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ε-approximation of the equations of heat convection for the
Kelvin-Voight fluids

Undasyn Utegenovich Abylkairov and Khonatbek Khompysh

Al-Farabi Kazakh National University, 050038, Almaty, Kazakhstan

Abstract. We study one an ε - approximation for the initial-boundary value problem with free surface condition for the heat
convection for Kelvin-Voight fluids in bounded domain Ω ⊂ Rm, m = 2,3 with a smooth boundary.The theorems of existence
and uniqueness of smooth solutions of ε− regularization initial value problem in Sobolev spaces are proved. The estimate for
rate of convergence of solution for ε → 0 is obtained.
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INTRODUCTION. STATEMENT OF THE PROBLEM

In the work [1], the unique solvability of the following initial-boundary value problem for the system of the nonlinear
partial differential equations describing motion of the linear viscoelastic incompressible Kelvin-Voight fluids has been
investigated:

v⃗t −ν∆⃗v+ vk⃗vxk +grad p−χ∆⃗vt = f⃗ (x, t)+ g⃗γθ , γ⃗ = (0,0,1) , (1)

div⃗v = 0, (2)

θt −λ∆θ +(⃗v ·∇)θ = q(x, t), (3)

v⃗|t=0 = v⃗0 (x) , θ |t=0 = θ0 (x) , (4)

v⃗n|∂Ω = 0,( rot⃗v×n)|∂Ω = 0, θ |∂Ω = 0, (5)

where vn is normal component of the vector-function (velocity of a fluid) v⃗(x, t) on ∂Ω, p(x, t) is pressure, θ(x, t) is
temperature, f⃗ (x, t) is denoted the external forces, q(x, t) is density of the external heat flow, ν ,λ and χ are some
positive physical coefficients.

Thus, the system (1)-(5) is not evolutionary, so that the direct application of method of fractional steps is difficult
[2]. To overcome these difficulties due to the incompressibility condition (2), in the works [3–5] some ε− approxi-
mations for system of Navier-Stokes equations have been proposed, at which the incompressibility condition (2) is
approximated by some equations with a small parameters ε > 0. Thus, the system of the Cauchy-Kowalewskii type is
obtained as a result.

By arguing [6, 7], we approximate equations (1) and (3) by following equations:

v⃗ε
t −ν∆⃗vε + vε

k v⃗ε
xk
−χ∆⃗vε

t +
1
2

v⃗ε div⃗vε −∇p = f⃗ (x, t)+ g⃗γθ ε , γ⃗ = (0,0,1) , (6)

θ ε
t −λ∆θ ε +(⃗vε ·∇)θ ε +

1
2

θ ε div⃗vε = q(x, t), (7)

and equation (2) is approximated by the equation

ε pt
ε +div⃗vε = 0, pε(x,0) = p0(x). (8)

The system of equations (6)-(8) after the transformations

pε = p0 (x)−
1
ε

t∫
0

div⃗vε dτ , ω⃗ε ≡
t∫

0

div⃗vε dτ
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reduces to the system

L1 (⃗vε ,θ ε)≡ v⃗ε
t −ν∆⃗vε + vε

k v⃗ε
xk
−χ∆⃗vε

t +
1
2

v⃗ε div⃗vε − 1
ε

graddivω⃗ε = f⃗ (x, t)+ g⃗γθ ε , ω⃗ε
t = v⃗ε , (9)

L2 (θ ε , v⃗ε)≡ θ ε
t −λ∆θ ε +(⃗vε ·∇)θ ε +

1
2

θ ε div⃗vε = q(x, t), (10)

where we denoted ∇p0 + f (x, t) again by f (x, t) for simplicity.
We study the system of equations (9)-(10) in QT with initial conditions

v⃗ε |t=0 = v⃗0 (x) , ω⃗ε |t=0 = 0, θ ε |t=0 = θ0 (x) , (11)

and free surface conditions [8]

v⃗ε
n ≡ v⃗ε ·n|∂Ω = 0, (rot⃗vε ×n)|∂Ω = 0, ω⃗ε

n |∂Ω = 0, (rotω⃗ε ×n)|∂Ω = 0, θ ε |∂Ω = 0. (12)

An ε− approximation for the system (1)-(2) were investigated in [9] where the equation (2) has been approximated
by ε pε +div⃗vε = 0.

