On estimates of solutions of the linear stationary problem of magnetohydrodynamics problem in Sobolev spaces

Khonatbek Khompysh and Sharypkhan Sakhaevich Sakhaev

Citation: AIP Conference Proceedings 1676, 020033 (2015); doi: 10.1063/1.4930459
View online: http://dx.doi.org/10.1063/1.4930459
View Table of Contents: http://scitation.aip.org/content/aip/proceeding/aipcp/1676?ver=pdfcov Published by the AIP Publishing

Articles you may be interested in

Lower bounds on blow up solutions of the three-dimensional Navier-Stokes equations in homogeneous Sobolev spaces
J. Math. Phys. 53, 115618 (2012); 10.1063/1.4762841

The eigenfrequency spectrum of linear magnetohydrodynamic perturbations in stationary equilibria: A variational principle
Phys. Plasmas 17, 112106 (2010); 10.1063/1.3505095
The brachistochrone problem in a stationary space-time
J. Math. Phys. 32, 3148 (1991); 10.1063/1.529472

Stationary chaotic states in linear magnetohydrodynamic generators
Appl. Phys. Lett. 52, 1950 (1988); 10.1063/1.99586
Exact Solutions to a Class of Linearized Magnetohydrodynamic Flow Problems
Phys. Fluids 5, 1416 (1962); 10.1063/1.1706539

On estimates of solutions of the linear stationary problem of magnetohydrodynamics problem in Sobolev spaces

Khonatbek Khompysh and Sharypkhan Sakhaevich Sakhaev

Al-Farabi Kazakh National University, 050038, Almaty, Kazakhstan

Abstract

In this paper, we get estimates in Sobolev spaces for solutions of stationary linear problem arising in magnetohydrodynamics. The problem is studied in the multiply connected domains.

Keywords: Magnetohydrodynamics, L_{p}-estimate, Sobolev spaces, Multi-connected domains.
PACS: $52.75 . \mathrm{Fk}$

STATEMENT OF THE PROBLEM

Let Ω_{1}, bounded domain in \mathbb{R}^{3} with a smooth boundary S_{1}, be strictly interior subdomain Ω from abroad S and let $\Omega_{2}=\Omega \backslash \Omega_{1}$. In this paper, we consider the linear problem that is the system of Maxwell's equations with excluded bias current

$$
\begin{gather*}
\operatorname{rot} \vec{H}(x)-\sigma \vec{E}(x)=\vec{j}(x), \\
\operatorname{div} \vec{H}(x)=0, \tag{1}\\
\operatorname{rot} \vec{E}(x)=0
\end{gather*}
$$

at a given $\vec{j}(x), x \in \Omega_{1}$. Thus, $\operatorname{rot} \vec{H}=0, \operatorname{div} \vec{H}=0, x \in \Omega_{2}$ and fair

$$
\begin{gather*}
{\left[H_{n}\right]=0,\left[\vec{H}_{\tau}\right]=0, x \in S_{1}} \tag{2}\\
H_{n}=0, x \in S .
\end{gather*}
$$

Under $[u]$ jump of the function $u(x), x \in \Omega_{1} \cup \Omega_{2}$ on the surface $S_{1}:[u]=u^{1}(x)-u^{2}(x), u^{(i)}=\left.u(x)\right|_{x \in \Omega_{i}}, H_{n}=\vec{H} \cdot \vec{n}$ and $\vec{H}_{\tau}=\vec{H}-\vec{n} H_{n}$ are normal and tangential components of the vector $\vec{H}(x)$ on S and S_{1}, μ is a piecewise constant function, equal μ_{i} in $\Omega_{i}, i=1,2, \mu_{i}>0$.

