P10. Bolatkhan K.

Bioluminescent periwinkle and cometid algae from the Mutant lab strains of microalgae

Bolatkhan K., Akhmedzhanov N.N., Sakraliev A.,

1. Department of Biotechnology, Al-Farabi Kazakh National University, Almaty, Kazakhstan.
2. Biology Department, Faculty of Science, Suez Canal University, Ismailia, Egypt.

There are some difficulties to connect the content of biofuels to the environment by biotechnological methods. In addition, the field test methods of indicating the status of the environment does not give a direct answer to the question about the possible projection of ecosystems by these other combinations. Due to the high sensitivity of the algae to environmental conditions, they play an important role in bioassay methods. One of the major advantages of using visible indicators is their high sensitivity to 

Keywords: biodiesel, microalgae, microalgae, wastewater.

Bolatkhan K., Department of Biotechnology, Al-Farabi Kazakh National University, Almaty, Kazakhstan, k.zhumabekov@kzu.kz, kaziodez.com

P11. Bradfield, Scott

Influence of TiO2 Engineered Nanoparticles on Photophysiological Efficiency and Contaminant Uptake

Scott Bradfield*, Department of Plant Biology, Southern Illinois University, Carbondale.
Stephen O'Shea, Department of Plant Science and Center for Ecological Science, Southern Illinois University, Carbondale.

The majority of plant nanoparticle interactions are currently focusing on the direct negative effects of nanoparticles on the health of the plant; however, the current research aimed to determine TiO2 engineered nanoparticles (MNPs) could be beneficial for plants in two different strategies.

The study aimed to determine the interaction of TiO2 engineered nanoparticles and leaf temperature were recorded to determine the effects of TiO2 engineered nanoparticles. Previous research with spinach has shown that the interaction of TiO2 nanoparticles increased several parameters associated with phytomethanisms; however, these studies were performed for short periods in controlled environments.

Keywords: nanoparticles, photophysiology, engineered contaminant.

Scott Bradfield, presenting author. 430 Life Sciences 1124 Lincoln Dr., Carbondale, IL 62901-6508, Southern Illinois University, Carbondale, IL 62901-6508, sbadfield@siu.edu