ε-approximation of the equations of heat convection for the Kelvin-Voight fluids

Undasyn Utegenovich Abylkairov and Khonatbek Khompysh

Citation: AIP Conference Proceedings 1676, 020059 (2015); doi: 10.1063/1.4930485
View online: http://dx.doi.org/10.1063/1.4930485
View Table of Contents: http://scitation.aip.org/content/aip/proceeding/aipcp/1676?ver=pdfcov
Published by the AIP Publishing

Articles you may be interested in

Asymptotic solution for heat convection-radiation equation AIP Conf. Proc. 1605, 529 (2014); 10.1063/1.4887644

Evolution equation for bidirectional surface waves in a convecting fluid
Phys. Fluids 18, 107102 (2006); 10.1063/1.2362843
Onset of convection in impulsively heated or cooled fluid layers
Phys. Fluids 25, 210 (1982); 10.1063/1.863620
Bifurcation of Convection in Internally Heated Fluid Layers
Phys. Fluids 15, 1882 (1972); 10.1063/1.1693799
Current Dependence of Convection in Electrolytically Heated Fluid Layers
Phys. Fluids 15, 1189 (1972); 10.1063/1.1694066

ε-approximation of the equations of heat convection for the Kelvin-Voight fluids

Undasyn Utegenovich Abylkairov and Khonatbek Khompysh
Al-Farabi Kazakh National University, 050038, Almaty, Kazakhstan

Abstract

We study one an ε - approximation for the initial-boundary value problem with free surface condition for the heat convection for Kelvin-Voight fluids in bounded domain $\Omega \subset R^{m}, m=2,3$ with a smooth boundary.The theorems of existence and uniqueness of smooth solutions of ε - regularization initial value problem in Sobolev spaces are proved. The estimate for rate of convergence of solution for $\varepsilon \rightarrow 0$ is obtained.

Keywords: ε-approximation, Kelvin-Voight fluids, Heat convection
PACS: 02.30.Mv

INTRODUCTION. STATEMENT OF THE PROBLEM

In the work [1], the unique solvability of the following initial-boundary value problem for the system of the nonlinear partial differential equations describing motion of the linear viscoelastic incompressible Kelvin-Voight fluids has been investigated:

$$
\begin{gather*}
\vec{v}_{t}-v \Delta \vec{v}+v_{k} \vec{v}_{x_{k}}+\operatorname{gradp}-\chi \Delta \vec{v}_{t}=\vec{f}(x, t)+g \vec{\gamma} \theta, \vec{\gamma}=(0,0,1), \tag{1}\\
\operatorname{div} \vec{v}=0, \tag{2}\\
\theta_{t}-\lambda \Delta \theta+(\vec{v} \cdot \nabla) \theta=q(x, t), \tag{3}\\
\left.\vec{v}\right|_{t=0}=\vec{v}_{0}(x),\left.\theta\right|_{t=0}=\theta_{0}(x), \tag{4}\\
\left.\vec{v}_{n}\right|_{\partial \Omega}=0,\left.(\operatorname{rot} \vec{v} \times n)\right|_{\partial \Omega}=0,\left.\theta\right|_{\partial \Omega}=0, \tag{5}
\end{gather*}
$$

where v_{n} is normal component of the vector-function (velocity of a fluid) $\vec{v}(x, t)$ on $\partial \Omega, p(x, t)$ is pressure, $\theta(x, t)$ is temperature, $\vec{f}(x, t)$ is denoted the external forces, $q(x, t)$ is density of the external heat flow, v, λ and χ are some positive physical coefficients.

Thus, the system (1)-(5) is not evolutionary, so that the direct application of method of fractional steps is difficult [2]. To overcome these difficulties due to the incompressibility condition (2), in the works [3-5] some ε - approximations for system of Navier-Stokes equations have been proposed, at which the incompressibility condition (2) is approximated by some equations with a small parameters $\varepsilon>0$. Thus, the system of the Cauchy-Kowalewskii type is obtained as a result.

