
Applying MDA to Generate Hadoop Based
Scientific Computing Applications

Darkhan Akhmed-Zaki, Madina Mansurova, Bazargul Matkerim,
Ekateryna Dadykina, and Bolatzhan Kumalakov

Faculty of mechanics and mathematics, al-Farabi Kazakh National University
al-Farabi 71, Almaty, Republic of Kazakhstan

mansurova01@mail.ru

Abstract. The paper presents an attempt to develop and deploy a func-
tioning MDA (Model-Driven Architecture) model of a distributed scien-
tific application. The main focus is a problem of modeling high perfor-
mance computing processes in a visual notation and automatic gener-
ation of an executable code using the resulting diagrams. The article
describes the efforts to create a platform independent model of process
execution, transformation it into a platform specific model and, finally,
automatic generation an application code. The research novelty includes
a platform independent model of the classic hydrodynamics problem,
equivalent Hadoop based platform specific model and the testing results
that confirm feasibility of the research.

Keywords: Model-Driven Architecture, Hadoop, Scientific Computing.

1 Introduction

Model Driven Development (MDD) is a software engineering methodology that
treats “formal specification of the function, structure and actions of the system”
as the main object of development [1]. Other objects, such as program codes, are
generated at a later stage from these specifications also called models. Models are
usually developed using standard or extended Unified modeling language (UML)
diagrams, which make one more level of abstraction in the object-oriented design
paradigm. In this case, the increased level of abstraction facilitates development
of platform independent application templates that are easily converted to an
executable code for any platform. In other words, one may build a template
application (set of diagrams) that may be used by an automated code generator
to produce an executable code for any known software platform.

In the early 2000s, OMG consortium [2] defined the conceptual infrastructure
of Model driven architecture (MDA) that serves as the basis for MDD methods
and defines standard specification, model description and transformation lan-
guages. Figure 1 presents a generic MDA development cycle.

First, user requirements are processed and formalized in a form of Platform-
independent-model (PIM). Despite being presented as a set of UML diagrams,
PIM has to take into account how the automated interpreter would further



2 Applying MDA to Generate Scientific Computing Applications

Fig. 1. An MDA application development cycle.

transform the model with the final goal of building a working solution. There
is rich discussion on MDD modeling techniques in academic literature, which is
out of the scope of this article. In this section, let us point out that an initial
prototype of the model may contain inaccuracies or discrepancies, therefore, it
goes through repetitive validation and introduction of changes before it proceeds
to the second stage.

Platform-specific-model (PSM) is the same system specification as PIM, but
with the elements of the target platform. For instance, if the system has to run
under particular environment (target environment) such elements would include
environment components, interfaces, data storage, etc. Thus, every time when
it is necessary to adapt the system to new technology only PSM should be
reconsidered.

Code stage in the figure represents automated executable generation. It in-
volves special software that interprets PSM and produces final output. Such tools
are available in different varieties and their properties vary depending on vendor
and employment proposals. Academic literature provides some brief introduction
to such tools, but this discussion is out of the scope of this article.

At this stage it should be noted that MDA and MDD have been successfully
applied in several domains of software engineering including high performance
computing (HPC). This article presents an attempt to construct and evaluate
all levels of HPC MDA models, define their transformation rules and generate
an executable code.

The remaining part of the article is structured as follows: Section 2.2 presents
an extensive literature review and puts the article results on the body of knowl-
edge landscape. Section 3 provides a detailed description of the solution including
the main components overview (Subsection 3.1), PIM (Subsection 3.2) and PSM
(Subsection 3.3) descriptions. Next, Section 4 describes the experiment design
and evaluation results. Finally, the article is completed by a relevant discussion
and future research directions.



Applying MDA to Generate Scientific Computing Applications 3

2 Research Background and Related Work

2.1 HPC Model Development Process Overview

Figure 2 vizualizes the process of designing and implementing HPC application
using UML 2.0 activity diagram. The process is divided into 5 stages. Each
stage is performed by a specialist indicated on the left and its result is the
corresponding MDA model shown on the right.

Fig. 2. MDD process of HPSC software.

