to the realized Simulink model. See dfilt for a list of
supported filter structures and any restrictions.

R2009b

23-2

https://www.mathworks.com/help/releases/R2012a/toolbox/signal/ug/br7exek.html
https://www.mathworks.com/help/releases/R2012a/toolbox/signal/ref/realizemdl.html
https://www.mathworks.com/help/releases/R2012a/toolbox/signal/ref/dfilt.html
https://www.mathworks.com/help/releases/R2012a/toolbox/signal/ref/dfilt.html

R2009a

Version: 6.11

New Features

Bug Fixes

24

New filter design approach using fdesign and filterbuilder
A new and more robust way to design filters has been added to the toolbox —fdesign objects and
the filterbuilder GUI. The following filter responses are supported: lowpass, highpass, bandpass,
bandstop, Hilbert, differentiator, pulse-shaping (including FIR Gaussian) and arbitrary magnitude.
Advanced design methods and additional responses are available in Filter Design Toolbox™.

New dfilt method to specify filter coefficients at block ports
A new option has been added to the dfilt block method to specify filter coefficients via Simulink block
ports.

R2009a

24-2

https://www.mathworks.com/help/releases/R2012a/toolbox/signal/ref/fdesign.html
https://www.mathworks.com/help/releases/R2012a/toolbox/signal/ref/filterbuilder.html
https://www.mathworks.com/help/releases/R2012a/toolbox/signal/ref/dfilt.html

R2008b

Version: 6.10

New Features

Bug Fixes

25

New Walsh–Hadamard Transform functions
A new fast Walsh–Hadamard transform fwht function and an inverse fast Walsh–Hadamard transform
ifwht have been added to the toolbox. An associated demo has also been added.

R2008b

25-2

https://www.mathworks.com/help/releases/R2012a/toolbox/signal/ref/fwht.html
https://www.mathworks.com/help/releases/R2012a/toolbox/signal/ref/ifwht.html

R2008a

Version: 6.9

New Features

Bug Fixes

26

New Marcum Q Function
A new marcumq function, which implements the generalized Marcum Q function, has been added to
the toolbox.

Conversion Between Magnitude and dB Added
The new utility functions mag2db and db2mag have been added for converting from magnitude to dB
and dB to magnitude, respectively.

PMTM Function Enhanced with Ability to Keep or Drop Last Taper
You can now specify whether to keep or drop the last taper for calculating the pmtm, which returns
the PSD using the Thomson multitaper method. By default, the last taper is dropped. If you set the
DropLastTaper property false, the last taper is included.

R2008a

26-2

https://www.mathworks.com/help/releases/R2012a/toolbox/signal/ref/marcumq.html
https://www.mathworks.com/help/releases/R2012a/toolbox/signal/ref/mag2db.html
https://www.mathworks.com/help/releases/R2012a/toolbox/signal/ref/db2mag.html
https://www.mathworks.com/help/releases/R2012a/toolbox/signal/ref/pmtm.html

R2007b

Version: 6.8

New Features

Bug Fixes

27

Confidence Interval Estimation Added
The spectrum object has been enhanced with a new method for calculating confidence intervals for
PSDs and mean-squared spectra.

Spurious-Free Dynamic Range (SFDR) Measurement Added
The dspdata object has been enhanced with a new method to measure spurious-free dynamic range
(SFDR) for mean-squared spectra.

Local Maxima/Peak Finder Added
A new function findpeaks has been added to identify local maxima in a data vector. You can specify
the minimum peak height and distance from its neighbors to limit the results. A findpeaks method
has also been added to the dspdata object.

Conversions Between Power and dB Added
The new utility functions pow2db and db2pow have been added for converting from power to dB and
dB to power, respectively.

R2007b

27-2

https://www.mathworks.com/help/releases/R2012a/toolbox/signal/ref/spectrum.html
https://www.mathworks.com/help/releases/R2012a/toolbox/signal/ref/dspdata.html
https://www.mathworks.com/help/releases/R2012a/toolbox/signal/ref/findpeaks.html
https://www.mathworks.com/help/releases/R2012a/toolbox/signal/ref/dspdata.html
https://www.mathworks.com/help/releases/R2012a/toolbox/signal/ref/pow2db.html
https://www.mathworks.com/help/releases/R2012a/toolbox/signal/ref/db2pow.html

R2007a

Version: 6.7

New Features

Bug Fixes

28

lsf2poly and latcfilt Multi-Channel Input Support Added
lsf2poly and latcfilt now support N-D array input where each column represents a separate
input channel.