By arguing [6, 7], we approximate equations (1) and (3) by following equations:

$$
\begin{gather*}
\vec{v}_{t}^{\varepsilon}-v \Delta \vec{v}^{\varepsilon}+v_{k}^{\varepsilon} \vec{v}_{x_{k}}^{\varepsilon}-\chi \Delta \vec{v}_{t}^{\varepsilon}+\frac{1}{2} \vec{v}^{\varepsilon} \operatorname{div} \vec{v}^{\varepsilon}-\nabla p=\vec{f}(x, t)+g \vec{\gamma} \theta^{\varepsilon}, \vec{\gamma}=(0,0,1) \tag{6}\\
\theta_{t}^{\varepsilon}-\lambda \Delta \theta^{\varepsilon}+\left(\vec{v}^{\varepsilon} \cdot \nabla\right) \theta^{\varepsilon}+\frac{1}{2} \theta^{\varepsilon} \operatorname{div} \vec{v}^{\varepsilon}=q(x, t) \tag{7}
\end{gather*}
$$

and equation (2) is approximated by the equation

$$
\begin{equation*}
\varepsilon p_{t}^{\varepsilon}+\operatorname{div} \vec{v}^{\varepsilon}=0, p^{\varepsilon}(x, 0)=p_{0}(x) \tag{8}
\end{equation*}
$$

The system of equations (6)-(8) after the transformations

$$
p^{\varepsilon}=p_{0}(x)-\frac{1}{\varepsilon} \int_{0}^{t} \operatorname{div} \vec{v}^{\varepsilon} d \tau, \quad \vec{\omega}^{\varepsilon} \equiv \int_{0}^{t} \operatorname{div} \vec{v}^{\varepsilon} d \tau
$$

reduces to the system

$$
\begin{gather*}
L_{1}\left(\vec{v}^{\varepsilon}, \theta^{\varepsilon}\right) \equiv \vec{v}_{t}^{\varepsilon}-v \Delta \vec{v}^{\varepsilon}+v_{k}^{\varepsilon} \vec{v}_{x_{k}}^{\varepsilon}-\chi \Delta \vec{v}_{t}^{\varepsilon}+\frac{1}{2} \vec{v}^{\varepsilon} \operatorname{div} \vec{v}^{\varepsilon}-\frac{1}{\varepsilon} \operatorname{graddiv} \vec{\omega}^{\varepsilon}=\vec{f}(x, t)+g \vec{\gamma} \theta^{\varepsilon}, \quad \vec{\omega}_{t}^{\varepsilon}=\vec{v}^{\varepsilon} \tag{9}\\
L_{2}\left(\theta^{\varepsilon}, \vec{v}^{\varepsilon}\right) \equiv \theta_{t}^{\varepsilon}-\lambda \Delta \theta^{\varepsilon}+\left(\vec{v}^{\varepsilon} \cdot \nabla\right) \theta^{\varepsilon}+\frac{1}{2} \theta^{\varepsilon} \operatorname{div} \vec{v}^{\varepsilon}=q(x, t) \tag{10}
\end{gather*}
$$

where we denoted $\nabla p_{0}+f(x, t)$ again by $f(x, t)$ for simplicity.
We study the system of equations (9)-(10) in Q_{T} with initial conditions

$$
\begin{equation*}
\left.\vec{v}^{\varepsilon}\right|_{t=0}=\vec{v}_{0}(x),\left.\vec{\omega}^{\varepsilon}\right|_{t=0}=0,\left.\theta^{\varepsilon}\right|_{t=0}=\theta_{0}(x), \tag{11}
\end{equation*}
$$

and free surface conditions [8]

$$
\begin{equation*}
\left.\vec{v}_{n}^{\varepsilon} \equiv \vec{v}^{\varepsilon} \cdot n\right|_{\partial \Omega}=0,\left.\left(\operatorname{rot} \vec{v}^{\varepsilon} \times n\right)\right|_{\partial \Omega}=0,\left.\vec{\omega}_{n}^{\varepsilon}\right|_{\partial \Omega}=0,\left.\left(\operatorname{rot} \vec{\omega}^{\varepsilon} \times n\right)\right|_{\partial \Omega}=0,\left.\theta^{\varepsilon}\right|_{\partial \Omega}=0 . \tag{12}
\end{equation*}
$$

An ε - approximation for the system (1)-(2) were investigated in [9] where the equation (2) has been approximated by $\varepsilon p^{\varepsilon}+\operatorname{div} \vec{v}^{\varepsilon}=0$.