HPC application design and development is carried out by a group of spe-
cialists as presented in Figure 2. A specialist in oil-gas industry defines the



4 Applying MDA to Generate Scientific Computing Applications

problem statement. Next, a mathematician creates a mathematical model that
is passed on to a specialist in the field of the numerical methods. He/she finds a
corresponding explicit or implicit numerical method and defines an application
algorithm. Next, a software designer constructs HPC application architecture,
and, finally, a software engineer who implements the solution.

Fig. 3. Relay race of specialists in HPSC application development.

Throughout the complex application development errors may appear at dif-
ferent stages. Causes include ambiguity in interpretation of models, complexity
of a program code, upgrade from one parallel architecture to another, modifi-
cation of software, documentation updates, etc. Investigations show that MDD
gives good results, when developing applications for scientific HPC.

2.2 Related Work Review

In order to develop scientific computing applications using MDD methodologies,
several contributions have been proposed. The paper of Lugato [3] is one of the
early works that proposed MDE for high performance computing applications.
Later in [4], he presented the idea in detail. The papers of [5]-[9] proposed MDE
approach by creating a domain specific modeling language. M. Palyart et al. [7]
proposed an approach called MDE4HPC using their own domain specific mod-
eling language - High Performance Computing Modeling Language to describe
abstract views of the software. Implementation of the approach using the tool
ArchiMDE is integrated with Paprika studio and Arcane framework. Palyart et
al. [6] introduced a DSVL to help in specifying and modeling HPC applications.
They focus on specification of solution parallelism. However, they did not show
how their language could be used to generate HPC code. Brual et al. [8] reported
the needs for leveraging on knowledge and expertise by focusing on Domain-
Specific Modeling Languages (DSML) application. Similarly, M. Almorsy et al.
[10] proposed their prototype of scientific Domain Specific Visual Languages
(DSVLs)-based toolset. However, they did not consider the distributed scien-
tific computing. In [11], the authors developed an approach to interoperation of
high performance, scientific computing applications based upon math-oriented
data modeling principles. In [12], the authors define the architecture framework
consisting of a coherent set of viewpoints to support the mapping of parallel



Applying MDA to Generate Scientific Computing Applications 5

algorithms to parallel computing platforms. The feature of the approach [12] is
the particular focus on optimization at the design level using architecture view-
points. This approach can be adopted for different parallel algorithms and can
be used with different parallel technologies. Gamatie et al. [13] represent the
Graphical Array Specification for Parallel and Distributed Computing (GAS-
PARD) framework for massively parallel embedded systems on Multi-Processor
System-on-Chips (MPSoCs) architectures to support optimization of the usage
of hardware resources. GASPARD uses MARTE standard profile for modeling
embedded systems at a high abstraction level. Based on the Model-Driven En-
gineering (MDE) paradigm, MARTE models are refined towards lower abstrac-
tion levels, this making automatic generation of the code possible. Danniluk [14]
presented the problem of Molecular Beam Epitaxy and Reflection High-Energy
Electron Diffraction with MDA approach. In the paper, he described a practical
and pragmatic approach to MDA that had been used during the work at three
scientific projects. The PIMs are described with UML and PSMs that spec-
ify implementation of PIMs with Object Pascal and C++. They applied MDD
and visual-development tools to numerical simulation problems. Each of these
projects has its own research interests and none of them considers Hadoop dis-
tributed computing platform as a specific platform. Similarly to the authors of
this work, the works of [15], [16] proposed MDD approach in developing MapRe-
duce applications. In [15], the authors apply Map/Reduce to EMF-based models
to cope with complex data structures in the familiar an easy-to-use and type-safe
EMF fashion. They store large EMF models in Hadoop’s HBase and then use
those models from within the Map/Reduce programming model using EMF’s
generated APIs. The authors of [16] developed an MDE-based cloud deploy-
ment framework that automates the deployment and execution of MapReduce
applications. The model-driven approach is used to predict the performance of
MapReduce application in the cloud environment. The features of our approach
are: 1) We create scientific computing components for modeling scientific com-
puting applications. Application modeling is achieved by using UML diagrams.
2) We presented the whole cycle of MDA process of development from modeling
to code generation. 3) Our approach is oriented to the MapReduce application
development for one of oil extraction problems. 4) The presented work is the
continuation of earlier works [17], [18].

3 Solution Design

This section introduces generic components that form the building blocks of
scientific HPC applications. Then it proceeds to present how template PIM is
built and then transformed to PSM for Hadoop code generation.