Circular Convolution (cconv) Function Added
A new function (cconv) that computes circular convolution has been added to the toolbox.

Spectrum Objects Partial Frequency Range Input Support Added
spectrum objects now support computing the spectrum and pseudospectrum on a user-specified
vector of frequencies. This vector identifies the frequencies at which the spectrum or
pseudospectrum is calculated.

cceps Factorize Algorithm Information Clarified
A more detailed explanation of the factorize algorithm and an example have been added to the cceps
reference page.

dfilt.statespace Now Supports realizemdl Method
You can now create a Simulink block from dfilt.statespace objects with the dfilt realizemdl
method.

ellip and ellipap Functions Enhanced
Both ellip and ellipap have been enhanced so that they are able to handle filters with more
stringent requirements.

R2007a

28-2

https://www.mathworks.com/help/releases/R2012a/toolbox/signal/ref/lsf2poly.html
https://www.mathworks.com/help/releases/R2012a/toolbox/signal/ref/latcfilt.html
https://www.mathworks.com/help/releases/R2012a/toolbox/signal/ref/cconv.html
https://www.mathworks.com/help/releases/R2012a/toolbox/signal/ref/spectrum.html
https://www.mathworks.com/help/releases/R2012a/toolbox/signal/ref/cceps.html
https://www.mathworks.com/help/releases/R2012a/toolbox/signal/ref/dfilt.statespace.html
https://www.mathworks.com/help/releases/R2012a/toolbox/signal/ref/ellip.html
https://www.mathworks.com/help/releases/R2012a/toolbox/signal/ref/ellipap.html

R2006b

Version: 6.6

New Features

Bug Fixes

Compatibility Considerations

29

Frequency Vector Input Added to Spectral Analysis Functions
The spectral analysis command line functions (pburg, pcov, peig, periodogram, pmcov, pmtm,
pmusic, pwelch, and pyulear) now accept a frequency vector as an input parameter. This vector
identifies the frequencies at which the spectral analysis function returns an estimate.

For functions that use the Goertzel algorithm (periodogram, pmtm, pwelch, and spectrogram), the
frequency inputs are rounded to match the nearest bin value used by the algorithm.

FFT Length in Spectral Analyses Changed
The FFTLength parameter has been removed from all spectrum objects and you now specify the
number of FFT points (NFFT) via the psd, msspectrum, or pseudospectrum estimation method. The
NFFT value can be an integer or a string (either 'Nextpow2' or 'Auto'). 'Nextpow2' is the default
and sets the number of FFT points to the next power of 2 greater than the input signal length (or the
segment length for spectrum.welch objects). 'Auto' sets the number of FFT points to be equal to
the input signal or segment length.

Compatibility Considerations
You should update any existing code that specifies the FFTLength parameter and instead use the
NFFT parameter associated with an estimation method.

You should also verify that any spectrum.welch objects are using the desired FFT length, since the
FFT length is now based on the segment length instead of the input signal length.

sosfilt and dfilt filter Method Support Multidimensional Array Input
You can now input a multidimensional array to sosfilt and to the dfilt filter method.

dfilt block Method Supports Target Subsystem Destination and Link
Between Command Line and Model
The dfilt block method now allows you to specify a target subsystem in your Simulink model
where you want to place the block. Two new parameters implement this: 'Destination' and
'Link2Obj'. The 'Destination' specifies where to place the block and 'Link2Obj' creates a
link between the block in your model and inputs from the command line.

gaussfir Algorithm Updated
The alpha parameter in the formula used in gaussfir has been updated to match the formula in
Rappaport T.S., Wireless Communications Principles and Practice, 2nd Edition, Prentice Hall, 2001.