We use the following notation of functional spaces and their norms studied in [7]:

$$
\begin{gathered}
H^{k}(\Omega) \equiv W_{2}^{k}(\Omega), k=1,2, \ldots, \\
H_{n}^{1}(\Omega) \equiv\left\{u \in H^{1}(\Omega):\left.u_{n}\right|_{\partial \Omega}=0\right\}, \\
H_{n}^{2}(\Omega) \equiv\left\{u(x) \in H^{2}(\Omega) \cap H_{n}^{1}(\Omega):\left.(\operatorname{rot} \vec{u} \times \vec{n})\right|_{\partial \Omega}=0\right\}, \\
J_{n}^{2}(\Omega) \equiv\left\{u(x) \in H_{n}^{2}(\Omega): \operatorname{div} \vec{u}(x)=0, x \in \Omega\right\},
\end{gathered}
$$

where $W_{2}^{k}(\Omega)$ and $L_{2}(\Omega)$ are classical Sobolev spaces.
We also apply (see [6]) the Poincare's inequality

$$
\begin{equation*}
\|\vec{v}\|_{2, \Omega} \leq C_{p}(\Omega)\|\nabla \vec{v}\|_{2, \Omega}, \quad \forall \vec{v} \in H_{0}^{1}(\Omega), \quad\left(\text { or } H_{n}^{1}(\Omega)\right) \tag{13}
\end{equation*}
$$

Ladyzhenskaya's inequality

$$
\begin{equation*}
\|\vec{v}\|_{4, \Omega} \leq \sqrt[4]{4}\|\vec{v}\|_{2, \Omega}^{\frac{1}{4}} \cdot\left\|\vec{v}_{x}\right\|_{2, \Omega}^{\frac{3}{4}}, \quad \Omega \subset R^{3} \tag{14}
\end{equation*}
$$

and the following inequalities

$$
\begin{gather*}
c(\Omega)\|v\|_{H^{1}(\Omega)} \leq\left(\|\operatorname{rotv}\|^{2}+\|\operatorname{div} v\|^{2}\right)^{\frac{1}{2}} \leq c^{\prime}(\Omega)\|v\|_{H^{1}(\Omega)}, \quad \forall v \in H_{n}^{1}(\Omega) \tag{15}\\
C(\Omega)\|\vec{v}\|_{H^{2}(\Omega)} \leq\|\Delta \vec{v}\| \leq C^{\prime}(\Omega)\|\vec{v}\|_{\left.H^{2} \Omega\right)}, \quad \forall \vec{v} \in H_{n}^{2}(\Omega) \tag{16}
\end{gather*}
$$

UNIQUE EXISTENCE AND CONVERGENCE OF THE SOLUTION OF (9)-(12)

The following theorem is the main theorem of the work.
Theorem 1. Let be $\vec{v}_{0}(x) \in J_{n}^{2}(\Omega), \theta_{0}(x) \in \stackrel{\circ}{W} 1(\Omega), \vec{f}(x, t), \vec{f}_{t}(x, t) \in L_{2}\left(Q_{T}\right)$.
Then, the initial-boundary value problem (9)-(12) for $\forall \varepsilon>0$ has a unique solution $\left(\vec{v}^{\varepsilon}, \vec{\omega}^{\varepsilon}, \theta^{\varepsilon}\right)$ such that

$$
\vec{v}^{\varepsilon}, \vec{\omega}^{\varepsilon} \in W_{\infty}^{1}\left(0, T ; H_{n}^{2}\right), \theta^{\varepsilon} \in W_{2}^{1}\left(0, T ; W_{2}^{2}\right) \cap L_{\infty}\left(0, T ; \stackrel{\circ}{W}_{2}^{1}\right)
$$

and the following estimate holds:

