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Abstract The purpose of the paper is modelling of nonlinear vibrations and stability of 

movement of boring columns at various complicating factors taking into account finite 

deformations in particular. Movement of boring columns for shallow drilling (up to 500 m) 

applied in oil-gas extractive industry is considered.  

Various types of loading and deformations of rod elements are developed in the paper. 

Nonlinear models of movement of a compressed-torsioned drill rod within the nonlinear 

theory of finite deformations of V.V. Novozhilov are constructed. A method for its analysis 

and criterion of dynamic stability are offered.  

The case of a flat curve of a rotating drill rod under the action of variable longitudinal 

force is investigated at an assumption of finiteness of elastic deformations. The numerical 

analysis of its elastic dislocations and instability zones of the basic resonance is carried out, 

which confirm the efficiency of the offered nonlinear dynamic model of rod elements and 

techniques for their calculation.  
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1 Introduction 

The article is devoted to applied problems of dynamics of nonlinear deformable 

mediums. Practical application of models of nonlinear deformable mediums to the analysis of 

movement of drill rods is considered in the view of finite deformations. 

    From boring practice it is known that up to 30 % of drill holes are rejected. Major 

factors for a borehole rejection are its curving and drill rods breakage [1-2]. They can be 

caused by reasons of  various nature - geological, technological and technical. 

Many researchers consider that geological conditions for position of rock, distinction 

in their hardness and drilling are a principal cause of a borehole curvature. 

Under another concept the principal cause of a borehole curvature is instability of the 

rectilinear form of the rod. It can arise under the action of such factors as dynamic cross-

section influences; the big inertial forces arising at drilling; initial curvature of the rod; stress 

concentrators, etc.  

In the literature linear models of movement of drill rods are known, which basic 

restriction is the assumption of deformations by the small. The finite deformations of drill 

rods  arising under the action of big axial loadings and twisting moments can complicate their 

dynamics essentially. They are poorly studied and represent scientific and practical interest.  

The purpose of the work is modeling of movement of drill rods at various 

complicating factors in view of finite deformations in particular.  

The solution of the given problem assumes: 1) development of nonlinear model of 

movement of a drill rod in view of finite deformations; 2) development of a technique of the 

dynamic analysis of a drill rod with definition of finite dislocations and stability of 

movement; 3) the numerical analysis of the dynamic model of a drill rod with application of 

the developed techniques. 



2  Nonlinear model of movement of a drill rod for shallow drilling. 

Movement of a drill rod for shallow drilling (up to 500 м) is considered, which is used 

in oil and gas extraction industry (fig. 1). 

The admitted in work finiteness of deformations of a drill rod can be caused by 

changeability of axial forces N (t) and twisting moments M (t): 
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where N0(x) – is the longitudinal force, caused by the construction body weight mgx  and by 

constant in time compression force N1: 

N0(x) = N1 + mgx,                                                                                                      (3)                                                                                                

g – gravity acceleration,  

x – distance from the top end of the rod. 

Ф(t) – the periodic function of time defining a weighting mode.  

The elementary variant of function Ф(t) corresponds to harmonious influence:  

 

( ) cos   N t tФ                                                                                                             (4)  

                                                                                                            

Similarly for twisting moment M(t): M0 - is the nominal moment, constant in time; Mt – 

defines contribution of a variable component; ФM(t) – is the periodic function. 

Within the framework of the nonlinear theory of deformations of V.V.Novozhilov 

[3], where components of tensor of deformations for the general three-dimensional case of 

deformation are defined as: 
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nonlinear model of rotation of a drill rod is constructed in view of finite deformations. For 

this purpose, accepting the second system of simplifications by V.V.Novozhilov, when in 

comparison with a unit not only extensions iie  and shears 
ije , but also corners of turn  i  are 

small, the elastic potential of volumetric deformation [4-5] is received: 
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where indexes at components of elastic dislocation ( , , , )U x y z t , ( , , , )V x y z t and also 

( , , , )W x y z t mean differentiation of these functions on the specified variables, and the 

following designations are entered: 

0( , ) ( ) ( ) ( )t NN x t N x N x Ф t 

0( , ) ( ) ( ) ( )t MM x t M x M x Ф t 
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The potential (6) - (7) has the general character and allows to pass to individual cases of 

deformation of elastic systems. So, for the considered case of a drill rod as rod element [6], 

with the circuit of deformation fig. 2 and rotating at angular speed ω, the equations of its 

movement are received:  
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where    K 1 =γFω 
2
/g.   