R2006b

29-2

https://www.mathworks.com/help/releases/R2012a/toolbox/signal/ref/pburg.html
https://www.mathworks.com/help/releases/R2012a/toolbox/signal/ref/pcov.html
https://www.mathworks.com/help/releases/R2012a/toolbox/signal/ref/peig.html
https://www.mathworks.com/help/releases/R2012a/toolbox/signal/ref/periodogram.html
https://www.mathworks.com/help/releases/R2012a/toolbox/signal/ref/pmcov.html
https://www.mathworks.com/help/releases/R2012a/toolbox/signal/ref/pmtm.html
https://www.mathworks.com/help/releases/R2012a/toolbox/signal/ref/pmusic.html
https://www.mathworks.com/help/releases/R2012a/toolbox/signal/ref/pwelch.html
https://www.mathworks.com/help/releases/R2012a/toolbox/signal/ref/pyulear.html
https://www.mathworks.com/help/releases/R2012a/toolbox/signal/ref/periodogram.html
https://www.mathworks.com/help/releases/R2012a/toolbox/signal/ref/pmtm.html
https://www.mathworks.com/help/releases/R2012a/toolbox/signal/ref/pwelch.html
https://www.mathworks.com/help/releases/R2012a/toolbox/signal/ref/spectrogram.html
https://www.mathworks.com/help/releases/R2012a/toolbox/signal/ref/spectrum.html
https://www.mathworks.com/help/releases/R2012a/toolbox/signal/ref/sosfilt.html
https://www.mathworks.com/help/releases/R2012a/toolbox/signal/ref/dfilt.html
https://www.mathworks.com/help/releases/R2012a/toolbox/signal/ref/dfilt.html
https://www.mathworks.com/help/releases/R2012a/toolbox/signal/ref/gaussfir.html

R2006a

Version: 6.5

New Features

Bug Fixes

Compatibility Considerations

30

Taylor Window Function Added
A new function taylorwin for generating Taylor windows has been added.

SPTool Filter Designer Replaced by FDATool
FDATool has replaced the SPTool Filter Designer as the preferred method for designing filters for use
in SPTool. For details, see FDATool in the Signal Processing Toolbox documentation.

Compatibility Considerations
The format in which filters are saved differs between SPTool Filter Designer and FDATool. When you
load an SPTool session with saved filters, you are prompted to upgrade your filters to use FDATool
format.

sgolay Example Improved
The example for sgolay has been improved and expanded.

zp2sos zeroflag Parameter Added
A new parameter zeroflag has been added to zp2sos. This parameter is used for real zeros that
are the negatives of each other. For these zeros it specifies whether to keep them together instead of
ordering them according to proximity to poles.

Help for Objects Changed
To obtain help for objects, use help object.constructor instead of the old help object/
constructor. Note that to obtain help for methods, you still use help object/method.

R2006a

30-2

https://www.mathworks.com/help/releases/R2012a/toolbox/signal/ref/taylorwin.html
https://www.mathworks.com/help/releases/R2012a/toolbox/signal/ug/f0-134405.html
https://www.mathworks.com/help/releases/R2012a/toolbox/signal/ref/sgolay.html
https://www.mathworks.com/help/releases/R2012a/toolbox/signal/ref/zp2sos.html

R14SP3

Version: 6.4

New Features

Bug Fixes

31

dfilt (Discrete-Time Filters) Delay Structure Added
A new delay structure (dfilt.delay) has been added to dfilt objects. This structure adds latency
to any signal filtered with it.

WinTool/WVTool Normalize Magnitude Added
A Normalize magnitude option has been added to the Analysis Parameters of WinTool and
WVTool magnitude plots.

FDATool/FVTool Plot Displays Improved
The default plots for filter responses have been improved. The y-axis autoscaling includes buffer
regions around the data and shows only the significant data. To see all of the data without any buffer
regions, select Full view from the View menu.

FVTool Passband Zoom Added
If you have a filter in FVTool that was created in FDATool or from a Filter Design Toolbox fdesign
object, you can use Passband on the View menu to zoom the passband region.

R14SP3

31-2

https://www.mathworks.com/help/releases/R2012a/toolbox/signal/ref/dfilt.delay.html

R14SP2

Version: 6.3

New Features

Bug Fixes

Compatibility Considerations

32

FDATool and FVTool Changes
FDATool Spectral Rejection Masks Added

You can draw lines on your filter response in FDATool to indicate rejection areas.

FDATool Generated C Header File Complex Filter Support

FDATool now supports generating C header files for complex filters.

FDATool Tip of the Day Added

A new Tip of the Day dialog displays when you start FDATool. It contains tips and hints for using
FDATool.

FDATool State Space Filters Support Removed

FDATool no longer supports state space filters.