We use the following notation of functional spaces and their norms studied in [7]:

Hk (Ω)≡W k
2 (Ω) , k = 1,2, ...,

H1
n (Ω)≡

{
u ∈ H1 (Ω) : un|∂Ω = 0

}
,

H2
n (Ω)≡

{
u(x) ∈ H2 (Ω)∩H1

n (Ω) : (rotu⃗× n⃗)|∂Ω = 0
}
,

J2
n (Ω)≡

{
u(x) ∈ H2

n (Ω) : div⃗u(x) = 0, x ∈ Ω
}
,

where W k
2 (Ω) and L2 (Ω) are classical Sobolev spaces.

We also apply (see [6]) the Poincare’s inequality

∥⃗v∥2,Ω ≤Cp(Ω)∥∇⃗v∥2,Ω, ∀⃗v ∈ H1
0 (Ω), (or H1

n (Ω)), (13)

Ladyzhenskaya’s inequality

∥⃗v∥4,Ω ≤ 4√4∥⃗v∥
1
4
2,Ω · ∥⃗vx∥

3
4
2,Ω, Ω ⊂ R3, (14)

and the following inequalities

c(Ω)∥v∥H1(Ω) ≤
(
∥rotv∥2 +∥divv∥2

) 1
2 ≤ c′(Ω)∥v∥H1(Ω), ∀v ∈ H1

n (Ω) , (15)

C(Ω)∥⃗v∥H2(Ω) ≤ ∥∆⃗v∥ ≤C′(Ω)∥⃗v∥H2Ω), ∀⃗v ∈ H2
n (Ω) . (16)

UNIQUE EXISTENCE AND CONVERGENCE OF THE SOLUTION OF (9)-(12)

The following theorem is the main theorem of the work.

Theorem 1. Let be v⃗0 (x) ∈ J2
n (Ω) , θ0 (x) ∈

◦
W 1

2 (Ω), f⃗ (x, t) , f⃗t (x, t) ∈ L2 (QT ) .
Then, the initial-boundary value problem (9)-(12) for ∀ε > 0 has a unique solution (⃗vε , ω⃗ε , θ ε) such that

v⃗ε , ω⃗ε ∈W 1
∞
(
0,T ;H2

n
)
, θ ε ∈W 1

2
(
0,T ;W 2

2
)
∩L∞

(
0,T ;

◦
W 1

2

)
and the following estimate holds:

∥⃗vε (x, t)∥2
W 1

∞(0,T ;H2(Ω)) +∥θ ε∥2
L∞(0,T ;

◦
W 1

2(Ω))
+

1
ε
∥qraddiv⃗vε∥2

L∞(0,T ;L2(Ω))+∥θ ε
t ∥

2
2,QT

+∥θ ε∥2
L2(0,T ;W 2

2 (Ω)
∩ ◦

W 1
2(Ω))

+
1
ε2 ∥qraddivω⃗ε∥2

L∞(0,T ;L2(Ω)) ≤C0 < ∞.

(17)
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Moreover, the strong solution (⃗vε , ω⃗ε , θ ε) of (9)-(12) converges for ε → 0 to the smooth solution
(⃗v(x, t),∇p(x, t),θ(x, t)) of the initial-boundary value problem (1)-(5) such that

v⃗ ∈W 1
∞
(
0,T ;J2

n
)
, ∇p ∈ L∞ (0,T ;L2) , θ ∈W 1

2
(
0,T ;W 2

2
)
∩L∞

(
0,T ;

◦
W 1

2

)
,

and the following estimate holds

∥⃗v∥2
W 1

∞(0,T ;H2(Ω)) +∥θ∥2
L∞(0,T ;

◦
W 1

2(Ω))
+∥∇p∥2

L∞(0,T ;L2(Ω))+∥θt∥
2
QT

+∥θ∥2
L2(0,T ;W 2

2 (Ω)
∩ ◦

W 1
2(Ω))

≤C.

Here Ci denotes the constants depending only on initials of the problem and independent on the small parameter ε.

It is well known [4, 5], to prove the Theorem 1 it suffices to prove a priori estimate (17), then the solution
(⃗vε , ω⃗ε , θ ε) of the problem (9)-(12) will be constructed by the Faedo-Galerkin method and the convergence of the
solution (⃗vε , ω⃗ε , θ ε) of the perturbed problem (9)-(12) for ε → 0 to the smooth solution (⃗v,∇p,θ) of the initial-
boundary value problem (1)-(5) follows from well known compactness theorems [4]-[5].