Problem (1)-(2) arises in the study of problems of magneto hydrodynamics, [1-3] in which Ω_{1} is an area, filled with a viscous incompressible electrically conducting fluid, Ω_{2} is a vacuum surrounding, S is a perfectly conducting surface, $\vec{H}(x)$ is the magnetic field strength. Relations (1) represent a linearized stationary equations of Maxwell (with exceptional bias currents) and (2) represent the standard conditions at the boundary of the magnetic field. We assume the field Ω_{1} and Ω_{2} simply connected. Then equations $\operatorname{rot} \vec{H}=0, \operatorname{div} \vec{H}=0$ in Ω_{2} entails $\vec{H}^{2}(x)=\nabla \varphi(x)$, where $\varphi(x)$ is a solution of the following Neumann problem

$$
\begin{gather*}
\nabla^{2} \varphi(x)=0, x \in \Omega_{2},\left.\frac{\partial \varphi}{\partial n}\right|_{x \in S}=0 \\
\left.\mu_{2} \frac{\partial \varphi}{\partial n}\right|_{x \in S_{1}}=\left.\mu_{1} \vec{H}^{(1)} \vec{n}\right|_{x \in S_{1}} \tag{3}
\end{gather*}
$$

and problem (1)-(2) can be written as

$$
\begin{gather*}
\frac{1}{\sigma} \operatorname{rotrot} \vec{H}^{(1)}(x)=\vec{g}(x), \operatorname{div} \vec{H}^{(1)}(x)=0 \\
\vec{H}^{(2)}(x)=\nabla \varphi(x) \\
\nabla^{2} \varphi(x)=0, x \in \Omega_{2},\left.\quad \frac{\partial \varphi}{\partial n}\right|_{x \in S}=0 \tag{4}\\
\mu_{2} \frac{\partial \varphi}{\partial n}-\left.\mu_{1} \vec{H}^{(1)} \vec{n}\right|_{x \in S_{1}}=0 \\
\vec{H}_{\tau}^{(1)}=\nabla_{\tau} \varphi(x), x \in S_{1}
\end{gather*}
$$

where $\vec{g}(x)=\frac{1}{\sigma} \operatorname{rot} \vec{j}(x)$.
Hence, $\vec{H}^{2}(x)$ is completely determined by $\left.\vec{H}^{1} \cdot \vec{n}\right|_{x \in S_{1}}$. Conditions on the surface S_{1} for the vector \vec{H} can be briefly written as $\vec{H}_{\tau}(x)=B(\vec{H} \cdot \vec{n})$, where $B-$ nonlocal linear operator. We use annotation of functional spaces and norms accepting in $[4,5]$.
Theorem 1. Suppose that $\vec{g}(x) \in L_{p}\left(\Omega_{1}\right)$ and the conditions

$$
\begin{gather*}
\nabla \cdot \vec{g}=0, \nabla \cdot \vec{H}(x)=0, x \in \Omega_{1} \tag{5}\\
\vec{H}_{\tau}^{(1)}=B\left(\vec{H}^{(1)} \cdot \vec{n}\right)
\end{gather*}
$$

hold. Then, problem (1)-(2) has a unique solution $\vec{H}^{(1)} \in W_{p}^{2}\left(\Omega_{1}\right)$ and it satisfies

$$
\begin{equation*}
\left\|\vec{H}^{(1)}\right\|_{w_{p}^{2}\left(\Omega_{1}\right)} \leq c\|\vec{g}\|_{L_{p\left(\Omega_{1}\right)}} \tag{6}
\end{equation*}
$$

Recall that $W_{p}^{r}\left(\Omega_{1}\right), r=[r]+\lambda, 0<\lambda<1$ is the space with the norm

$$
\|v\|_{w_{p}^{r}\left(\Omega_{1}\right)} \leq\left(\sum_{0 \leq j \leq[r]}\left\|D^{j} v\right\|_{L_{p}\left(\Omega_{1}\right)}^{p}+\sum_{|j|=[r]} \int_{\Omega_{1}} \int_{\Omega_{1}}\left|D^{j} v(x)-D^{j} v(y)\right|^{p} \frac{d x d y}{|x-y|^{3}+p \lambda}\right)^{1 / p}
$$

It is easy to check that (6) implies the same estimate for $\vec{H}^{2}(x)$. Indeed, the solution of problem (3) satisfies

$$
\begin{equation*}
\|\nabla \varphi\|_{w_{p}^{2}\left(\Omega_{2}\right)} \leq c\left\|\vec{H}^{(1)} \cdot \vec{n}\right\|_{w_{p}^{1-1 / p}\left(S_{1}\right)} \leq c\left\|\vec{H}^{(1)}\right\|_{w_{p}^{2}\left(\Omega_{1}\right)} \tag{7}
\end{equation*}
$$

