УДК 662.74:552

КИНЕТИЧЕСКАЯ МОДЕЛЬ ГИДРОГЕНИЗАЦИИ УГЛЯ КАРАЖИРСКОГО МЕСТОРОЖДЕНИЯ

© 2014 г. А. М. Гюльмалиев*, Ж. К. Каирбеков***, А. С. Малолетнев**, Ж. К. Мылтыкбаева***

* Федеральное государственное бюджетное учреждение Институт нефтехимического синтеза им. А.В. Топчиева РАН, Москва E-mail: Gyulmaliev@ips.ac.ru

** Горный университет НИТУ МИСиС, Москва
E-mail: Anatoly-Maloletnev@ rambler.ru

*** Казахский национальный университет им. аль-Фараби, Алматы
E-mail: niinhtm@ mail.ru
Поступила в редакцию 24.01.2014 г.

Исследованы кинетические характеристики получения жидких продуктов гидрогенизацией угля Каражирского месторождения (Республика Казахстан). Рассмотрены две схемы кинетической модели, описывающие нелинейную (параллельно-последовательные реакции) и линейную (последовательные реакции) схемы. В рамках каждой схемы получены аналитические уравнения, описывающие выходы фракций с температурой кипения до 200, 200—350 и выше 350°С, а также газа и твердого остатка в зависимости от времени, и выполнены соответствующие расчеты. Проведен сравнительный анализ полученных результатов по двум кинетическим схемам.

DOI: 10.7868/S0023117714050053

Уголь — один из источников получения моторных топлив, химических продуктов и сырья для органического синтеза. Гидрогенизация наиболее перспективный и эффективный метод переработки угля в жидкие продукты. В настоящее время во многих странах проводятся теоретические и экспериментальные научно-исследовательские работы, направленные на совершенствование и улучшение показателей отдельных стадий разрабатываемых процессов гидрогенизационной переработки угля и продуктов ожижения с целью повышения эффективности метода. Совершенствование технологии в направлении получения химических продуктов и сырья для органического синтеза определяет проведение дальнейших экспериментальных и теоретических исследований, связанных с изучением химических превращений органической массы углей (ОМУ) в различные классы соединений; термодинамическим и кинетическим моделированием процесса гидрогенизации [1–3].

Однако в литературе при рассмотрении кинетики процесса гидрогенизации угля приведенные кинетические схемы часто различаются по структуре, что затрудняет анализ и обобщение полученных результатов. Это связано, во-первых, с возникающими трудностями в практическом применении принятых конкретных кинетических схем и, во-вторых, с недостаточностью имеющегося в литературе сравнительного анализа

результатов, полученных в рамках различных кинетических схем. Эффективность той или иной кинетической схемы в конечном счете определяется тем, насколько она корректно описывает экспериментальные данные.

Следует отметить, что в рамках формальной кинетики константы скорости, которые входят в кинетические уравнения – эффективные параметры для описания процесса в рамках принятой кинетической схемы. Они при фиксированных значениях технологических параметров косвенно учитывают как свойства гидрируемого в смеси с пастообразователем угля, так и применяемого катализатора. Следовательно, эффективные константы скорости непереносимы из одной системы в другую, если при этом меняется одна из этих компонент. Тем не менее формальная кинетика позволяет контролировать материальный баланс реакционной системы по времени и характеризовать компонентный состав гидрогенизата, экстраполировать его на экспериментально не исследованные области.

В настоящей статье в рамках формальной кинетики приведен сравнительный анализ результатов гидрогенизации угля Каражирского месторождения (Республика Казахстан) по двум кинетическим схемам, описывающих нелинейную (параллельно-последовательные реакции) и линейную (последовательные реакции) схемы.

В качестве сырья для гидрогенизации применяли уголь со следующими характеристиками (мас.%): W^a воздушно-сухого угля 8.0; A^a 7.2; V^{daf} 45.4; C^{daf} 69.7; H^{daf} 5.7; S^d_t 1.16; N^{daf} 1.41; O^{daf} 22.03.

Уголь характеризуется в достаточной степени однородным петрографическим составом (содержание микрокомпонентов группы витринита составляет 84%, группы инертинита — 4.8%) и относится к углям средней стадии метаморфизма (отражательная способность $R_r = 0.53\%$).