3.1 Main Components of the System

In order to design models, we implement four generic components that will serve
as basic building blocks for scientific HPC applications. The developed compo-
nents are divided and named depending on the peculiarities of HPC applications.



6 Applying MDA to Generate Scientific Computing Applications

At this stage, we assume that a scientific computing problem is of no importance
for the solution, because the model can be constructed from these components
in any case (for discussion on components functions see [19]).

For any application one has to determine input and output parameters, class
of equations, explicit or inexplicit methods of computation and instruments
(tools) for performing parallel computations. Therefore, we presented these 4 in-
variable independent parts in the form of 4 basic components. They are: an input-
output component InOutPut, a component of equations of numerical methods
NumerMethods and a component of organization of a high performance com-
puting environment PEOrganize. Every component consists of several classes.
Description of the components - as applied to MapReduce application - is pre-
sented below:

1. Component PEOrganize is used for creation of the topology on Hadoop
platform.

2. Component NumerMethods is used for determination of a numerical model
with different types of grid and numerical methods.

3. Component SciEquations is used for determination of a mathematical model
with the number of final differential equations and conditions for these equa-
tions.

4. Component InOutPut consists of classes of reading from the file and writ-
ing into the file with the help of which input and output data of HPSC
application are prescribed (set).

As is shown in Figure 4, in the process of designing and development of
applications there takes place transformation of models starting from the upper
level to the lower level.

Fig. 4. MDA modeling.



Applying MDA to Generate Scientific Computing Applications 7

As it was mentioned above, MDD specialist receivers a computationally inde-
pendent model CIM from the specialist in numerical methods. In case of solution
of the problem, CIM contains the algorithm of a numerical solution of the prob-
lem by the explicit method. In his turn, MDD-specialist creates an independent
on the platform and the programming language PIM model for the given nu-
merical CIM model using HPSC components. Model CIM can be described by
the components of input-output-InOutPut, the component of equation of a sci-
entific computing problem SciEquations, the component of numerical methods
NumerMethods.

But in CIM model there is no information for the component of organization
of high performance computational environment PEOrganize as the environment
of development in the computational models is not considered.

The work resulted in the development of the MDA model and realization
using the Hadoop technology.

3.2 PIM Model

In our case, computations are performed in MapReduce Hadoop environment.
The algorithm with the use of MapReduce consists of the stage of initialization
and iteration stage, a separate MapReduce work being fulfilled at each iteration.

Computations are performed on Hadoop platform, a MapReduce problem re-
ceives a cube of data, Mappers perform 1D decomposition, each Reducer receives
its block of data and performs computations. After computations are completed,
boundary data are entered into a distributed file system HDFS, the values of
inside points are written into a local file system. Then a new cycle begins. The
process continues until the condition is satisfied.

Thus, we have developed a PIM model for HPSC applications for the problem
with the help of UML diagram of classes (Figure 5) indicating relations between
the classes. On account of retrieving calling methods of each other, the classes
of components are in associative relations.

3.3 PSM Model

Models of transformation of PIM to PSM can be classified by several categories:
improving the quality of transformation, with perfection of the development,
with refining, with specialization, translation, abstraction, generalization and
forms of designing. In our case, transition from PIM model to MapReduce Java
PSM model refers to the category with refining. Refining means redetermination
in the course of transition from CIM to PIM, transition from PIM to PSM. Re-
fining can be added at one level of abstraction. Transformation of PIM model
to MapReduce Java PSM model is transformation of UML-diagram of classes
Java to the diagram of classes Java with addition of MapReduce specification to
PSM. When transforming PIM model to MapReduce Java PSM model, multiple
succession, associations of classes and qualified associations must be removed. In
PSM model, the relations between components shown in Figure 6 are preserved,
but specification of the programming language Java is added. The Hadoop PSM



8 Applying MDA to Generate Scientific Computing Applications

Fig. 5. PIM model.

model in Figure 6 shows specification of the HPSC component - PEOrganization.
The MapReduce distributed programming paradigm which consists of initializa-
tion and iteration stages of computation is modeled with the help of Map class
and Reduce class.

4 Experiment Design and Evaluation

4.1 Hydrodynamics Problem Definition

Let us consider a hypercube in anisotropic elastic porous medium Ω = [0, T ] ×
K{0 ≤ x ≤ 1, 0 ≤ y ≤ 1, 0 ≤ z ≤ 1}.