Furthermore, since

$$
\mu_{2} \int_{\Omega_{2}} \nabla \varphi \nabla \eta d x=-\int_{S} \mu_{1} \vec{H}^{(1)} \vec{n} \eta d s=-\mu_{1} \int_{\Omega_{1}} \vec{H}^{(1)} \vec{n} \eta d s=-\mu_{1} \int_{\Omega_{1}} \vec{H}^{(1)} \nabla \eta d x
$$

for any $\eta \in W_{p}^{1}(\Omega)$, we obtain

$$
\begin{equation*}
\|\nabla \varphi\|_{L_{p}\left(\Omega_{2}\right)} \leq c\left\|\vec{H}^{(1)}\right\|_{L_{p}\left(\Omega_{1}\right)} \tag{8}
\end{equation*}
$$

From (8)

$$
\begin{equation*}
\left\|\vec{H}^{(2)}\right\|_{w_{p}^{2}\left(\Omega_{2}\right)} \leq c\left\|\vec{H}^{(1)}\right\|_{w_{p}^{2}\left(\Omega_{1}\right)} \tag{9}
\end{equation*}
$$

We also have $\vec{H}^{2}=\nabla \varphi$, where $\varphi(x)$ is the weak solution of the Neumann problem

$$
\begin{gather*}
\nabla^{2} \varphi=0, x \in \Omega_{2} \\
\left.\frac{\partial \varphi}{\partial n}\right|_{S}=0, \mu_{2} \frac{\partial \varphi}{\partial n}-\left.\mu_{1} \vec{H}^{(1)} \vec{n}\right|_{S_{1}}=0 \tag{10}
\end{gather*}
$$

i.e., the function $\varphi(x)$ satisfies the following integral identity, for all test function $\eta \in J_{2}^{1}\left(\Omega_{1}\right) \bigcap J_{2}^{1}\left(\Omega_{2}\right)$, satisfying boundary conditions (10)

$$
\begin{equation*}
\mu_{2} \int_{\Omega_{2}} \nabla \varphi \nabla \eta d x+\int_{\Omega_{1}} \mu_{1} H^{(1)} \cdot \nabla \eta d x=0 \tag{11}
\end{equation*}
$$

Solenoidal condition (for example $\nabla \vec{g}=0$) understood in the usual meaning as $\int_{\Omega_{1}} \vec{g} \cdot \nabla \eta d x=0$ for any smooth η vanishing on S_{1}.

Condition (5) means for $p>3 / 2$ as equality trace function $\vec{H}(x)$ and on $S: \vec{H}_{\tau}^{1}=\nabla_{\tau} \varphi=\vec{H}_{\tau}^{2} \in W_{p}^{2-3 / p}\left(S_{1}\right)$. At $p<3 / 2$ it makes no sense, and if $p=3 / 2$ understood as an integral limitations

$$
\int_{\Omega_{2}}\left(\vec{k}-\vec{H}^{(2)}-\vec{n} \cdot \vec{n}^{*}\left(\vec{k}-\vec{H}^{(2)}\right) \rho^{-1}(x)\right) d x
$$

where $\rho(x)$ is a smooth function, equal $\operatorname{dist}\left(x, S_{1}\right)$ around S_{1}, \vec{n}^{*} is a smooth extension of the normal \vec{n} inside Ω_{2}, $\vec{k} \in W_{3 / 2}^{2 / 3}\left(\Omega_{2}\right)$ is continuation of the vector field $\vec{H}^{1} \in W_{3 / 2}^{2 / 3}\left(\Omega_{1}\right)$ with preservation of class.

Remark 1. For applications to the magneto hydrodynamics most interesting case $p>3 / 2$.