Незначительное содержание золы (7.2%) и достаточно высокое содержание водорода (5.7%) позволяют рассматривать уголь Каражирского месторождения как благоприятное сырье для гидрогенизационной переработки в жидкое топливо под давлением водорода не выше 10 МПа. В химическом составе минеральной части угля установлено содержание (мас. %): SiO_2 59.0; Al_2O_3 24.54; Fe₂O₃ 5.04; CaO 2.24; MgO 2.01; TiO₂ 1.35; K₂O 1.57; Na₂O 1.53; SO₃ 1.83, а также 0.39% редкоземельных элементов [4]. Отметим пониженное содержание оксидов кальция, что должно положительно сказываться на степени ожижения угля (если проводить процесс в присутствии псевдогомогенного Мо-содержащего катализатора), так как в их присутствии наблюдается дезактивация катализатора и для достижения положительных результатов потребуется применение его повышенных количеств.

Гидрирование угля осуществляли в условиях проточной лабораторной установки высокого давления с пустотелым реактором объемом $0.25 \,\mathrm{дm}^3$ при 4 МПа, 420° С, объемной скорости подачи сырья $1.0 \,\mathrm{y}^{-1}$ в присутствии термостойкого природного цеолита месторождения Семей-тау (Казахстан), физико-химические характеристики которого приведены в табл. 1. При приготовлении угленефтяной пасты в качестве пастообразователя применяли высококипящие фракции с т.кип. выше 500°C, выделенные из нефти месторождения Каражанбас (см. табл. 2), который смешивали с углем в соотношении 1:1.3. В экспериментах применяли электролитический водород (ТУ 6-20-00209585-26-97) чистотой 99.98 об. % (остальное – азот с примесью кислорода и аргона). Материальный баланс гидрогенизации угля Каражирского месторождения приведен в табл. 3.

Из табл.1 видно, что цеолит месторождения Семей-тау относится к типу минералов — клиноптилоллит с соотношением SiO_2/Al_2O_3 , равным 6.84, и, как показали проведенные исследования [4, 5], может эффективно применяться в качестве катализатора для указанных целей. С помощью спектрального метода анализа было определено, что в цеолите, обработанном при 400° C, присутствует значительное количество элементов

Таблица 1. Физико-химические характеристики цеолита

Tuotinga 1. 1 homeo Animin recente	ларактернетнин десянта		
Показатель	Значение показателя		
Внешний вид	Красно-коричневого цвета		
Массовая доля цеолита, %	50-84		
Тип минерала — цеолита	Клиноптилолит		
Содержание органической массы, $\%$	Нет		
Химический состав, %:			
SiO_2	72.80		
Al_2O_3	10.63		
TiO_2	0.28		
Fe_2O_3	1.50		
FeO	< 0.02		
MnO	< 0.03		
MgO	0.35		
CaO	1.61		
Na ₂ O	1.18		
K_2O	5.04		
SO_3	< 0.25		
Соотношение SiO_2/AI_2O_3	6.84		
Катионнообменная емкость, экв/г			
Ca	0.55-0.63		
Mg	0.024-0.070		
K	0.0035-0.0065		
Na	0.025-0.072		
Общая емкость, экв/г	0.75-1.25		
Содержание отравляющих элементов, %:			
Pb	< 0.001		
Cd	_		
As	_		
Hg	_		
Технические характеристики:			
удельный вес, Γ/cm^3	2.34-2.44		
объемная масса, г/см ³	2.18-2.28		
пористость, $\Gamma/\text{см}^3$	5–9		
дробимость, %	4.4-7.9		
термостабильность, °С	400		

 $(Mo = 6 \cdot 10^{-4}, Ni = 2 \cdot 10^{-3}, Ti = 1.8 \cdot 10^{-1}, Zn = 50 \cdot 10^{-3} \text{ г/т}),$ обладающих каталитическими свойствами при гидрогенизации, что способствует повышению каталитической активности природного цеолита в процессе гидрогенизации угля.