$$
\begin{align*}
& \left\|\vec{v}^{\varepsilon}(x, t)\right\|_{W_{\infty}^{1}\left(0, T ; H^{2}(\Omega)\right)}^{2}+\left\|\theta^{\varepsilon}\right\|_{L_{\infty}\left(0, T ; \dot{W}_{2}^{1}(\Omega)\right)}^{2}+\frac{1}{\varepsilon}\left\|\operatorname{qraddiv} \vec{v}^{\mathcal{E}}\right\|_{L_{\infty}\left(0, T ; L_{2}(\Omega)\right)}^{2}+\left\|\theta_{t}^{\varepsilon}\right\|_{2, Q_{T}}^{2} \tag{17}\\
& +\left\|\theta^{\varepsilon}\right\|_{L_{2}\left(0, T ; W_{2}^{2}(\Omega) \cap \stackrel{\circ}{\left.W_{2}^{1}(\Omega)\right)}\right.}^{2}+\frac{1}{\varepsilon^{2}}\left\|\operatorname{qraddiv} \vec{\omega}^{\varepsilon}\right\|_{L_{\infty}\left(0, T ; L_{2}(\Omega)\right)}^{2} \leq C_{0}<\infty .
\end{align*}
$$

Moreover, the strong solution $\left(\vec{v}^{\varepsilon}, \vec{\omega}^{\varepsilon}, \theta^{\varepsilon}\right)$ of (9)-(12) converges for $\varepsilon \rightarrow 0$ to the smooth solution $(\vec{v}(x, t), \nabla p(x, t), \theta(x, t))$ of the initial-boundary value problem (1)-(5) such that

$$
\vec{v} \in W_{\infty}^{1}\left(0, T ; J_{n}^{2}\right), \quad \nabla p \in L_{\infty}\left(0, T ; L_{2}\right), \quad \theta \in W_{2}^{1}\left(0, T ; W_{2}^{2}\right) \cap L_{\infty}\left(0, T ; \stackrel{\circ}{W}_{2}^{1}\right)
$$

and the following estimate holds

$$
\|\vec{v}\|_{W_{\infty}^{1}\left(0, T ; H^{2}(\Omega)\right)}^{2}+\|\theta\|_{L_{\infty}\left(0, T ; \stackrel{\circ}{W}_{2}^{1}(\Omega)\right)}^{2}+\|\nabla p\|_{L_{\infty}\left(0, T ; L_{2}(\Omega)\right)}^{2}+\left\|\theta_{t}\right\|_{Q_{T}}^{2}+\|\theta\|_{L_{2}\left(0, T ; W_{2}^{2}(\Omega) \cap \stackrel{\circ}{W}_{2}^{1}(\Omega)\right)}^{2} \leq C
$$

Here C_{i} denotes the constants depending only on initials of the problem and independent on the small parameter ε.
It is well known [4, 5], to prove the Theorem 1 it suffices to prove a priori estimate (17), then the solution $\left(\vec{v}^{\varepsilon}, \vec{\omega}^{\varepsilon}, \theta^{\varepsilon}\right)$ of the problem (9)-(12) will be constructed by the Faedo-Galerkin method and the convergence of the solution $\left(\vec{v}^{\varepsilon}, \vec{\omega}^{\varepsilon}, \theta^{\varepsilon}\right)$ of the perturbed problem (9)-(12) for $\varepsilon \rightarrow 0$ to the smooth solution $(\vec{v}, \nabla p, \theta)$ of the initialboundary value problem (1)-(5) follows from well known compactness theorems [4]-[5].

Proof of the estimate (17). In order to prove (17), at first we multiply the equation (10) by θ^{ε} and integrate over Ω. After integrating by parts and using Hölder's, Cauchy's inequalities and the Gronwall's lemma, we get the estimate

$$
\begin{equation*}
\left\|\theta^{\varepsilon}\right\|_{L_{\infty}\left(0, T ; L_{2}(\Omega)\right)}^{2}+\left\|\theta_{x}^{\varepsilon}\right\|_{L_{2}\left(0, T ; L_{2}(\Omega)\right)}^{2} \leq C_{1}\left(\lambda^{-1},\|q\|_{2, Q_{T}}^{2},\left\|\theta_{0}\right\|_{2, \Omega}^{2}\right) \tag{18}
\end{equation*}
$$