Compatibility Considerations
If you load a saved FDATool session that contains a state space filter, it is converted to a direct-form II
transposed filter.

FDATool/FVTool New Analysis Parameters Magnitude Response Options

Three new options have been added to the Analysis Parameters for magnitude response displays.

• Normalize Magnitude to 1 (0 dB) — displays the magnitude so that the maximum magnitude
value occurs at 0 dB

• Autoscale axes — automatically scales the response data y-axis
• dB Display Range — If you are not using autoscale and the magnitude display is in dB, this

allows you to specify the y-axis limits, .

FVTool SOS Filter Coefficients Display Enhancement

The coefficient view in FVTool now displays each section of a second-order section filter as a separate
filter with its own numerator, denominator, and gain.

FVTool Default Phase Units Changed

The default units for the phase response in FVTool have been changed to radians. This is consistent
with the phasez function.

Compatibility Considerations
You should verify that the FVTool phase plots generated by existing code display the desired units.

R14SP2

32-2

https://www.mathworks.com/help/releases/R2012a/toolbox/signal/ref/phasez.html

dfilt Changes
dfilt Coefficients Method Changed

The dfilt coefficients method has been changed to the coeffs method, which returns a
structure. See the Methods section of dfilt for information.

Compatibility Considerations
You should update any code that uses the coefficients method to use the new coeffs method and
its returned structure.

dfilt Filter States Changed to Use States Property

You cannot pass filter states (initial and final conditions) via the dfilt filter method. You must use
the states property. See dfilt for more information.

Compatibility Considerations
You should update any code that passed filter states via the dfilt filter method to use the new
states property.

Spectral Analysis Changes
spectrogram Function Replaces specgram

spectrogram has been added to replace the grandfathered specgram function. If you use this
function with no outputs, a surface plot is displayed, instead of an image.

Compatibility Considerations
You should update any code that references specgram to use the new spectrogram function.
spectrogram uses different default values than specgram and the order of the inputs has changed.

Spectral Analysis Functions Inputs Changed

pwelch (and the other spectrum analysis functions) no longer accept 'half' or 'whole'. You must
use 'onesided' or 'twosided' to indicate the type of analysis you want.

Compatibility Considerations
You should update any code that uses 'half' or 'whole' with spectral analysis functions and
instead use 'onesided' or 'twosided', respectively.

PSD Objects and Function Output Plots Changed

The following functions and methods now generate standard MATLAB plots, instead of launching an
interactive plot. Refer to the MATLAB documentation for information on plots.

• dspdata plot method
• spectrum psd, pseudospectrum, and msspectrum methods

32-3

https://www.mathworks.com/help/releases/R2012a/toolbox/signal/ref/dfilt.html
https://www.mathworks.com/help/releases/R2012a/toolbox/signal/ref/dfilt.html
https://www.mathworks.com/help/releases/R2012a/toolbox/signal/ref/spectrogram.html
https://www.mathworks.com/help/releases/R2012a/toolbox/signal/ref/pwelch.html
https://www.mathworks.com/help/releases/R2012a/toolbox/signal/ref/dspdata.html
https://www.mathworks.com/help/releases/R2012a/toolbox/signal/ref/spectrum.html

• pburg
• pcov
• periodogram
• pmcov
• pmtm
• pwelch
• pyulear

Other Changes
gaussfir Function Replaces firgauss

gaussfir has been added to replace the grandfathered firgauss function. gaussfir uses
parameters that are common to communications systems.

Compatibility Considerations
You should update any code that references firgauss to use the new gaussfir.

firpm and cfirpm Inputs Changed

The firpm and cfirpm functions now take function handles as inputs instead of strings.

Compatibility Considerations
You should update any code that uses firpm or cfirpm so that it will work correctly with function
handle inputs instead of string input.

New Demos

Signal Processing Toolbox demos have been reorganized and a new demo on the analysis of a
numerically controlled oscillator (NCO) has been added.

Filter Wizard Product Dependency Removed

The Filter Wizard no longer requires Filter Design Toolbox software. You can use the Filter Wizard if
you have Signal Processing Toolbox software and Simulink installed. If you have the Filter Design
Toolbox software installed, more options are available. See dspfwiz for more information.

