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1. INTRODUCTION

In studies of the homogenous turbulence degeneration experimentally, there is always a boundary of
the measured space or the finite volume. Numerous experiments on the degeneration of grid�induced tur�
bulence in a wind tunnel failed to provide the complete picture of degeneration because of the limited
length of the test section. The known analytical methods are limited in describing the degeneration pro�
cess because they neglect the influence of the pressure and other forces. Thus, today the numerical simu�
lation is the only method for modeling the turbulence degeneration. 

The investigation into the degeneration of homogeneous isotropic turbulence is usually based on spec�
tral equations and equations of correlation functions, whose closure requires that certain correlation func�
tions should be determined. This circumstance renders this approach inefficient because it is impossible
to obtain the spectra for a large time interval and at the moment of the main dissipation [1, 2]. 

In this work, we make an attempt at solving this problem by using the large�eddy method. The idea is
to impose in the phase space the initial condition for the field of velocities that satisfies the condition for
continuity. In doing this, the main spectral equation is not solved and the set initial condition is transferred
from the phase space into the physical space using the Fourier transform. The obtained field of velocities
is used as the initial condition for the filtered Navier–Stokes equation. Then, the nonstationary three�
dimensional Navier–Stokes equation is solved to simulate the degeneration of the isotropic turbulence. 

2. PROBLEM STATEMENT

The isotropic medium in turbulence undergoes a very rapid homogeneous deformation; then, all the
characteristic sizes and any averaged characteristics of turbulence are constant but variable in time. In
order to determine turbulent characteristics, it is necessary to numerically model the time variation
change in all the parameters and the degeneration of the isotropic turbulence at different Reynolds num�
bers.
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The numerical modeling of the problem is based on the solution of nonstationary filtered Navier–
Stokes equations with the continuity equation in the Cartesian coordinate system 

(1)

where  are velocity components,  is the pressure, t is the time, ν is the kinematic coefficient of viscosity,
and τi,j is the subgrid tensor responsible for small scale structures to be simulated, i, j—1, 2, 3.

For modeling f the subgrid tensor a viscosity model is used and is represented as

where  is the turbulence viscosity,  is the empirical coefficient,  is

the width of the grid filter, and  is the value of the tensor of deformation of velocities [3, 4].

Boundary conditions are taken as periodic in all directions.The initial values for each component are
assigned as functions dependent on wave numbers in the phase space 

where  is the one�dimensional longitudinal spectrum spectrum, while  and  are the one�dimensional
lateral spectrum. 

For this problem a variation parameter m and the wave number kmax, which determine the kind of tur�
bulence, are chosen. In Fig. 1, at kmax = 20 parameter, m varies. In modeling the isotropic turbulence, it is
possible to take parameters kmax = 20 and m = 4, corresponding to the experimental data [5].
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Fig.1. Energy of the initial level of turbulence based on the fixed wave number kmax = 20 and variation parameter m: (1)
m = 2; (2) m = 4; (3) m = 6; (4) m = 8. 
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The assigned initial condition is transferred from the phase space into the physical space using the Fou�
rier transform. 

3. NUMERICAL METHOD

In solving the Navier–Stokes equation (1), use is made of a scheme split by physical parameters that con�
sists of three stages. At the first stage, the Navier–Stokes equation is solved, without taking pressure into
account. For approximation of the convective and diffusion terms of the equation a compact scheme of a
higher order of accuracy [6] is used. 

The intermediate field of velocity is found by the fractional step method [7] using the sweep method.
The fractional step method is employed for the horizontal component of velocity  at the grid point

 In order to use compact schemes, the fractional step method is modified. At the first stage 

(2)

where

The second stage is given by

(3)

where

The third stage is given by

(4)

where

By using the scheme with upwind differences [8] and the compact scheme, we obtain a scheme with a
high�order accuracy. The compact scheme for convective terms of equations with  has the fol�
lowing form: 

(5)

The traditional formulation of the derivative (5) approximation has the form
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We introduce denotation

(6)

The compact approximation of relationship (6) is as follows: 

(7)

We choose the indefinite coefficients so that the following relation should be satisfied:

(8)

To do this, we insert in (8) the Taylor�series expansions of functions  and  at the point x = xi:
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is fulfilled for the Taylor series expansion

(13)

From (13) we obtain the system

From this we find

(14)

We introduce the difference operator Mk:  where the coefficients for
the convective term,  and  are found in (11). Then, (7) can be rewritten as

 Thus, Eq. (5) will have the following form: 
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We introduce the difference operator Md:  where  and  i.e.,
the coefficients for the diffusion term, are determined in (14). Then (12), we will have the following form: 
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By substituting (15) and (16) in formulas (2), we obtain the final modified first stage
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The difference solution (17) is effectively computed by means of a three�point sweep. For the second (3)
and third (4) stages, this procedure is repeated. Other components of the velocity are found in the same
way. 