We multiply the equation (9) by $\vec{v}^{\varepsilon}, \Delta \vec{v}^{\varepsilon}, \frac{1}{\varepsilon}$ graddiv $\vec{\omega}^{\varepsilon}$, the equation (10) by $\Delta \theta^{\varepsilon}, \theta_{t}^{\varepsilon}$ and a priori differentiated by t equation (9) by $\vec{v}_{t}^{\varepsilon}, \Delta \vec{v}_{t}^{\varepsilon}$, and integrate the obtained results over Ω. Then using the following Green's formulas (see [6]), which are valid for all functions $\vec{v}, \vec{\omega} \in H_{n}^{k}(\Omega), k=1,2$, satisfying the boundary condition (5)

$$
\begin{gather*}
(-\Delta \vec{v}, \vec{\omega})_{2, \Omega}=-(\operatorname{grad} \operatorname{div} \vec{v}, \vec{\omega})_{2, \Omega}+\left(\operatorname{rot}^{2} \vec{v}, \omega\right)_{2, \Omega} \\
=-\int_{\partial \Omega} \operatorname{div} \vec{v} \cdot \vec{\omega}_{n} d S+(\operatorname{div} \vec{v}, \operatorname{div} \vec{\omega})_{2, \Omega}+\int_{\partial \Omega} \vec{\omega}(\operatorname{rot} \vec{v} \times \vec{n}) d S+(\operatorname{rot} \vec{v}, \operatorname{rot} \vec{\omega})_{2, \Omega} \tag{19}\\
=(\operatorname{div} \vec{v}, \operatorname{div} \vec{\omega})_{2, \Omega}+(\operatorname{rot} \vec{v}, \operatorname{rot} \vec{\omega})_{2, \Omega} \\
(\operatorname{grad} \operatorname{div} \vec{v}, \Delta \vec{\omega})_{2, \Omega}=(\operatorname{grad} \operatorname{div} \vec{v}, \operatorname{grad} \operatorname{div} \vec{\omega})_{2, \Omega}-\int_{\partial \Omega} \operatorname{grad} \operatorname{div} \vec{v}(\operatorname{rot} \vec{\omega} \times \vec{n}) d S \tag{20}\\
-(\operatorname{rot} \operatorname{graddiv} \vec{v}, \operatorname{rot} \vec{\omega})_{2, \Omega}=(\operatorname{grad} \operatorname{div} \vec{v}, \operatorname{grad} \operatorname{div} \vec{\omega})_{2, \Omega}
\end{gather*}
$$

we arrive at the following integral relations:

$$
\begin{gather*}
\frac{1}{2} \frac{d}{d t}\left(\left\|\vec{v}^{\varepsilon}\right\|_{2, \Omega}^{2}+\chi\left(\left\|\operatorname{div} \vec{v}^{\varepsilon}\right\|_{2, \Omega}^{2}+\left\|\operatorname{rot} \vec{v}^{\varepsilon}\right\|_{2, \Omega}^{2}\right)+\frac{1}{\varepsilon}\left\|\operatorname{div} \vec{\omega}^{\varepsilon}\right\|_{2, \Omega}^{2}\right) \tag{21}\\
+v\left(\left\|\operatorname{div} \vec{v}^{\varepsilon}\right\|_{2, \Omega}^{2}+\left\|r o t \vec{v}^{\varepsilon}\right\|_{2, \Omega}^{2}\right)=\left(\vec{f}+\vec{\gamma} g \theta^{\varepsilon}, \vec{v}^{\varepsilon}\right)_{2, \Omega} \\
\frac{1}{2} \frac{d}{d t}\left(\left\|\operatorname{div} \vec{v}^{\varepsilon}\right\|_{2, \Omega}^{2}+\left\|r o t \vec{v}^{\varepsilon}\right\|_{2, \Omega}^{2}+\chi\left\|\Delta \vec{v}^{\varepsilon}\right\|_{2, \Omega}^{2}+\frac{1}{\varepsilon}\left\|\operatorname{graddiv} \vec{\omega}^{\varepsilon}\right\|_{2, \Omega}^{2}\right)+v\left\|\Delta \vec{v}^{\varepsilon}\right\|_{2, \Omega}^{2} \tag{22}\\
=B\left(\left(\vec{v}^{\varepsilon}, \vec{v}^{\varepsilon}\right), \Delta \vec{v}^{\varepsilon}\right)_{2, \Omega}-\left(\vec{f}+\vec{\gamma} g \theta^{\varepsilon}, \Delta \vec{v}^{\varepsilon}\right)_{2, \Omega} \\
\frac{1}{\varepsilon^{2}}\left\|\operatorname{graddiv} \vec{\omega}^{\varepsilon}\right\|_{2, \Omega}^{2}=\frac{1}{\varepsilon}\left(\vec{v}_{t}^{\varepsilon}-\varphi \Delta \vec{v}_{t}^{\varepsilon}-v \Delta \vec{v}^{\varepsilon}-\vec{f}-g \vec{\gamma} \theta^{\varepsilon}, \operatorname{graddiv} \vec{\omega}^{\varepsilon}\right) \tag{23}\\
+\frac{1}{\varepsilon}\left(B\left(\vec{v}^{\varepsilon}, \vec{v}^{\varepsilon}\right), \operatorname{graddiv} \vec{\omega}^{\varepsilon}\right)_{2, \Omega}, \\
\frac{1}{2} \frac{d}{d t}\left\|\theta_{x}^{\varepsilon}\right\|_{2, \Omega}^{2}+\gamma\left\|\Delta \theta^{\varepsilon}\right\|_{2, \Omega}^{2}=\left(B\left(\vec{v}^{\varepsilon}, \theta^{\varepsilon}\right)+q, \Delta \theta^{\varepsilon}\right)_{2, \Omega}, \quad \forall t \in(0, T), \tag{24}\\
\frac{\lambda}{2} \frac{d}{d t}\left\|\theta_{x}^{\varepsilon}\right\|_{2, \Omega}^{2}+\left\|\theta_{t}^{\varepsilon}\right\|_{2, \Omega}^{2}=\left(B\left(\vec{v}^{\varepsilon}, \theta^{\varepsilon}\right)+q, \theta_{t}^{\varepsilon}\right)_{2, \Omega}, \quad \forall t \in(0, T), \tag{25}
\end{gather*}
$$