R14SP2

32-4

https://www.mathworks.com/help/releases/R2012a/toolbox/signal/ref/pburg.html
https://www.mathworks.com/help/releases/R2012a/toolbox/signal/ref/pcov.html
https://www.mathworks.com/help/releases/R2012a/toolbox/signal/ref/periodogram.html
https://www.mathworks.com/help/releases/R2012a/toolbox/signal/ref/pmcov.html
https://www.mathworks.com/help/releases/R2012a/toolbox/signal/ref/pmtm.html
https://www.mathworks.com/help/releases/R2012a/toolbox/signal/ref/pwelch.html
https://www.mathworks.com/help/releases/R2012a/toolbox/signal/ref/pyulear.html
https://www.mathworks.com/help/releases/R2012a/toolbox/signal/ref/gaussfir.html
https://www.mathworks.com/help/releases/R2012a/toolbox/signal/ref/firpm.html
https://www.mathworks.com/help/releases/R2012a/toolbox/signal/ref/cfirpm.html
https://www.mathworks.com/help/releases/R2012a/toolbox/signal/ref/dspfwiz.html

	R2020b
	Signal Labeler App: Perform faster labeling
	Signal Labeler App: View spectra and spectrograms
	Signal Labeler App: Import data from files
	Signal Segmentation: Extract and convert signal regions of interest in preparation for deep learning
	European Data Format Files: Read EDF and EDF+ files and obtain information about them
	Short-Time Fourier Transform: Reconstruct signals from their STFT magnitudes and compute one-sided estimates
	Signal Labeling: Point to signal collections in the workspace or in files using signalDatastore objects
	Signal Resampling: Change sample rates of N-D arrays or resample them to uniform grids
	chirp Function: Generate complex-valued swept-frequency cosine signals
	pmtm Function: Perform spectral analysis using sine tapers
	Deep Learning Examples: Use generative adversarial network and generate Raspberry Pi code
	C/C++ Code Generation Support: Generate code for feature extraction, signal measurements, and vibration analysis
	GPU acceleration for spectral analysis and time-frequency analysis functions
	GPU code generation support for zero-phased filtering and Fourier synchrosqueezed transform functions
	tall Array Support: Operate on tall arrays with the pwelch function

	R2020a
	Signal Labeler App: Perform interactive or automated signal labeling
	Signal Datastores: Work with signal collections that exist in the workspace or in files
	Time-Frequency Analysis: Use variational mode decomposition to extract intrinsic modes
	Deep Learning Examples: Use time-frequency analysis and neural networks for classification and labeling
	tall Arrays: Operate on tall arrays with the spectrogram and stft functions
	GPU code generation support for fftfilt, stft, and istft functions
	GPU acceleration for spectrogram, czt, stft, and wvd functions
	C/C++ Code Generation Support: Generate code for time-frequency analysis, feature extraction, spectral analysis, multirate signal processing, and filter design
	Functionality being removed or changed
	Label button removed from Signal Analyzer

	R2019b
	Signal Labeling: Perform automated labeling using user-defined functions
	Signal Labeling: Automatically find and label signal peaks and valleys
	Signal Analyzer App: Analyze complex signals
	Tall Array Support: Compute spectrograms of signals too large to fit in memory
	stft and istft Functions: Compute and invert short-time Fourier transforms of multichannel signals
	Time-Frequency Gallery: Examine features and limitations of time-frequency analysis methods
	C/C++ Code Generation Support: Generate code for time-frequency analysis, spectral analysis of nonuniformly sampled signals, and digital filtering

	R2019a
	Signal Labeling: Label signals interactively and visualize labeled signals
	Time-Frequency Analysis: Compute short-time Fourier transforms and inverse short-time Fourier transforms
	Signal Analyzer App: Remove trends from signals and estimate their envelopes
	Signal Analyzer App: Enhanced management of multichannel signals
	C/C++ Code Generation Support: Generate code for filter design, spectral analysis, and spectral windowing

	R2018b
	Signal Analyzer App: Preprocess signals using user-defined functions
	Signal Analyzer App: Change sample rates of signals and convert nonuniformly sampled signals to uniformly sampled signals
	Time-Frequency Analysis: Analyze signals using the Wigner-Ville distribution
	Deep Learning Example: Identify morphological features of signals using recurrent neural networks
	Signal Labeling: Define labels and create sets of labeled signals