Proof of the estimate (17). In order to prove (17), at first we multiply the equation (10) by θ ε and integrate over Ω.
After integrating by parts and using Hölder’s, Cauchy’s inequalities and the Gronwall’s lemma, we get the estimate

∥θ ε∥2
L∞(0,T ;L2(Ω))+∥θ ε

x ∥
2
L2(0,T ;L2(Ω)) ≤C1

(
λ−1,∥q∥2

2,QT
,∥θ0∥2

2,Ω

)
. (18)

We multiply the equation (9) by v⃗ε , ∆⃗vε ,
1
ε

graddivω⃗ε , the equation (10) by ∆θ ε , θ ε
t and a priori differentiated by

t equation (9) by v⃗ε
t , ∆⃗vε

t , and integrate the obtained results over Ω. Then using the following Green’s formulas (see
[6]), which are valid for all functions v⃗, ω⃗ ∈ Hk

n (Ω) , k = 1,2, satisfying the boundary condition (5)

(−∆⃗v, ω⃗)2,Ω =−(grad div⃗v, ω⃗)2,Ω +
(
rot2⃗v,ω

)
2,Ω

=−
∫

∂Ω

div⃗v · ω⃗ndS+(div⃗v,divω⃗)2,Ω +
∫

∂Ω

ω⃗ (rot⃗v× n⃗)dS+(rot⃗v, rotω⃗)2,Ω

= (div⃗v,divω⃗)2,Ω +(rot⃗v, rotω⃗)2,Ω ,

(19)

(grad div⃗v,∆ω⃗)2,Ω = (grad div⃗v, grad divω⃗)2,Ω −
∫

∂Ω

grad div⃗v(rotω⃗ × n⃗)dS

−(rot graddiv⃗v, rotω⃗)2,Ω = (grad div⃗v, grad divω⃗)2,Ω ,

(20)

we arrive at the following integral relations:

1
2

d
dt

(
∥⃗vε∥2

2,Ω +χ
(
∥div⃗vε∥2

2,Ω +∥rot⃗vε∥2
2,Ω

)
+

1
ε
∥divω⃗ε∥2

2,Ω

)
+ν

(
∥div⃗vε∥2

2,Ω +∥rot⃗vε∥2
2,Ω

)
=
(

f⃗ + γ⃗gθ ε , v⃗ε
)

2,Ω
,

(21)

1
2

d
dt

(
∥div⃗vε∥2

2,Ω +∥rot⃗vε∥2
2,Ω +χ ∥∆⃗vε∥2

2,Ω +
1
ε
∥graddivω⃗ε∥2

2,Ω

)
+ν ∥∆⃗vε∥2

2,Ω

= B((⃗vε , v⃗ε) , ∆⃗vε)2,Ω −
(

f⃗ + γ⃗gθ ε , ∆⃗vε
)

2,Ω
,

(22)

1
ε2 ∥graddivω⃗ε∥2

2,Ω =
1
ε

(⃗
vε

t −φ∆⃗vε
t −ν∆⃗vε − f⃗ − g⃗γθ ε ,graddivω⃗ε

)
+

1
ε
(B(⃗vε , v⃗ε),graddivω⃗ε)2,Ω ,

(23)

1
2

d
dt

∥θ ε
x ∥

2
2,Ω + γ ∥∆θ ε∥2

2,Ω = (B (⃗vε ,θ ε)+q, ∆θ ε)2,Ω , ∀t ∈ (0,T ) , (24)

λ
2

d
dt

∥θ ε
x ∥

2
2,Ω +∥θ ε

t ∥
2
2,Ω = (B (⃗vε ,θ ε)+q,θ ε

t )2,Ω , ∀t ∈ (0,T ) , (25)
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1
2

d
dt

(
∥⃗vε

t ∥
2
2,Ω +χ

(
∥div⃗vε

t ∥
2
2,Ω +∥rot⃗vε

t ∥
2
2,Ω

)
+

1
ε
∥div⃗vε∥2

2,Ω

)
+ν

(
∥div⃗vε

t ∥
2
2,Ω +∥ rot⃗vε

t ∥
2
2,Ω

)
=
(

f⃗t + g⃗γθ ε
t , v⃗ε

t

)
−
(⃗

vε
t ∇⃗vε +

1
2

v⃗ε
t div⃗vε , v⃗ε

t

)
,

(26)