$$
\begin{gather*}
\frac{1}{2} \frac{d}{d t}\left(\left\|\vec{v}_{t}^{\varepsilon}\right\|_{2, \Omega}^{2}+\chi\left(\left\|\operatorname{div} \vec{v}_{t}^{\varepsilon}\right\|_{2, \Omega}^{2}+\left\|\operatorname{rot} \vec{v}_{t}^{\varepsilon}\right\|_{2, \Omega}^{2}\right)+\frac{1}{\varepsilon}\left\|\operatorname{div} \vec{v}^{E}\right\|_{2, \Omega}^{2}\right) \tag{26}\\
+v\left(\left\|\operatorname{div} \vec{v}_{t}^{\varepsilon}\right\|_{2, \Omega}^{2}+\left\|\operatorname{rot} \vec{v}_{t}^{\varepsilon}\right\|_{2, \Omega}^{2}\right)=\left(\vec{f}_{t}+g \vec{\gamma} \theta_{t}^{\varepsilon}, \vec{v}_{t}^{\varepsilon}\right)-\left(\vec{v}_{t}^{\varepsilon} \nabla \vec{v}^{\varepsilon}+\frac{1}{2} \vec{v}_{t}^{\varepsilon} \operatorname{div} \vec{v}^{\varepsilon}, \vec{v}_{t}^{\varepsilon}\right) \\
\frac{1}{2} \frac{d}{d t}\left(\left\|\operatorname{div} \vec{v}_{t}^{\mathcal{E}}\right\|_{2, \Omega}^{2}+\left\|\operatorname{rot} \vec{v}_{t}^{\varepsilon}\right\|_{2, \Omega}^{2}+\chi\left\|\Delta \vec{v}_{t}^{\varepsilon}\right\|_{2, \Omega}^{2}+\frac{1}{\varepsilon}\left\|\operatorname{graddiv} \vec{v}^{\varepsilon}\right\|_{2, \Omega}^{2}\right)+v\left\|\Delta \vec{v}_{t}^{\vec{e}}\right\|_{2, \Omega}^{2} \tag{27}\\
=-\left(\vec{f}_{t}+g \vec{\gamma} \theta_{t}^{\varepsilon}, \Delta \vec{v}_{t}^{\varepsilon}\right)-\left(\frac{\partial}{\partial t} B\left(\vec{v}^{\varepsilon}, \vec{v}^{\varepsilon}\right), \Delta \vec{v}_{t}^{\varepsilon}\right)
\end{gather*}
$$