В ИК-спектрах (рис. 1) цеолита наблюдаются полосы поглощения в области длин волн 3691—

Таблица 2. Характеристика нефтяного пастообразователя

Показатель	Значение показателя
Плотность, $\kappa \Gamma/m^3$	943.1
Вязкость кинематическая при 30°C, Сст	539
Молекулярная масса, а.е.м.	384
Содержание, мас. %:	
парафинов	1.5
асфальтенов	4.9
смол	24.2
Элементный состав, мас. %:	
C	82.5
Н	11.8
N	0.9
S	2.6
О (по разности)	2.2
Коксуемость, %	7.2
Содержание ванадия, г/т	320
Содержание никеля, г/т	65–70

3264 см $^{-1}$, соответствующие ОН-группам, в области 1645 см $^{-1}$, соответствующие ионам гидроксония [H_3 O] $^+$, колебания в области 1219—1043 см $^{-1}$, соответствующие комплексным соединениям Al, Si и Ti. В обработанном при 400 $^\circ$ C цеолите в области длины волны 1423 см $^{-1}$ были обнаружены не наблюдающиеся при других температурах ОНгруппы, связанные с апротонными центрами Льюиса. Эти изменения можно объяснить перестройкой каркаса цеолита вследствие протекания реакции дегидратации. Наличие ионов гидроксо-

ния в структуре указывает на гидрирующую способность данного цеолита.

Отметим, что цеолитные катализаторы занимают особое место среди катализаторов нефтепереработки, нефтехимии и промышленного органического синтеза. В лаборатории катализа ИОХ им. Н.Д. Зелинского АН СССР при применении в качестве катализаторов редких и рассеянных элементов было впервые обнаружено, что в реакции окислительно-восстановительного типа высокую активность проявляют не только цеолиты, содержащие ионы или атомы переходных элементов, но и щелочные и щелочно-земельные катионные формы цеолитов [6]. Была установлена высокая активность цеолитов, не содержащих переходные элементы в реакциях гидрирования олефинов и ароматических углеводородов, кетонов и альдегидов, фурановых соединений [7]. В настоящее время в научно-исследовательском институте Новых химических технологий и материалов (НИИНХТ и М) при Казахском национальном университете им. Аль-Фараби (КазНУ) разработана комплексная технология гидрогенизационной переработки углей, в которой с целью улучшения экономических показателей процесса предусмотрено применение недефицитных относительно дешевых одноразовых катализаторов на основе природных рудных материалов и отходов металлургических производств. Исследовано влияние природы и концентрации катионов, а также состава и структуры цеолита на гидрирующую активность и селективность цеолитного катализатора [4, 8]. Рассмотрим две кинетические схемы, описывающие нелинейную (параллельнопоследовательные реакции, рис. (2, a) и линейную (последовательные реакции, рис. $2, \delta$) схемы. Для нелинейной схемы система дифференциальных уравнений, описывающих зависимость концен-

Таблица 3. Материальный баланс (мас. %) гидрогенизации угля (4 МПа, 420° C, объемная скорость подачи сырья $1.0~{\rm yr}^{-1}$, цеолитный катализатор, уголь : пастообразователь = 1:1.3, проточная установка)

Взято		Полицомо	Время реакции, мин		
ОТКЕ		Получено	10	15	20
1. Угольная паста,	100.0	1. Гидрогенизат,	60.3	71.6	79.5
в т.ч.:		в т.ч.:			
уголь	40.6	жидкие продукты с т. кип., °С:			
пастообразователь	55.1	до 200	11.1	19.1	28.3
катализатор	4.3	200-350	12.7	18.2	21.5
		выше 350 + потери	36.5	34.3	29.7
2. Водород на реакции	2.3	2. Твердые продукты	29.4	15.8	7.6
		3. Газ (C ₁ -C ₄ , H ₂ S, CO + CO ₂)	9.1	9.8	10.3
		4. Вода + потери	3.5	5.1	4.9
Итого	102.3	Итого	102.3	102.3	102.3

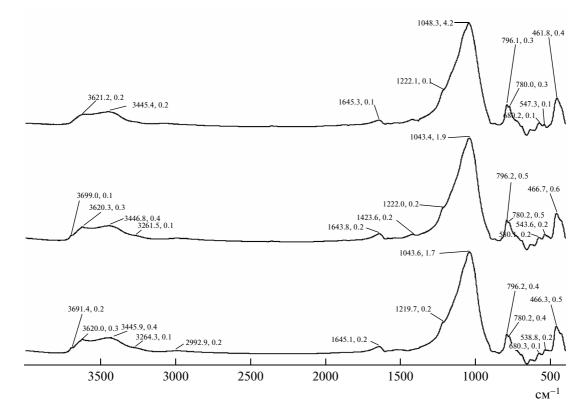


Рис. 1. ИК-спектр природного цеолита месторождения Семей-тау.