1
2

d
dt

(
∥div⃗vε

t ∥
2
2,Ω +∥rot⃗vε

t ∥
2
2,Ω +χ ∥∆⃗vε

t ∥
2
2,Ω +

1
ε
∥graddiv⃗vε∥2

2,Ω

)
+ν ∥∆⃗vε

t ∥
2
2,Ω

=−
(

f⃗t + g⃗γθ ε
t , ∆⃗vε

t

)
−
(

∂
∂ t

B(⃗vε , v⃗ε), ∆⃗vε
t

)
,

(27)

where

(B (⃗vε , θ ε) , ω) =
∫
Ω

(
(⃗vε ·∇)θ ε +

1
2

θ ε div⃗vε
)

ωdx

and we denote by (·, ·) the inner product in L2(Ω).
Now, we estimate the right-hand side of (21) by Hölder’s inequality, then using (15) and (18), we get the estimate

∥⃗vε
x∥

2
L∞(0,T ;L2(Ω))+ ∥⃗vε

x∥
2
2,QT

+
1
ε
∥divω⃗ε∥2

L∞(0,T ;L2(Ω)) ≤C2

(
ν−1,Ω,∥ f∥2

2,QT
,C1,∥v0∥(1)

)
. (28)

The terms on the right-hand side of (22) can be estimated by Hölder’s inequality, Poincare’s inequality and the
inequality (16). In consequence, using the estimates (18), (28), we obtain

∥⃗vε
x∥

2
L∞(0,T ;L2(Ω))+ ∥⃗vε

x∥
2
2,QT

+
1
ε
∥graddivω⃗ε∥2

L∞(0,T ;L2(Ω)) ≤C3

(
Ω,∥ f∥2

2,QT
,C3

2 ,∥v0∥(2)
)
. (29)

Applying the same method to (24), we can easily get the following estimate

∥θ ε
x ∥

2
L∞(0,T ;L2(Ω))+∥∆θ ε∥2

2,QT
≤C4 < ∞. (30)

Next, we estimate the integrals on the right-hand side in (25) by Hölder’s, Young’s, Poincare’s inequalities and
(18)-(12). Then using the Granwoll’s lemma, we have

∥θ ε
x ∥

2
L∞(0,T ;L2(Ω))+∥θ ε

t ∥
2
2,QT

≤C5 < ∞. (31)

Applying the Hölder’s inequality, Ladyzhenskaya inequality (14), and the estimates (18)-(31) to right-hand side of
(26), we get the estimate

∥⃗vε
t , ∇⃗vε

t ∥
2
L∞(0,T ;L2(Ω))+∥∇⃗vε

t ∥
2
2,QT

+
1
ε
∥div⃗vε∥2

L∞(0,T ;L2(Ω)) ≤C6 < ∞. (32)

Analogical way as above, we get from (27) the estimate

∥∇⃗vε
t , v⃗

ε
xxt∥

2
L∞(0,T ;L2(Ω))+ ∥⃗vε

xxt∥
2
2,QT

+
1
ε
∥graddiv⃗vε∥2

L∞(0,T ;L2(Ω)) ≤C7

(
∥ f , ft∥2

2,QT
,∥v0∥(2)

)
, (33)

where we used the inequality
∥ v⃗t |t=0∥

(2) ≤C8

(
ν−1,χ−1, ∥⃗v0∥(2) ,∥ f (x,0)∥

)
.

Finally, estimating the terms on right-hand side of (24) by Hölder’s, Young’s inequalities, and the already obtained
estimates, we obtain

1
ε2 ∥graddivω⃗ε∥2

2,Ω ≤C9

(
χ−1,ν−1,Ω, ∥⃗v0∥(2) ,∥θ0∥ ,∥ f , ft∥2

2,QT

)
. (34)

Estimates (18), (28)-(34) imply the estimate (17).
In numerical analysis an estimate of convergence rate is very important. For the rate of convergence the following

theorem holds.

Theorem 2. Let conditions of Theorem 1 are fulfilled. Then for the rate of convergence the following estimate holds

∥⃗v(x, t)− v⃗ε (x, t)∥L∞(0,T ;H1(Ω)) +∥θ (x, t)−θ ε (x, t)∥L∞(0,T ;L2(Ω))

+ ∥⃗v(x, t)− v⃗ε (x, t)∥L2(0,T ;H1(Ω)) +∥θ (x, t)−θ ε (x, t)∥L2(0,T ;W 1
2 (Ω)) ≤C10ε

1
2 .

Analogical way as in [9], one can prove the Theorem 2.
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