

Abstracts selected for Oral and Poster Presentations in Hydrogen Energy (HE) session

No.	Name	Title	ID
1	Daniel De Wolf	Optimal design and dimensioning of hydrogen transmission pipeline networks	12
		Effect of boron substitution on hydrogen storage capacity of metal	
2	Ajay Chaudhari	decorated naphthalene	25
3	Je-Deok Kim	High conducting electrolyte membranes for fuel cells	29
		Improvement of the stability using highly sulfonated polyphenylsulfone	
4	Je-Deok Kim	membrane	30
5	Efrat Ruse	Hydrogen Storage and Spillover Kinetics in Carbon Nanotube-Mg Composites	39
	Chi-Jung	CuS/ZnS-g-C3N4 heterostructured photocatalysts for efficient photocatalytic	
6	Chang	hydrogen production	40
	Chi-Jung	Photocatalytic Hydrogen Production by Flower-like Graphene Supported ZnS	
7	Chang	Composite Photocatalysts	41
		Hydrogen Production via Steam Reforming of Acetic Acid over Mesoporous	
8	Hüseyin Arbağ	Structured MCM-41 Supported Catalysts	49
_		Improving Hydrogen Storage of Reduced Graphene Oxide at Room Temperature	
9	Alp Yurum	with Transition Metal (Ti, Fe, Ni, Cu) Functionalization	54
	Ignacio López-		
10	Corral	DFT study of hydrogen adsorption on platinum-decorated defective graphene	56
		Computational Prediction of Random Fluid Motion in Open-pore Channel for	
11	Seungho Shin	Polymer Electrolyte Fuel Cell Application	61
	Fernando		
12	Marques	Ionic Transport in Salt+Oxide Composites	66
	Fernando		
13	Marques	NiO-GDC composites obtained by one-step synthesis	67
14	Ilenia Rossetti	Hydrogen production by steam reforming of diluted bioethanol solutions	76
		Effect of Pressure on Activity of Mesoporous Alumina Supported Ni-W Catalyst in	
15	Hüseyin Arbağ	Dry Reforming of Methane	86
	Mohamed El	Stable hydrothermal catalysts for Hydrogen production by APR of	
16	Doukkali	bioglycerol/water mixtures	92
17	Andrés Biasetti	Hydriding kinetics of Mg-TiH2 fine dispersions obtained by mechanosynthesis	96
18	Zeynel Ozturk	Lithium Modified Zeolite CHA for Hydrogen Storage	100
	-	Experimental study on the membrane electrode assembly design of PEM fuel	
19	Rui Ferreira	cells	103
		Synthesis and characterization of PEEK containing imidazole for anion	
20	Deuk Ju kim	exchange membrane fuel cells (HE- Fuel cell-Poster)	107

		Characterization of highly sulfonated PEEK based membrane for the fuel	
21	Deuk Ju kim	cell application (HE- Fuel cell-Poster)	108
	German	Experimental characterization of a fuel cell stack. Modeling its	
22	Cespedes	electrochemical behavior	119
23	B.M.G. Melo	Hydrogen proton capture through phosphate-borate based glasses	124
24	Chi Hoon Park	MD simulation for high performance anionic exchange membrane	144
25	Marco Martino	Structured Catalysts for Water Gas Shift Process Intensification	154
	Eugenio		
26	Meloni	Monolithic catalysts for methane steam reforming process intensification	155
		Highly Efficient and Stable Bifunctional MnO _x @NiO Electrocatalysts for	
27	San Ping Jiang	Reversible Oxygen Evolution and Reduction Reactions	156
		Our recent advances in the development of perovskite materials and cell	
		configuration for lowering the operating temperature and cost of solid	
28	Chao Su	oxide fuel cells	157
	Wan M.	Theoretical, Spectroscopic and Electrochemical Properties of Mono-substituted	
29	Khairul	Alkoxy Thiourea as Active Layer in Conductive Film	167
		An effective CO ₂ tolerant praseodymium oxysulfate/Ba _{0.5} Sr _{0.5} Co _{0.8} Fe _{0.2} O _{3-δ}	
30	Tao Yang	composite cathode for solid oxide fuel cells	168
		Bio-hydrogen production of ground wheat residue for using solid substrate	
31	Serpil Ozmıhçı	fermentation	190
32	Anna Szoka	Hydrogen Degradation of Oxidized Zr Alloys in Aspect of Possible LOCA Accident	192
	Gabriella	Phosphorous addition to Rh-based catalyst to improve Sulphur tolerance during	
33	Mancino	dry reforming	194
		Biohydrogen Production from Acid Hydrolyzed Waste Wheat in a	
34	Ilgi Karapinar	Continuously Operated Packed Bed Reactor	201
	Kymbat		
35	Amirkhanova	Hydrogenation of fullerenes as a method of storing hydrogen	203
36	Serkan Eker	Biohydrogen Gas Production from Sugar Beet	212
27	Cátia Azanha	Influence of the ZrO2 support on the performance of CuPd/ZrO2 catalysts for	212
37		Low Temperature Methanol Steam Reforming (LT-MSR)	213
20	Lipadhyayula	Kinetic investigation on nickel, copper, iron, and zinc chromospinels supported	216
- 30	Opauliyayula	Effects operating parameters on hydrogen gas production from food wastes by	210
39	Ebru COKAY	electrohydrolysis: A Statical design approach	217
40	Pablo Palacios	New Absorbers Materials for Efficient Photovoltaic Solar cells	219
41	A Flif SANLI	Development of 90 W Direct Borobydride Fuel Cell Stack	226
		Generation of hydrogen by aluminum oxidation in low-content KOH solution	220
42	Vlaskin Mikhail	under intensive stirring	230
	Maryam	Electrooxidation of formaldehyde as a fuel for fuel cells using Fe2+-nanozeolite	
43	Abrishamkar	modified carbon paste electrode	242
	Alessandro	Innovative graphene oxide-based membranes for self-standing micro-porous	
44	Migliavacca	layers for PEM fuel cells	247
		Effect of Fe, Fe-C, Fe-Mg Additives on the Dehydrogenation of Magnesium	
45	Pukazh Selvan	Hydride	254
	Vinich	A Simple D- π -A Dye Bearing an Extra Donor Substitution on Terminal Unit of π -	
46	Promarak	Linker for High Efficiency Dye-Sensitized Solar Cell (DSSC)	260