траций компонентов от времени, согласно рис. 2, а, имеет следующий вид:

$$\begin{cases} \frac{\partial G_1(t)}{\partial t} = k_3 G(t), \\ \frac{\partial G_2(t)}{\partial t} = k_1 G(t) + k_6 G_3(t) + k_5 G_4(t), \\ \frac{\partial G_3(t)}{\partial t} = k_2 G(t) - k_6 G_3(t) + k_7 G_4(t), \\ \frac{\partial G_4(t)}{\partial t} = k_4 G(t) - k_5 G_4(t) - k_7 G_4(t), \\ \frac{\partial G(t)}{\partial t} = -(k_1 + k_2 + k_3 + k_4) G(t). \end{cases}$$
(1)

Для удобства в практическом применении приведем аналитическое решение системы дифференциальных уравнений (1). Обозначив

$$k_{\Sigma} = k_1 + k_2 + k_3 + k_4 + k_5$$

и приняв начальные условия (t=0): G(0)=100, $G_1(0)=0$, $G_2(0)=0$, $G_3(0)=0$, $G_4(0)=0$ из (1), имеем

$$G(t) = 100 \exp(-k_{\Sigma}t),$$

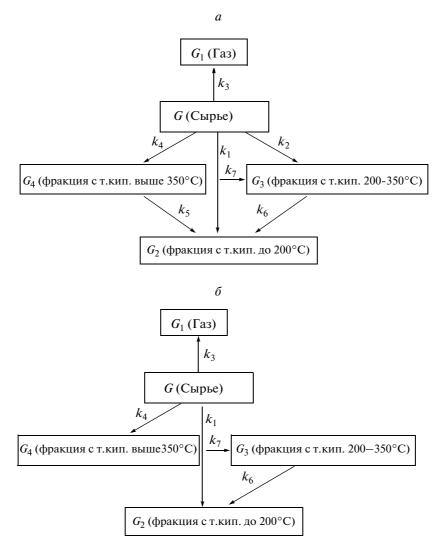
$$G_1(t) = \frac{100 \cdot k_3}{k_{\Sigma}} [\exp(-k_{\Sigma}t) + 1],$$

$$G_{3}(t) = \frac{100}{(k_{\Sigma} - k_{5} - k_{7})} \left\{ \frac{1}{k_{6} - k_{\Sigma}} [-k_{7}k_{4} + k_{1}k_{2} + k_{2}^{2} + k_{2}k_{3} + k_{2}k_{4} - k_{2}k_{5} - k_{2}k_{7}] \exp[(k_{6} - k_{\Sigma})t] \right\} +$$

$$+ \frac{1}{(k_{\Sigma} - k_{5} - k_{7})(k_{6} - k_{5} - k_{7})} [k_{7}k_{4}(k_{\Sigma} + k_{5} + k_{7})] +$$

$$+ \frac{[k_{2}(-k_{6} + k_{5} + k_{7}) + k_{7}k_{4}] \exp(-k_{6}t)}{[k_{1}(k_{7} - k_{6} + k_{5}) + (k_{2} + k_{3} + k_{4})(k_{7} - k_{6})]},$$

$$G_{4}(t) =$$


$$= \frac{100 \cdot k_{4}}{(k_{\Sigma} - k_{5} - k_{7})} \{ \exp([-(k_{5} + k_{7})]t - \exp(-k_{\Sigma}t)) \},$$

$$G_{2}(t) = 100 - [G(t) + G_{1}(t) + G_{3}(t) + G_{4}(t)].$$

Константы скоростей k_i определяли путем минимизации функционала ошибок, разницы между экспериментальными G_{9i} и расчетными G_{pi} данными по выходу фракций гидрогенизата при времени t=10, 15 и 20 мин:

$$F = \sum_{i}^{n} (G_{9i} - G_{pi})^{2} \longrightarrow \min.$$
 (2)

2 ХИМИЯ ТВЕРДОГО ТОПЛИВА № 5 2014

Рис. 2. Нелинейная (a) и линейная (δ) кинетические модели гидрогенизации угля.