Thus, we obtain a compact approximation for the convective terms of the motion equations of the third,
and for the diffusion terms of the fourth, order of accuracy.

At the second stage, the Poisson equation obtained from the continuity equation with account for the
velocity field of the first stage is solved. For the solution of the three�dimensional Poisson equation an
original algorithm has been developed, which is a spectral transformation into combinations with a matrix
sweep [9–11]. The obtained pressure field is used at the third stage for the recount of the final velocity
field. 

( )

2 3 4

2 3 4

2 3 4

, ,2 2

2 3 4
4

2

2 6 24

2 6 24

1 2
2 6 24

1 .
2 6 24

i x xx xxx xxxx i

i x xx xxx xxxx

i x xx xxx xxxx i j k

i x xx xxx xxxx

x x xf xf f f f f

x x xf xf f f f

x x xu xu u u u u
x x

x x xu xu u u u O h
x

⎛ ⎞Δ Δ Δα + Δ + + + + β⎜ ⎟
⎝ ⎠

⎛ ⎞Δ Δ Δ+ γ − Δ + − +⎜ ⎟
⎝ ⎠

⎛ ⎞Δ Δ Δ= + Δ + + + −⎜ ⎟
Δ Δ⎝ ⎠

⎛ ⎞Δ Δ Δ+ − Δ + − + +⎜ ⎟
Δ ⎝ ⎠

( )

( )

( )

1,

0,

1.
6

⎧
α + β + γ =⎪

⎪
α − γ =⎨

⎪
α + γ =⎪

⎩

1 5 1, , .
12 6 12

α = β = γ =

, , 1, , , , 1, , ,k i j k k i j k k i j k k i j kM f f f f
+ −

= α + β + γ

, ,k kα β ,kγ

1 1 , , 1 1, ,
, , .i j k i j k

i j k k

u u
f M

x
−

−

−⎛ ⎞
= −⎜ ⎟

Δ⎝ ⎠

1 1 , , 1 1, ,
1 , , .i j k i j k
k i j k k

u u
u M A

x
−

−

−⎛ ⎞
Λ = −⎜ ⎟

Δ⎝ ⎠

, , 1, , , , 1, , ,d i j k d i j k d i j k d i j kM f f f f
+ −

= α + β + γ , ,k kα β ,dγ

1 1 1, , 1 , , 1 1, ,
1 1 , , 2

21 .
Re

i j k i j k i j k
d i j k d

u u u
u M

x

− + −
− +⎛ ⎞

Λ = ⎜ ⎟
Δ⎝ ⎠

( )

1 3 2, , 1 1 2, , 1 1 2, , 1 3 2, , 1 1 2, , 1 1 2, ,

1 1 1 2, , 1 1 1 2, , 2 1 1 2, , 3 1 1 2, ,

1 3 1 3 1 3
1 3 2, , 1 1 2, , 1 1 2, ,

* **

1 1* ,
2 2

n n n
k i j k k i j k k i j k k i j k k i j k k i j k

n n n
k i j k k i j k i j k i j k

n n n
d d di j k i j k i j k

u u u u u u u

u u u u

u u u

+ + − + + −

+ + + +

+ + +

+ + −

α + β + γ α + β + γ
−

τ τ

= Λ + Λ + Λ + Λ

α + β + γ

τ

( )

1 3 2, , 1 1 2, , 1 1 2, ,

1 3
1 1 1 1 2, ,1 1 2, ,

* **

1 1 * .
2 2

d i j k d i j k d i j k

n
d d i j ki j k

u u u

u u

+ + −

+

++

⎧
⎪
⎪
⎪
⎪⎪
⎨
⎪ α + β + γ

−⎪
τ⎪

⎪= Λ + Λ⎪⎩



MATHEMATICAL MODELS AND COMPUTER SIMULATIONS  Vol. 5  No. 4  2013

SIMULATION OF ISOTROPIC TURBULENCE DEGENERATION BASED 365

4. CORRELATION AND SPECTRAL FUNCTIONS FOR OBTAINING
THE CHARACTERISTICS OF ISOTROPIC TURBULENCE

 Finding the turbulence characteristics in a physical space requires the volume averaging of different
values. The averaged values will participate in the determination of turbulent characteristics [12, 13]. The
value averaged over all the calculated domain that in this work is rectangular is calculated by the following
formula: 

Different coefficients of velocity correlation can be found as follows:

The calculations were performed for r = 1,2,…, Ni /2. The formulas are presented as discrete analogs of
continuous representations  of correlation coefficients.