Let equation (1) describe the fluid dynamics in hypercube Ω under initial
conditions (2) and boundary conditions:

∂P

∂t
=

∂

∂x
(φ(x, y, z)

∂P

∂x
) +

∂

∂y
(φ(x, y, z)

∂P

∂y
) +

∂

∂z
(φ(x, y, z)

∂P

∂z
). (1)

P (0, x, y, z) = ϕ(0, x, y, z). (2)

∂P

∂n
|Γ = 0. (3)

Here, (3) is the surface of cube Ω. In equation (1) the solution function P(t,
x, y, z) is seam pressure in point (x, y, z) at the moment t; φ(x, y, z) is diffusion
coefficient in the reservoir; f(x, y, z) is density of sources. To solve (1)-(3) Jacobi’s
numerical method was used. In order to implement a test solution, we employ a
mathematical problem for a particular case with functions from [17].

First, the original domain is divided into sub-domains (Figure 7). Every sub-
domain consists of three main parts: ghost slab, boundary slab and interior slab.



Applying MDA to Generate Scientific Computing Applications 9

Fig. 6. Hadoop based PSM model.



10 Applying MDA to Generate Scientific Computing Applications

Data transformations (defined by the algorithm) can proceed independently only
in the interior slab. The boundary slab of the sub-domain, when being computed,
requires boundary slab values of its neighbors and those are stored in the ghost
slab. In other words, the ghost slab stores copies of neighbors boundary slab
values.

Fig. 7. The hypercube is divided into a number of computation sub-domains. Every
sub-domain is assigned as a reducer.

The algorithm of numerical solution of the problem with the help of MapRe-
duce Hadoop technology consists of two stages: the stage of initialization at which
MapReduce work of the first level is performed only once and the iteration stage
at which a cycle of MapReduce works of the second level is performed. Mapper
of the first level loads data from the file system HDFS. Then, Mapper distributes
the data between Reducer processes on slabs, thus realizing 1D decomposition
of the data.

Reducer, in its turn, performs computations, duplications of boundary slabs
into the ghost slabs of the neighbors and stores the obtained results. The data
used by Reducer for computations are divided into two kinds: local data, i.e.
the data which refer to the interior slab and shared boundary data (boundary
slab). Reducer enters local computed data directly into a local file system and
enters the shared boundary data into the output file of the distributed file system
HDFS, which will be an input file for Mapper of the second level at the next
iteration. At each iteration Mapper of the second level distributes the updated
boundary data among Reducers, thus providing the exchange of boundary values
between slabs. The flow of data corresponding to the description is presented in
Figure 8.

The distributed algorithm consists of two stages:

1. The stage of initialization;



Applying MDA to Generate Scientific Computing Applications 11

Fig. 8. Iterative MapReduce framework scheme.

2. The iteration stage.

The stage of initialization is a MapReduce task Initial in which there takes
place initialization and writing of files necessary for computations in the process
of iterations.

The iteration stage is a MapReduce task Iterations. At each iteration in
Mapper, points of the field with the same keys, i.e. numbers of subcubes, are
grouped. The input data of Mapper are the output data of Reducer. In Reducer,
the main computations are performed according to the formulae of the explicit
method. Then, writing of the interior parts of files into the local file system
and transfer of values of boundary slabs to the output of Reducer Iterations are
performed.

4.2 Computational Experiment Results

An automatic transition from MapReduce Java PSM to Java code is realized
with the help of generator Acceleo. Acceleo is a pragmatic realization of Object
Management Group (OMG) of MOF model. Acceleo UML2 for Java is a code
generator based on Acceleo 3.2. This generator supports creation of the initial
code Java for classes and interfaces.

After automatic generation we have a program code which contains descrip-
tion of classes and methods as well as relations between methods corresponding
to PSM model (Figure 6). Then, the methods of each class of HPSC components
are written down according to their functionality or called from class libraries.
According to Figure 2 the process of code writing and interpretation of the re-
sults goes on till the program gives the results corresponding to the results of a
sequential program. The computing experiments on the generated MapReduce



12 Applying MDA to Generate Scientific Computing Applications

program and the sequential program must be performed at equal pre-determined
parameters of the computational problem.