Для линейной модели система дифференциальных уравнений получается из системы (1) при значениях констант скоростей $k_1 = k_2 = k_5 = 0$ (см. рис. $2, \delta$):

$$\begin{cases} \frac{\partial G_1(t)}{\partial t} = k_3 G(t) \\ \frac{\partial G_2(t)}{\partial t} = k_6 G_3(t) \\ \frac{\partial G_3(t)}{\partial t} = -k_6 G_3(t) + k_7 G_4(t) \\ \frac{\partial G_4(t)}{\partial t} = k_4 G(t) - k_7 G_4(t) \\ \frac{\partial G(t)}{\partial t} = -(k_3 + k_4) G(t) \end{cases}$$

$$(3)$$

Приняв начальные условия (t=0): G(0)=100, $G_1(0)=0$, $G_2(0)=0$, $G_3(0)=0$, $G_4(0)=0$ из системы (2), имеем

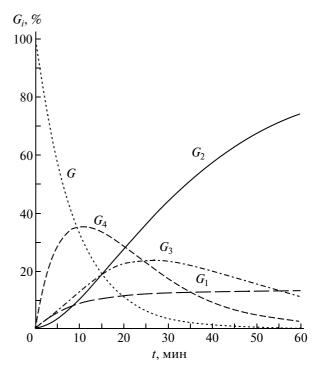
$$K_{\Sigma} = k_3 + k_4,$$

$$G(t) = 100 \exp(-k_{\Sigma}t),$$

$$G_1(t) = -100k_3 \{ \exp(-k_{\Sigma}t) + 1 \} \frac{1}{k_{\Sigma}},$$

$$G_3(t) = -\frac{1}{k_{\Sigma} - k_7} [k_7] \Big(100k_4 \frac{\exp((k_6 - k_{\Sigma})t)}{-k_{\Sigma} + k_6} - (100k_4k_3 + 100k_4^2 - 100k_4k_7) \frac{\exp(-(k_7 - k_6)t)}{(k_{\Sigma} - k_7)(-k_7 + k_6)} - (100k_7 \frac{k_4}{(k_6k_{\Sigma} - k_6^2 - k_7k_{\Sigma} + k_6k_7)} \Big) \exp(-k_6t),$$

$$G_4(t) = 100k_4 \frac{[\exp(-k_7t) - \exp(-k_{\Sigma}t)]}{k_{\Sigma} - k_7},$$

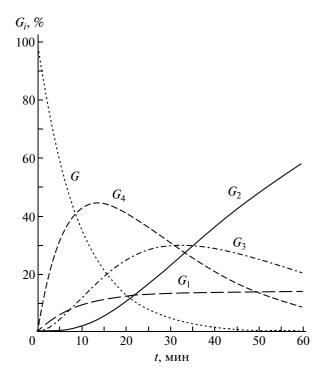

$$G_2(t) = 100 - [G(t) + G_1(t) + G_3(t) + G_4(t)].$$

ХИМИЯ ТВЕРДОГО ТОПЛИВА № 5 2014

Таблица 4. Значения констант скоростей по нелинейной и линейной схемам

Константа	Схема		
скорости, мин ⁻¹	нелинейная	линейная	
k_1	0.001753	0.0	
k_2	0.00590	0.0	
k_3	0.01400	0.01400	
k_4	0.08920	0.08920	
k_5	0.02700	0.0	
k_6	0.04500	0.04500	
k_7	0.04900	0.04900	

Значения констант скоростей по нелинейной и линейной схемам приведены в табл. 4, а результаты расчета зависимости выхода фракций при t = 10, 15 и 20 мин по нелинейной схеме сопоставлены с соответствующими экспериментальными данными табл. 5 и рис. 2, а, откуда следует их удовлетворительное соответствие. Согласно результатам расчета, например, при времени процесса t = 15 мин выходы жидких продуктов по нелинейной и линейной схеме соответственно равны 70.7 и 68.0% (эксперимент -71.6%). С увеличением времени реакции данные, полученные по двум схемам, в достаточной степени хорошо согласуются между собой. То же самое наблюдается и для выхода газа: при t = 15 мин 10.2 и 11.5% (эксперимент 9.8%). Однако для остальных фракций, особенно для фракции G_2 результаты существенно


Рис. 3. Зависимости выхода продуктов гидрогенизации угольной пасты от времени по нелинейной схеме.