PROBLEM (1)-(2) IN MULTIPLY CONNECTED DOMAINS Ω_{1} AND Ω

We turn to a discussion of problem (1)-(2). In the case of many areas of connectedness convenient consider it in the form

$$
\begin{gather*}
\operatorname{rot} \vec{E}=0, \operatorname{div} \vec{H}(x)=0, x \in \Omega_{1} \cup \Omega_{2}, \\
\operatorname{rot} \vec{H}=\sigma \vec{E}+\vec{j}(x), x \in \Omega_{1}, \\
\operatorname{rot} \vec{H}(x)=0, \operatorname{div} \vec{E}=0, x \in \Omega_{2}, \tag{12}\\
{[\mu \vec{H} \cdot \vec{n}]=0,\left[\vec{H}_{\tau}\right]=0, \quad\left[\vec{E}_{\tau}\right]=0, x \in S_{1},} \\
\vec{H} \cdot \vec{n}=0, \vec{E}_{\tau}=0, x \in S
\end{gather*}
$$

where $\vec{j}(x)$ is given and \vec{E} is additional unknown vector field.
It is clear that, \vec{E} easily eliminated from (12) by (1)-(2) with $\vec{g}(x)=\sigma^{-1} \operatorname{rot} \vec{j}$. Thus, $\vec{H}^{1}(x)$ satisfies

$$
\begin{gather*}
\sigma^{-1} \operatorname{rotrot} \vec{H}^{(1)}=\sigma^{-1} \operatorname{rot} \vec{j}(x), \operatorname{div} \vec{H}^{(1)}=0, x \in \Omega_{1}, \tag{13}\\
\mu_{1} \vec{H}^{(1)} \vec{n}=\mu_{2} \frac{\partial \varphi}{\partial n}, \vec{H}_{\tau}^{(1)}=\nabla_{\tau} \varphi+\vec{u}_{\tau}(x), x \in S_{1}, \vec{H}^{(1)}(x)=0 \tag{14}
\end{gather*}
$$

where function φ, as above, a solution of (3). In addition, it is easy to check that $\vec{H}(x)$ satisfies the integral identity

$$
\begin{equation*}
\int_{\Omega_{1}} \operatorname{rot} \vec{H} \cdot \operatorname{rot} \psi d x=\int_{\Omega_{1}} \vec{j}(x) \operatorname{rot} \vec{\psi}(x) d x \tag{15}
\end{equation*}
$$

where $\vec{\psi}$ is any vector field of the $\operatorname{rot} \vec{\psi} \in W_{2}^{1}\left(\Omega_{1}\right) \bigcap W_{2}^{1}\left(\Omega_{2}\right), \operatorname{rot} \vec{\psi}=0$ in Ω_{2} and continuous tangential component on S_{1}. Let \vec{u}_{m}^{*} be solenoidal smooth extension \vec{u}_{m} in the area Ω_{1}. In (15) putting $\vec{\psi}=\vec{u}_{m}^{*}$, we get

$$
-\int_{\Omega_{1}} \operatorname{rotrot} \vec{H}^{(1)} \cdot \vec{u}_{m}^{*} d x+\int_{\Omega_{1}} \operatorname{rot} \vec{j}(x) \cdot \vec{u}_{m}^{*} d x=\int_{S_{1}}\left(\operatorname{rot} \vec{H}^{(1)}-\vec{j}\right)\left(\vec{n} \times \vec{u}_{m}\right) d S
$$

that by (13) and $\vec{H}^{2}=\nabla \varphi+\vec{u}(x), \vec{u}(x)=\sum_{j=1}^{h+h_{1}} K_{j} \cdot \vec{u}_{j}(x)$ is reduced to

$$
\begin{equation*}
\mu_{2} \sum_{j=1}^{h+h_{1}} C_{m j} k_{j}^{\prime}=-\int_{S_{1}}\left(\sigma^{-1} \operatorname{rot} \vec{H}^{(1)}-\sigma^{-1} \vec{j}\right)\left(\vec{n} \times \vec{u}_{m}\right) d S \tag{16}
\end{equation*}
$$

where h and h_{1} are the first Betti numbers of Ω and Ω_{1}.
We show that \vec{H} is reduced to the evaluation $\vec{H}^{1}(x)$, satisfying (16) and

$$
\sum_{j=1}^{h+h_{1}} k_{j} C_{m i}=\int_{\Omega_{2}} \vec{H}^{2}(x) \cdot \vec{u}_{m}(x) d x
$$

where $C_{m j}=\int_{\Omega_{2}} u_{m}(x) \vec{u}_{j}(x) d x$ are elements of a positive definite matrix.
Problem (13), (14) differs from (4) only in the presence of heterogeneity in the boundary condition. In the same way as above, we can prove