We have performed all the stages of the process of MapReduce application
development for problem (1)-(3) according to MDD methodology and have ob-
tained the same computing results for the problem solution of the sequential
program code and generated MapReduce code. The experimental design and the
results of the generated MapReduce program execution on a special deployed
Apache Hadoop Mini-Cluster of Laboratory of Computer Science of al-Farabi
Kazakh National University are presented below.

Apache Hadoop 2.6.0 Mini-Cluster consists of 1 master node and 7 slaves. All
slave nodes have Ubuntu 14.04 on board, master node has Ubuntu Server 14.04.
Master node hardware characteristics: Hardware: HP ProLiant-BL460c-Gen8,
Architecture: x86-64, CPU(s): 4, Model name: Intel(R) Xeon(R) CPU E5-2609
0 @ 2.40GHz. Slaves hardware characteristics: Architecture: x86-64, CPU(s):
4, Model name: Intel(R) Core(TM) i5-2500 CPU @ 3.30GHz. NFS server is
configured on master node. Slaves have the same folder mounted with read/write
access rights. Nodes are connected using Ethernet devices, this providing up
to 1000 Mbps, Intel(R) PRO/1000 Network Connection. 3D problem sizes are
chosen by the possibility of the memory of computing nodes: 256 × 128 × 128,
1024× 128× 128, 4096× 128× 128, 8192× 128× 128.

The results obtained for the dependence of the speedup and efficiency are
presented in Figure 9 and 10. We can see that only the problem size of 8192 ×
128 × 128 has got the four times of speedup, it means that, according to the
features of Hadoop platform, with the increase of MapReduce application data
size the speedup increases. Figure 10 also shows that when we choose a big
problem size the computing nodes are more effectively used.

To test the fault tolerance appearance of IOException with the probability
of 33 % is added to the Reducer code. In the experiment, 3 jobs have taken
part each of which initiates 8 Reducers. The number of broken Reducers is 25
out of 97. The average time of the problem performance without IOException
and with IOException was the same. Thus, it can be concluded that the time of
performance does not depend on failures of Reducers and their restarting. The
computations obtained in both cases have equal values.

5 Conclusion and Further Research

The aim of this direction of investigations is the use of MDD methods for devel-
opment of applications for HPC in the field of oil and gas production. For the
work, MDA standard is chosen as MDD methodology. The process of designing
and developing a high performance application is described on the example of
MDA modeling. The method of passing on a baton between different specialists
of oil and gas industry, the close interaction of which can facilitate the work on
creation of complex applications for oil and gas industry, is shown. The inves-
tigation results show the prospects of using MDD methodology for solution of
complex resource intensive problems.



Applying MDA to Generate Scientific Computing Applications 13

Fig. 9. The speedup versus the number of nodes for different meshes.

Fig. 10. The efficiency versus the number of nodes for different meshes.



14 Applying MDA to Generate Scientific Computing Applications

The experimental results allow to conclude that the distributed application
works well and with the increase in the volume of the data being processed the
performance of Hadoop implementation increases. HPSC applications can be
designed and developed with the help of the proposed MDA model and its basic
components. This approach will possible become one of the ways to perform
distributed scientific computing on high performance heterogeneous systems.

Acknowledgments. The presented research was funded under Kazakhstan
government research grant ”Development of models and applications for high
performance distributed processing based on MapReduce-Hadoop technology for
oil extraction problems”.

References

1. Frankel, D.S.: Model Driven Architecture: Applying MDA to Enterprise Computing.
Wiley, New York (2003)

2. OMG. Unified Modeling Language, Version 2.2. Superstructure (2009)
3. Lugato, D.: Model-driven engineering for high-performance computing applications.