	R2018a
	Signal Analyzer App: Preprocess signals by smoothing and filtering
	Signal Analyzer App: Detect transients and perform time-frequency analysis using scalogram view
	One-Step Filtering: Filter signals using lowpass, highpass, bandpass, and bandstop responses
	Time-Frequency Analysis: Perform empirical mode decomposition, Hilbert-Huang transform, and instantaneous frequency estimation
	Time-Frequency Analysis: Estimate kurtogram, spectral kurtosis, and spectral entropy
	poctave Function: Compute 1/N octave spectra and perform octave smoothing
	Rotating Machinery: Estimate and track rotational speed from vibration signals
	Deep Learning Example: Classify signals using long short-term memory networks
	Functionality being removed or changed

	R2017b
	Signal Analyzer App: Analyze sporadic signals with persistence spectrum and sharpen time-frequency estimates using reassignment
	Signal Analyzer App: Extract and export signal regions of interest
	Signal Analyzer App: Generate MATLAB scripts to automate analysis
	pspectrum Function: Analyze power spectrum, spectrogram, and persistence spectrum of signals
	Rotating Machinery: Remove noise coherently with time-synchronous averaging and analyze wear using envelope spectra
	Modal Analysis: Use parametric methods for FRF and modal parameter estimation
	Fatigue Analysis: Perform high-cycle rainflow counting
	findchangepts Function: Find changepoints in spectrograms and other multivariate signals
	Functionality being removed or changed

	R2017a
	Signal Analyzer App: Perform time-frequency analysis using spectrogram view
	Signal Analyzer App: Analyze timestamped signals
	Modal Analysis: Estimate frequency-response functions and modal parameters of mechanical systems
	Cross-Spectrogram: Compare time-frequency content of nonstationary signals
	MIMO Spectral Analysis: Estimate cross-spectral density and coherence for multi-input/multi-output systems
	Transfer Function Estimation: Compute unbiased estimates for SISO and MIMO systems containing additive input noise
	dct and idct Functions: Compute four standard types of discrete cosine transform
	Code Generation Support: Generate code for an expanded set of Signal Processing Toolbox functions
	findpeaks Function: Single-precision support and improved code generation functionality

	R2016b
	Signal Analyzer App: Perform time- and frequency-domain analysis of multiple time series
	Similarity Matching: Find patterns in data using edit distance or dynamic time warping
	Order Analysis: Track orders and extract waveforms to analyze rotational machinery
	Fourier Synchrosqueezing Transform: Obtain sharp time-frequency estimates and extract signal modes
	Distortion Measurement Functions: Measure aliased harmonics in undersampled signals
	GPU acceleration: Enhance performance of dct, idct, and sinc functions
	Filter Design and Analysis Tool renamed to Filter Designer
	Window Design and Analysis Tool renamed to Window Designer
	Functionality being removed or changed

	R2016a
	Gap Filling: Reconstruct missing samples using autoregressive modeling
	Changepoint Detection: Find abrupt changes and statistical shifts in signals
	Dynamic Time Warping: Stretch, align, and compare signals with different time scales
	Reassigned Periodogram: Sharpen the frequency localization of spectral estimates
	Signal Analyzer App: Visualize and compare multiple time series
	datetime Support: Use datetime arrays in Signal Processing Toolbox functions
	xcorr Function: Generate faster code for long input vectors
	chebwin Function: Compute Dolph-Chebyshev windows faster

	R2015b
	Reassigned Spectrogram: Sharpen the time-frequency localization of spectral estimates
	Hampel Filter and Improved Median Filtering: Detect outliers and remove them from data
	Order Analysis: Analyze vibrations in rotational machinery with order and frequency maps
	Envelope Detection: Extract analytic, peak, and RMS envelopes
	Signal Alignment: Measure delay and align signals in time

	R2015a
	Frequency Measurements: Compute mean and median frequencies using spectral estimates
	Bandwidth Measurements: Compute occupied bandwidth and bandwidth at specified power levels
	resample function accepts signals with nonuniform sampling or missing data
	pwelch function computes maximum-hold and minimum-hold spectra
	spectrogram function computes two-sided, centered, power, and PSD spectra
	Fast chirp Z-transform support for spectral analysis functions

	R2014b
	Spectral estimation of signals with nonuniform sampling or missing data
	Multichannel support for spectral analysis functions
	Peak finding with visualization and enhanced peak selection

	R2014a
	Simplified workflow for specification-based filter design
	Visualization of harmonic distortion measurements
	Changes in name-value pair arguments of measurement functions