where

$$
\left(B\left(\vec{v}^{\varepsilon}, \theta^{\varepsilon}\right), \omega\right)=\int_{\Omega}\left(\left(\vec{v}^{\varepsilon} \cdot \nabla\right) \theta^{\varepsilon}+\frac{1}{2} \theta^{\varepsilon} \operatorname{div} \vec{v}^{\varepsilon}\right) \omega d x
$$

and we denote by (\cdot, \cdot) the inner product in $L_{2}(\Omega)$.
Now, we estimate the right-hand side of (21) by Hölder's inequality, then using (15) and (18), we get the estimate

$$
\begin{equation*}
\left\|\vec{v}_{x}^{\varepsilon}\right\|_{L_{\infty}\left(0, T ; L_{2}(\Omega)\right)}^{2}+\left\|\vec{v}_{x}^{\varepsilon}\right\|_{2, Q_{T}}^{2}+\frac{1}{\varepsilon}\left\|\operatorname{div} \vec{\omega}^{\varepsilon}\right\|_{L_{\infty}\left(0, T ; L_{2}(\Omega)\right)}^{2} \leq C_{2}\left(v^{-1}, \Omega,\|f\|_{2, Q_{T}}^{2}, C_{1},\left\|v_{0}\right\|^{(1)}\right) . \tag{28}
\end{equation*}
$$

The terms on the right-hand side of (22) can be estimated by Hölder's inequality, Poincare's inequality and the inequality (16). In consequence, using the estimates (18), (28), we obtain

$$
\begin{equation*}
\left\|\vec{v}_{x}^{\varepsilon}\right\|_{L_{\infty}\left(0, T ; L_{2}(\Omega)\right)}^{2}+\left\|\vec{v}_{x}^{\varepsilon}\right\|_{2, Q_{T}}^{2}+\frac{1}{\varepsilon}\left\|\operatorname{graddiv} \vec{\omega}^{\varepsilon}\right\|_{L_{\infty}\left(0, T ; L_{2}(\Omega)\right)}^{2} \leq C_{3}\left(\Omega,\|f\|_{2, Q_{T}}^{2}, C_{2}^{3},\left\|v_{0}\right\|^{(2)}\right) . \tag{29}
\end{equation*}
$$

Applying the same method to (24), we can easily get the following estimate

$$
\begin{equation*}
\left\|\theta_{x}^{\varepsilon}\right\|_{L_{\infty}\left(0, T ; L_{2}(\Omega)\right)}^{2}+\left\|\Delta \theta^{\varepsilon}\right\|_{2, Q_{T}}^{2} \leq C_{4}<\infty . \tag{30}
\end{equation*}
$$

Next, we estimate the integrals on the right-hand side in (25) by Hölder's, Young's, Poincare's inequalities and (18)-(12). Then using the Granwoll's lemma, we have

$$
\begin{equation*}
\left\|\theta_{x}^{\varepsilon}\right\|_{L_{\infty}\left(0, T ; L_{2}(\Omega)\right)}^{2}+\left\|\theta_{t}^{\varepsilon}\right\|_{2, Q_{T}}^{2} \leq C_{5}<\infty \tag{31}
\end{equation*}
$$

Applying the Hölder's inequality, Ladyzhenskaya inequality (14), and the estimates (18)-(31) to right-hand side of (26), we get the estimate

$$
\begin{equation*}
\left\|\vec{v}_{t}^{\varepsilon}, \nabla \vec{v}_{t}^{\varepsilon}\right\|_{L_{\infty}\left(0, T ; L_{2}(\Omega)\right)}^{2}+\left\|\nabla \vec{v}_{t}^{\varepsilon}\right\|_{2, Q_{T}}^{2}+\frac{1}{\varepsilon}\left\|\operatorname{div} \vec{v}^{\varepsilon}\right\|_{L_{\infty}\left(0, T ; L_{2}(\Omega)\right)}^{2} \leq C_{6}<\infty \tag{32}
\end{equation*}
$$