$$
\begin{aligned}
\left\|\vec{H}^{(1)}\right\|_{W_{p}^{2}(\Omega)} & \leq c\left[\|\operatorname{rot} \vec{j}(x)\|_{L_{p}\left(\Omega_{1}\right)}+\|\vec{u}\|_{W_{p}^{2-1 / p}\left(S_{1}\right)}+\left\|\vec{H}^{(1)}\right\|_{L_{p}\left(\Omega_{1}\right)}\right] \\
& \leq c\left(\|\operatorname{rot} \vec{j}\|_{L_{p}\left(\Omega_{1}\right)}+\left\|\vec{H}^{(1)}\right\|_{L_{p}\left(\Omega_{1}\right)}\right) .
\end{aligned}
$$

Furthermore, we obtain (9) for $\varphi(x)$ the following inequality

$$
\|\nabla \varphi\|_{W_{p}^{2}\left(\Omega_{1}\right)} \leq c\left\|\vec{H}^{(1)}\right\|_{W_{p}^{2}\left(\Omega_{1}\right)}
$$

and hence

$$
\left\|\vec{H}^{(2)}\right\|_{W_{p}^{2}\left(\Omega_{1}\right)} \leq c\left\|\mid \vec{H}^{(1)}\right\|_{W_{p}^{2}\left(\Omega_{1}\right)} .
$$

Next, we use the interpolation inequality [4]

$$
\left\|\operatorname{rot} \vec{H}^{(1)}\right\|_{L_{p}\left(S_{1}\right)} \leq \varepsilon\left\|D^{2} \vec{H}^{(1)}\right\|_{L_{p}\left(\Omega_{1}\right)}+c(\varepsilon)\left\|\vec{H}^{(1)}\right\|_{L_{p}}
$$

Combining these inequalities, we obtain the estimate

$$
\begin{equation*}
\sum_{i=1}^{2}\left\|\vec{H}^{(i)}\right\|_{W_{p}^{2}\left(\Omega_{i}\right)} \leq c\left(\Omega_{i}\right)\left(\|\operatorname{rot} \vec{j}\|_{L_{p}\left(\Omega_{1}\right)}+\|\vec{j}(x)\|_{L_{p}\left(\Omega_{1}\right)}\right) \tag{17}
\end{equation*}
$$

Using (17) from system (1), we get the estimate

$$
\begin{equation*}
\sum_{i=1}^{2}\left\|\vec{E}^{(i)}(x)\right\|_{W_{p}\left(\Omega_{i}\right)} \leq c\left[\|\operatorname{rot} \vec{H}\|_{W_{p}^{1}\left(\Omega_{1}\right)}+\|\vec{j}(x)\|_{W_{p}^{1}\left(\Omega_{1}\right)}\right] \leq c\left(\sum_{i=1}^{2}\left\|\vec{H}^{(i)}\right\|_{W_{p}^{1}\left(\Omega_{1}\right)}\right) \tag{18}
\end{equation*}
$$

for the vector field $\vec{E}(x)$. Thus, we have proved the following theorem.
Theorem 2. If in (12) vectors $\vec{j}(x), \operatorname{rot} \vec{j}(x) \in L_{p}\left(\Omega_{1}\right)$, then the electric and magnetic fields $\vec{E}(x) \in W_{p}^{1}\left(\Omega_{i}\right)$ and $\vec{H}(x) \in W_{p}^{2}\left(\Omega_{i}\right), i=1,2$, and the estimates (17) and (18) hold.

ACKNOWLEDGMENTS

This work is partially supported by the Science Committee of the Ministry of Education and Science of the Republic of Kazakhstan under the grant number 0113RK00943.

REFERENCES

1. V. A. Solonnikov, Trudy Mat. Inst. Steklov 59, 174-187 (1960).
2. O. A. Ladyzhenskaya, and V. A. Solonnikov, Zap. Nauchn. Sem. LOMI 38, 46-93 (1973).
3. G. Trohmer, Nonlinear Analysis 52, 1249-1273 (2003).
4. Sh. Sakhaev, and V. A. Solonnikov, Zap. Nauchn. Sem. POMI 397, 126-149 (2011).
5. Sh. Sakhaev, and V. A. Solonnikov, Algebra i Analiz 26, 172-197 (2014).