Hydrogenation of fullerenes as a method of storing hydrogen

M.T. Gabdullin¹, T.S. Ramazanov¹, Kh.A. Abdullin¹, D.V. Ismailov¹, D.G. Batryshev^{1,2}, D.S. Kerimbekov^{1,2}, <u>K.M. Amirkhanova¹</u>, D.V. Schur³

¹Al-FarabiKazNU, NNLOT, Almaty, Kazakhstan ²Al-Farabi KazNU, LEP, Almaty, Kazakhstan ³I. M. Frantsevich Institute for Problems of Materials Sciences, Kiev, Ukraine kymbat.amirkhanova@yandex.ru

INTRODUCTION

One of the most promising direction in the development of alternative energy is the hydrogen energy – the replacement of fossil hydrocarbon fuels by environmentally friendly hydrogen fuel¹.

Today, to use the energy of hydrogen fuel it is necessary to solve the problem of cost-effective method of hydrogen storage. From this point of view, carbon nanostructures are promising materials for hydrogen storage.

Currently, the most common method of filling carbon nanostructured materials with molecular hydrogen is the use of high a nd ultra-high pressures that force hydrogen molecules to penetrate into the smallest pores and cavities of carbon structures, the size of which is comparable with the transverse size of the hydrogen molecule. During operation heated hydrogenated material gradually releases the accumulated hydrogen².

EXPERIMENTAL/THEORETICAL STUDY

In this paper, the method of catalytic hydrogenation of fullerenes was considered. To determine the optimal mode of the hydrogenation reaction of fullerenes the following conditions were used: hydrogen pressure of 12 MPa, temperature 200- 600^{0} C and mass of fulleriteC₆₀ 0.501g.

At first, a vacuum was created in the reactor, then hydrogen was fed to the reactor to a pressure of 12.5 MPa and kept there for 4h. Then the reactor temperature was raised to 200° C (at a rate of 1° C per minute). At this point, the pressure in the reactor is changed on a 0.3 MPa (up to 12.8 MPa). This can be explained by the decomposition of solvates formed with fullerene crystallization. To stabilize the barotemperature regime the sample was kept for another 4 hours at T = 200° C and P = 12.8 MPa. After 480 minutes, the temperature in the reactor was raised from 200° C to 600° C at a rate of 0.125 degrees per minute. In the experiment, it was found that the system reached the maximum speed of interaction on the 2150-th minute, which corresponds to a temperature of 433° C. The temperature, at which the rate of hydrogen interaction with the fullerene molecule is maximum, was determined. This temperature was in the range 425-455° C, when the total hydrogen content was about 8.2 mass %. Hydrofullerites were studied using Raman microscopy. The results show that the samples contained hydrogen atoms.

RESULTS AND DISCUSSION

In the study of the samples of fullerite crystals by the method of combined scattering a Raman scattering spectra were obtained, which indicate the presence of C60 and C70 in the composition of crystals obtained after soot purification Fig. 1.

Fig.1. The Raman spectra of the fullerite after extraction from benzene (1) and after preparative liquid chromatography (2). The circles marked with published data on the position of the lines of fullerene C60.

CONCLUSION

In this work hydrofullerenes with different hydrogen content were obtained. Also, the optimum mode of C60 hydrogenation was determined. The study of obtained samples was carried out by Raman spectroscopy.

REFERENCES

1.A.D. Zolotarenko, M.T. Gabdullin, D.V.Schur, S.Y.Zaginaichenko, A.G. Dubovoy, A.P. Pomytkin, A.Magrez, M. Baibarac, Features the processes of formation nanostrukur in the liquid phase // Proceedings of the international conference "SDFFFO-8." - Almaty, 2013. - S.210-212.

2. Loutfy R.O. and Wexler E.M., Investigation of hydrogen storage in fullerene hydrides // Materials and Electrochemical Research (MER) Corporation, - Arizona, 2001. – P. 85706.

ACKNOWLEDGMENTS

This work has been supported by the grant 3227/GF4/2016 of the Ministry of Education and Science of RK.