In: Proceedings of the 19th IASTED International Conference on Modeling and
Simulations, Quebec City, Quebec, Canada (May 2008)

4. Lugato, D., Bruel, J.M., Ober, I., Venelle, B.: Model-driven Engineering for High-
Performance Computing Applications, Modeling Simulation and Optimization - Fo-
cus on Applications, Shkelzen Cakaj (Ed.), (2010)

5. Palyart, M., Lugato, D., Ober, I., Bruel, J.M. MDE4HPC: An Approach for Using
Model-Driven Engineering in High-Performance Computing. SDL 2011: Integrating
System and Software Modeling. Lecture Notes in Computer Science. Volume 7083,
pp. 247-261. (2012)

6. Palyart, M., Lugato, D., Ober, I., Bruel, J.M. HPCML: A Modeling Language Ded-
icated to High-Performance Scientific Computing. In: Proceedings MDHPCL ’12
Proceedings of the 1st International Workshop on Model-Driven Engineering for
High Performance and CLoud computing. Article No. 6. (2012)

7. Palyart, M., Lugato, D., Ober, I., Bruel, J.M.: Improving Scalability and Mainte-
nance of Software for High-Performance Scientific Computing by Combining MDE
and Frameworks. Model Driven Engineering Languages and Systems. Lecture Notes
in Computer Science Volume 6981, pp. 213-227. (2011)

8. Bruel, J.M., Combemale, B., Ober, I., Raynal., H.: MDE in Practice for Computa-
tional Science. ICCS 2015: 660-669. (2015)

9. Arkin, E., Tekinerdogan. B.: Domain Specific Language for Deployment of Parallel
Applications on Parallel Computing Platforms. In: Proceeding ECSAW ’14. Article
No. 16. (2014)

10. Almorsy., M., Grundy, J., Sadus, R.J., van Straten, W., Barnes, D.G., Kaluza.,
O.: A suite of domain-specific visual languages for scientific software application
modelling. VL/HCC 2013: 91-94. (2013)

11. Miller, M.C., Reus, J.F., Matzke, R.P., Arrighi, W.J., Schoof, L.A., Hitt, R.T., Es-
pen, P.K.: Enabling Interoperation of High Performance, Scientific Computing Ap-
plications: Modeling Scientific Data with the Sets and Fields (SAF) Modeling Sys-
tem. International Conference on Computational Science (2) 2001: 158-170. (2001)



Applying MDA to Generate Scientific Computing Applications 15

12. Tekinerdogan, B., Arkin. E.: Architecture Framework for Mapping Parallel Algo-
rithms to Parallel Computing Platforms. In: Proceedings MDHPCL ’13 Proceedings
of the 2nd International Workshop on Model-Driven Engineering for High Perfor-
mance and CLoud computing. pp. 53-63. (2013)

13. Gamatie, A., Le Beux, S., Piel, E., Ben Atitallah, R., Etien, A., Marquet, Ph.,
Dekeyser, J.-L.: A Model-Driven Design Framework for Massively Parallel Embed-
ded Systems. ACM Trans. Embedded Comput. Syst. 10(4): 39. (2011)

14. Daniluk, A.: Visual modeling for scientific software architecture design. A practical
approach. Computer Physics Communications. 183(2012): 213. (2012)

15. Scheidgen, M., Zubow., A.: Map/reduce on EMF models In: Proceedings MDHPCL
’12 Proceedings of the 1st International Workshop on Model-Driven Engineering for
High Performance and CLoud computing. Article No. 7. (2012)

16. Shekhar, Sh., Caglar, F., An, K., Kuroda, T., Gokhale, A., Gokhale, Sh.: A Model-
driven Approach for Price/Performance Tradeoffs in Cloud-based MapReduce Ap-
plication Deployment. In: Proceedings MDHPCL ’13 Proceedings of the 2nd Inter-
national Workshop on Model-Driven Engineering for High Performance and CLoud
computing. pp. 37-43. (2013)

17. Mansurova, M., Akhmed-Zaki, D., Matkerim, B., and Kumalakov, B.:Distributed
Parallel Algorithm for Numerical Solving of 3D Problem of Fluid Dynamics in
Anisotropic Elastic porous Medium Using MapReduce and MPI Technologies. In:
Proceed-ings of 9th International Joint Conference on Software Technologies IC-
SOFT 2014, pp. 525-528. Vienna, Austria (2014)

18. Matkerim B., Akhmed-Zaki D., Barata M.: Development High Performance Scien-
tific Computing Application Using Model-Driven Architecture, Applied Mathemat-
ical Sciences, Vol. 7, no. 100. pp. 4961-4974. (2013)

19. Bezivin,J.: Object to Model Paradigm Change with the OMG/MDA Initiative,
presentation of Summer School on MDA for Embedded System Development, pp.
16-20. Leon, France (2002)