	R2013b
	Distortion, intermodulation, and SNR measurement functions
	Design raised cosine and Gaussian pulse-shaping filters
	Functionality Being Removed or Changed

	R2013a
	Functions to measure equivalent noise bandwidth, band power, and spurious-free dynamic range
	Function interface to compute power spectrum with confidence intervals and DC-centered spectra
	Function interface for analysis and implementation of single-precision filters
	Function interface for analysis of second-order section (biquad) filters
	Code generation support for Signal Processing Toolbox functions
	Functionality Being Removed or Changed

	R2012b
	Signal Browser in SPTool
	GPU acceleration for xcorr, xcorr2, fftfilt, xcov, and cconv functions

	R2012a
	Measurements for Bilevel Pulse Waveforms
	Signal Statistics

	R2011b
	Passband and Stopband Weights for Fixed-Order Unconstrained Partial Band Differentiator Filters
	Numerator and Denominator Order Specifications Added to filterbuilder for Lowpass and Highpass Butterworth Designs
	Conversion of Error and Warning Message Identifiers

	R2011a
	Enhancements to filtfilt
	Symmetric Window Option for Blackman-Harris Windows
	rectpuls Returns Double-Precision Vector
	Code Generation from MATLAB and Fixed-Point MEX-File Generation

	R2010b
	Embedded MATLAB Support for Additional Signal Processing Toolbox Functions

	R2010a
	Single-Precision Support Added for dfilt Objects
	Embedded MATLAB Support for Additional Signal Processing Toolbox Functions
	Functions, Objects, Object Methods, and Object Properties Being Removed
	Warning for Filter Designer in SPTool

	R2009b
	Embedded MATLAB Support Added to Signal Processing Toolbox Functions
	Ability to Export Filter Coefficients Added to realizemdl

	R2009a
	New filter design approach using fdesign and filterbuilder
	New dfilt method to specify filter coefficients at block ports

	R2008b
	New Walsh–Hadamard Transform functions

	R2008a
	New Marcum Q Function
	Conversion Between Magnitude and dB Added
	PMTM Function Enhanced with Ability to Keep or Drop Last Taper

	R2007b
	Confidence Interval Estimation Added
	Spurious-Free Dynamic Range (SFDR) Measurement Added
	Local Maxima/Peak Finder Added
	Conversions Between Power and dB Added

	R2007a
	lsf2poly and latcfilt Multi-Channel Input Support Added
	Circular Convolution (cconv) Function Added
	Spectrum Objects Partial Frequency Range Input Support Added
	cceps Factorize Algorithm Information Clarified
	dfilt.statespace Now Supports realizemdl Method
	ellip and ellipap Functions Enhanced

	R2006b
	Frequency Vector Input Added to Spectral Analysis Functions
	FFT Length in Spectral Analyses Changed
	sosfilt and dfilt filter Method Support Multidimensional Array Input
	dfilt block Method Supports Target Subsystem Destination and Link Between Command Line and Model
	gaussfir Algorithm Updated

	R2006a
	Taylor Window Function Added
	SPTool Filter Designer Replaced by FDATool
	sgolay Example Improved
	zp2sos zeroflag Parameter Added
	Help for Objects Changed

	R14SP3
	dfilt (Discrete-Time Filters) Delay Structure Added
	WinTool/WVTool Normalize Magnitude Added
	FDATool/FVTool Plot Displays Improved
	FVTool Passband Zoom Added

	R14SP2
	FDATool and FVTool Changes
	FDATool Spectral Rejection Masks Added
	FDATool Generated C Header File Complex Filter Support
	FDATool Tip of the Day Added
	FDATool State Space Filters Support Removed
	FDATool/FVTool New Analysis Parameters Magnitude Response Options
	FVTool SOS Filter Coefficients Display Enhancement
	FVTool Default Phase Units Changed

	dfilt Changes
	dfilt Coefficients Method Changed
	dfilt Filter States Changed to Use States Property

	Spectral Analysis Changes
	spectrogram Function Replaces specgram
	Spectral Analysis Functions Inputs Changed
	PSD Objects and Function Output Plots Changed

	Other Changes
	gaussfir Function Replaces firgauss
	firpm and cfirpm Inputs Changed
	New Demos
	Filter Wizard Product Dependency Removed