Analogical way as above, we get from (27) the estimate

$$
\begin{equation*}
\left\|\nabla \vec{v}_{t}^{\varepsilon}, \vec{v}_{x x t}^{\varepsilon}\right\|_{L_{\infty}\left(0, T ; L_{2}(\Omega)\right)}^{2}+\left\|\vec{v}_{x x t}^{\varepsilon}\right\|_{2, Q_{T}}^{2}+\frac{1}{\varepsilon}\left\|\operatorname{graddiv} \vec{v}^{\varepsilon}\right\|_{L_{\infty}\left(0, T ; L_{2}(\Omega)\right)}^{2} \leq C_{7}\left(\left\|f, f_{t}\right\|_{2, Q_{T}}^{2},\left\|v_{0}\right\|^{(2)}\right) \tag{33}
\end{equation*}
$$

where we used the inequality

$$
\left\|\left.\vec{v}_{t}\right|_{t=0}\right\|^{(2)} \leq C_{8}\left(v^{-1}, \chi^{-1},\left\|\vec{v}_{0}\right\|^{(2)},\|f(x, 0)\|\right) .
$$

Finally, estimating the terms on right-hand side of (24) by Hölder's, Young's inequalities, and the already obtained estimates, we obtain

$$
\begin{equation*}
\frac{1}{\varepsilon^{2}}\left\|\operatorname{graddiv} \vec{\omega}^{\varepsilon}\right\|_{2, \Omega}^{2} \leq C_{9}\left(\chi^{-1}, v^{-1}, \Omega,\left\|\vec{v}_{0}\right\|^{(2)},\left\|\theta_{0}\right\|,\left\|f, f_{t}\right\|_{2, Q_{T}}^{2}\right) \tag{34}
\end{equation*}
$$

Estimates (18), (28)-(34) imply the estimate (17).
In numerical analysis an estimate of convergence rate is very important. For the rate of convergence the following theorem holds.

Theorem 2. Let conditions of Theorem 1 are fulfilled. Then for the rate of convergence the following estimate holds

$$
\begin{gathered}
\left\|\vec{v}(x, t)-\vec{v}^{\varepsilon}(x, t)\right\|_{L_{\infty}\left(0, T ; H^{1}(\Omega)\right)}+\left\|\theta(x, t)-\theta^{\varepsilon}(x, t)\right\|_{L_{\infty}\left(0, T ; L_{2}(\Omega)\right)} \\
+\left\|\vec{v}(x, t)-\vec{v}^{\varepsilon}(x, t)\right\|_{L_{2}\left(0, T ; H^{1}(\Omega)\right)}+\left\|\theta(x, t)-\theta^{\varepsilon}(x, t)\right\|_{L_{2}\left(0, T ; W_{2}^{1}(\Omega)\right)} \leq C_{10} \varepsilon^{\frac{1}{2}} .
\end{gathered}
$$

Analogical way as in [9], one can prove the Theorem 2.

ACKNOWLEDGMENTS

This work is partially supported by Grant No.0113RK00943 of a Science Committee of the Ministry of Education and Science of the Republic of Kazakhstan.

REFERENCES

1. K. Khompysh, Bulletin of KazNTU after K.Satpaev 2, 178-182 (2010).
2. N. N. Yanenko, The Method of Fractional Steps for Solving Multidimensional Problems of Mathematical Physics, Nauka, Novosibirsk, 1967.
3. A. Chorin, Comput. Phys. 2, 12-26 (1967).
4. O. A. Ladyzhenskaya, The Mathematical Theory of Viscous Incompressible Flow, Nauka, Moscow, 1970.
5. R. Temam, Navier-Stokes Equations. Theory and Numerical Analysis, North-Holland Publishing Co., Amsterdam, New York, 1984.
6. A. A. Kotsiolis, and A. P. Oskolkov, Zap. Nauchn. Sem. POMI 205, 38-70 (1993).
7. A. P. Oskolkov, Zap. Nauchn. Sem. POMI 221, 185-207 (1995).
8. J. M. Ghidaglia, Comm. Partial Diff. Equations 9, 1265-1298 (1984).
9. U. U. Abylkairov, S. T. Mukhambetzhanov, and K. Khompysh, Universal Journal of Mathematics and Mathematical Sciences 5, 37-51 (2014).