различаются, что хорошо видно из сравнения рис. 3 и 4. Сопоставляя данные рис. 3 и 4, видим, что по двум схемам качественная картина изменения выхода фракций от времени хорошо согласуется между собой. Выходы фракций G_3 и G_4 проходят через максимум 30-35 и 12-15 мин соот-

Таблица 5. Сопоставление экспериментальных и расчетных данных по составу продуктов гидрогенизации

Выход продуктов	Время реакции, мин					
	10		15		20	
	эксперимент	расчет	эксперимент	расчет	эксперимент	расчет
$G(t)^*$	29.4 + 2.2	33.0	15.8 + 2.5	19.0	7.6 + 2.5	10.9
$G_1(t)$	9.1	8.5	9.8	10.2	10.3	11.2
$G_2(t)$	11.1	10.4	19.1	18.8	28.3	27.8
$G_3(t)$	12.7	12.9	18.2	18.6	21.5	22.0
$G_4(t)$	36.5	35.2	34.3	33.3	29.7	28.1

^{*} К экспериментальным значениям твердого остатка добавлена поправка на потери.

Рис. 4. Зависимости выхода продуктов гидрогенизации угольной пасты от времени по линейной схеме.

ветственно. Отметим, что и по линейной схеме можно получить удовлетворительные результаты, если оптимизировать ее параметры по уравнению (3).

На основании полученных экспериментальных и расчетных данных по гидрогенизации угля Каражирского месторождения можно сделать следующие выводы:

природные цеолиты можно считать эффективными катализаторами гидрогенизации угля, учитывая, что в течении 15 мин выход жидких про-

дуктов составляет около 72%, из них с т.кип. до 200° C составляет 19.1, до $200-350^{\circ}$ C 18.2 и выше 350° C 34.3%:

в рамках формальной кинетики константы скоростей — параметры только той системы, для которой они определены;

конкретная кинетическая схема для конкретного процесса гидрогенизации будет иметь свой набор кинетических параметров;

полученные аналитические уравнения по нелинейной и линейной схемам могут быть применены при моделировании углехимических процессов.

СПИСОК ЛИТЕРАТУРЫ

- 1. *Гюльмалиев А.М., Головин Г.С., Гладун Т.Г.* Теоретические основы химии угля. М.: Изд-во МГГУ. 2003. 556 с.
- 2. Gyulmaliev A.M., Popova V.P., Romantsova I.I., Krich-ko A.A. // Fuel. 1992. V. 71. № 11. P. 1329.
- 3. *Малолетнев А.С., Кричко А.А., Гаркуша А.А.* Получение синтетического жидкого топлива гидрогенизацией углей. М.: Недра, 1992. 129 с.
- Каирбеков Ж.К., Аубакиров Е.А., Емельянова В.С. Мылтыкбаева Ж.К. // Вест. Каз. нац. ун-та им. Аль-Фараби. 2012. № 4(68). С. 3.
- 5. *Потехин В.М.*, *Потехин В.В.* Основы теории химических процессов технологии органических веществ и нефтепереработки. СПб: Химиздат, 2005. 910 с.
- 6. *Харатишвили Н.Г.* Исследование каталитических свойств катионных форм цеолитов в гидрировании диеновых и ацетиленовых углеводородов: Дисс. ... канд. хим. наук. М.: ИОХ им. Н.Д. Зелинского АН СССР, 1984. 143 с.
- 7. *Каирбеков Ж.К., Сманова Б.С., Мылтыкбаева Ж.К.* Rusnauka.com> 15_APSN_2010/Chimia/67277.doc.htm.
- 8. *Каирбеков Ж.К., Емельянова В.С., Жубанов К. и др.,* Теория и практика переработки угля. Алматы.: Изд-во Білім, 2013. 496 с.