 

 

  
 

Fig. 1 The kinematic circuit of the boring machine      Fig. 2 The form of the curved axis of a   

                                                                                       rod 



2 Analysis of finite dislocations of a drill rod and stability of its movement. 

A special case of a model (8) is considered - a case of a flat curving of the rod rotating 

at speed  under the action of longitudinal force 0( ) ( )tN t N N Ф t  . Presuming the drill 

rod is hingedly supported on the ends, the boundary conditions are set:  

 
2 2

2 2
(9)0, 0, ( 0, )v u

V U
V EJ U EJ x x l

x x

 
     

 

 

The following solution satisfies these conditions 
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Substituting the solution (10) in the equation of the curved axis of a rod and applying 

direct variational method of Bubnov-Galyorkin, the latter leads to to the nonlinear 

parametrical equations with one degree of freedom: 
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Stability of the set modes of movement of a drill rod has basic value for maintenance 

of its trouble-free operation. Here steady movement of a drill rod will be understood as its 

movement in absence of dangerous resonant modes of fluctuations. For this purpose stability 

of the basic resonance is investigated: 

 

 0 1 1cos( ).f r t  
 

 

The technique of definition of instability zones of resonant vibrations of a drill rod 

with application of Flock theory is offered. According to it the solution of the equation of the 

perturbed condition of model (11):  
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 set as follows: 
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The type of expression ( )P t  defines the instability zone of fluctuations.  

Having set 1 1( ) cos( )P t b t   , the border of the first zone of instability of the basic 

resonance [7-8] is received: 
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The numerical analysis of dislocations of nonlinear fluctuations (11) and definition of 

an instability zone (15) represent no hard work. The given approach can be distributed for 

research of fluctuations on the maximum modes and with definition of their instability zones.  

3 Numerical example 

The numerical analysis of nonlinear fluctuations and instability zones of the basic 

resonance of the rotating drill rod is carried out, undergone to a flat curving under the action 

of variable longitudinal force 0( ) ( )tN t N N Ф t  .  

The numerical analysis of the equations (11) - (12) is carried out at entry conditions [9]: 
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Steel and dural drill rods are considered. From the comparative analysis of the research 

results one can see that the amplitude of fluctuations of nonlinear model (11) in both cases is 

less than in linear position (fig. 3). 

The influence of forms of a rod curving on amplitude of its fluctuations is investigated. 

It is established that at the basic form of a curving the amplitude of dislocations of a drill rod 

exceeds the amplitudes of the big forms. Thus, duralumin drill rod is subject to smaller 

deflections from the rectilinear form than the steel one at the same modes of drilling (fig. 4).  

 

 

  
 

Fig. 3 Amplitude of fluctuations of linear and 

nonlinear models (  _ _ _ _  linear,  ______
  

nonlinear) at  Eд = 0,7·10
5
 МПа;  

ρд = 2698,9 кг/м
3 

Fig. 4 Influence of properties of the material 

of a rod (_ _ _ _  steel, ______
  
 duralumin) at 

Ec = 2,1·10
5 

МПа; ρs = 7,8·10
3
 кг/м

3
; 

Eд = 0,7·10
5 

; ρd = 2698,9 кг/м
3
  

l=500м; D1 = 0,12м; D2 = 0,2м 
 

 

In figures 5-7 the results of the research of influence of forms of fluctuations of a rod, 



its length and properties of the material on the width of instability zones of the basic 

resonance are submitted. It is established that the first two forms of fluctuations influence the 

width of the instability zone (fig. 5). The increase in length of a rod leads to the expansion of 

instability zone (fig. 6). In all the considered cases instability zones for a duralumin rod are 

larger than for a steel one.  
 
 

   
 

Fig. 5 Influence of the forms of fluctuations 

on the instability zone of a rod (_ _ _  k=2, 

____ k=1)   at L=300м, 

 Fig.6 Influence of the length of a rod on  

 the instability zone of a rod ( _ _ _ L=500 m, 

____  L=1000 m) at 

0 500 , 2195,5 , 120 , 200 ,   
t

N н N Кн d мм D мм  52,1 10 
ст
Е МПа  

 

4 Conclusions  

In the work practical application of the nonlinear model of elastic deformation of 

mediums developed by the author for the general spatial case is considered. The results of the 

numerical analysis of movement of compressed - torsioned drill rod without restrictions of the 

deformation sizes testify to the efficiency of a nonlinear model. It is established that the 

account of nonlinear factors leads to essential specification of the dynamic model of drill rods 

- to the downturn of fluctuation amplitudes and displacement of basic resonance zones into 

the area of big frequencies. In spite of the fact that the suggested techniques were applied to 

the research of stability of the basic resonance of elastic dynamic systems, they can also be 

successfully applied to the analysis of resonances on the maximum  frequencies. 
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