For the isotropic turbulence, the longitudinal and transverse correlations are as follows [1, 14, 15]:

  

The micro scale of the length is determined by the relationship

 

and the integral scale is expressed as
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Fig. 2. Change in the integral scale of turbulence calculated at different Reynolds numbers: (1) Re = 5000; (2) Re =
10000; (3) Re = 20000; (4) Re = 30000; (5) Re=50000. 

and the three�dimensional spectrum is

The energy dissipation is calculated by formula

The turbulent kinetic energy is found in the following way:

5. SIMULATION RESULTS

As a result of modeling, the characteristics of the isotropic turbulence are found. According to the
semiempirical theory, the integral scale of turbulence grows with time. The results given in Fig. 2 illustrate
the effect of viscosity on the internal structure of the turbulence. A change in the coefficient of the molec�
ular viscosity leads to a proportional change in the integral scale. Figure 3 shows the change in the micro
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Figure 4 shows the change in the energy dissipation at different Reynolds numbers. The results shown

in Fig. 5 illustrate the influence of viscosity on the degeneration of the kinetic energy of isotropic turbu�
lence calculated at different Reynolds numbers: (1)  (2) Re = 10000 and (3) Re = 20000. As is
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ingly, the velocity of the energy dissipation is greater, which is natural in a physical experiment. 
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the velocity components in different points. The greater the distances of the points between different
velocity components the lower the coefficients of the correlation should be; i.e., they should be close to
zero. Figure 6 shows the time variation of the longitudinal correlation function f(r) calculated at Re =
20000. It is seen that with an increase in r, the values of the functions tend to zero. The pattern of the
change in the correlations corresponds to the change in the correlation function given in [15, 16].
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Fig. 3. Change in the micro scale: λ2 calculated at different Reynolds numbers: (1) Re = 5000; (2) Re = 10000; (3) Re = 20000.
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Figure 7 presents the velocity component u in the physical space at t = 0 and t = 0.6. Changes in the
one�dimensional longitudinal and transverse spectra at different time moments can be seen in Figs. 8 and 9,
respectively, and the three�dimensional spectrum is given in Fig. 10. The values of one�dimensional spec�
tra change monotonically and they are nonnegative; thus, they conform to the requirements of the
Khinchin theorem. 
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Figure 11 presents the comparison of the results of the temporal degeneration computation of the tur�
bulent kinetic energy obtained in this work with the numerical results of [17] obtained on the basis of the
DNS method at  = 72. From the figures it is apparent that the calculation data obtained by the DNS
and LES methods are in satisfactory agreement. 

6. CONCLUSIONS

Based on the large�eddy method, the numerical simulation of the effect of viscosity on the degenera�
tion of isotropic turbulence is performed. 

The analysis of the simulation results enables us to draw the following conclusion. The one�dimen�
sional spectra of the fields have turned out to be nonnegative and monotonic, which corresponds to the
requirements of the Khinchin theorem. The flow viscosity significantly affects the turbulence and, there�
fore, can be used to control it. The results allow a fairly accurate estimation of the time variation in the
characteristics of isotropic turbulence at higher Reynolds numbers. In order to find the turbulence spec�
trum, there is no need to solve the spectral equations, for which it is rather difficult to reach closure. 

The results of the numerical simulation obtained in this work are in satisfactory agreement with the
findings of other authors [17–19].

Thus, a numerical algorithm for solving the nonstationary three�dimensional Navier–Stokes equa�
tions for the simulation of the degeneration of isotropic turbulence at different Reynolds numbers has
been developed. The Navier–Stokes equation describes the entire spectrum of problems of the homoge�
nous turbulence. All physical processes and phenomena of homogenous turbulence are discovered in the
course of numerical simulation. The method proposed here can be used to solve nonisotropic turbulence
without the need for considerable changes.
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