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Abstract. In the present paper, we study the long-term evolution of the
translational-rotational motion of a non-stationary axisymmetric body
with constant dynamic shape in the central gravitational field. Equa-
tions of motion of the body are obtained in terms of the canonical oscu-
lating Delaunay-Andoyer elements. Averaging these equations over the
“fast” variables, we derive the differential equations determining the sec-
ular perturbations of the translational-rotational motion and solve these
equations numerically for some given laws of the masses and principal
moments of inertia variation. All the relevant symbolic and numerical
computations and visualization of the results are performed with the aid
of the computer algebra system Wolfram Mathematica.
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1 Introduction

The classical two-body problem describes the motion of two points of constant
masses interacting according to Newton’s law of gravitation, and its general
solution is well known. Since this solution describes translational motion of two
finite bodies with spherically symmetric density distribution, as well, such a
model is usually used as the first approximation in describing the orbital motion
of real celestial bodies, for example, a planet around the Sun or a satellite around
a planet (see [1, 2]). If at least one of the bodies is not spherically symmetric,
the problem becomes much more complicated because a mutual gravitational
interaction depends on the geometrical shape and mass distribution of the bodies.
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Besides, translational and rotational motions depend on each other, and the
corresponding equations of motion should be integrated together (see [3–5]).

On the other hand, real celestial bodies are non-stationary, their characteris-
tics, such as mass, size, and shape may vary with time (see [6–10]). Such changes
occur especially intensively in double and multiple systems [11]. So it is quite
natural to consider the problem of many bodies of variable mass and to investi-
gate an influence of the mass variation on the dynamic evolution of the system
(see, for example, [12–17]). It should be noted that dependence of masses on
time significantly complicates the problem, and even in case of two interacting
bodies of variable mass, a general solution to the equations of motion can be
written only in some special cases (see [9, 10, 18]).

In the present paper, we consider a generalized case of the two-body problem
when the first body of variable mass m1(t) is spherically symmetric while the
second one has an axis of symmetry (axisymmetric body). The laws of the bod-
ies’ masses variation m1(t), m2(t) are assumed to be known arbitrary functions
of time. Although the mass and size of the second body change with time the
dynamic shape of the bodies is preserved and the variation of the body mass and
sizes do not result in the appearance of reactive forces and their torques (see [10]).
In spite of these simplifying assumptions, the problem is not integrable and the
perturbation theory is applied for its investigation. Note that quite tedious sym-
bolic computations should be done in order to derive the evolution equations
which are investigated then numerically. All the relevant computations are per-
formed with the computer algebra system Wolfram Mathematica (see [19]).

2 Equations of Motion

Let us consider a system of two finite-size bodies P1 and P2 attracting each
other according to Newton’s law of gravitation. The central body P1 of variable
mass m1 (t) is a sphere with a spherically symmetric mass distribution. Due to
spherical symmetry of P1 its rotational and translational degrees of freedom are
not coupled and only its mass change may affect on the motion of the system.
The second body P2 of massm2 (t) = m2(t0)ν(t) has an axisymmetric dynamical
structure and moves around the central body P1. We assume that the sizes of
each body change in a homothetic way and so its dynamic shape is preserved.
Therefore, the principal central moments of inertia A,C of the body P2 depend
on time and may be represented in the form

A(t) = A0ν(t)χ
2(t), C(t) = C0ν(t)χ

2(t), (1)

where A0 = A(t0), C0 = C(t0), t0 is an initial instant of time, and ν = ν(t),
χ = χ(t) are given functions of time satisfying the conditions ν(t0) = 1, χ(t0) = 1
and ν(t) > 0, χ(t) > 0 for t > t0. The functions m1(t) and ν(t) determine the
mass variation of the bodies and may be chosen according to the Eddington–
Jeans law, for example (see [6, 7]). Remind that the moment of inertia of a
rigid body is proportional to its mass and a square of its geometric sizes (see, for
example, [21]). As the body P2 is assumed to retain its initial dynamic structure,
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the function χ(t) in (1) determining its characteristic size variation is the same
for the two principal moments of inertia A(t) and C(t).

It is assumed also that the masses of the bodies vary isotropically at different
rates,

ṁ1

m1
̸= ṁ2

m2
, (2)

and additional reactive forces and the corresponding torques do not arise. Note
that a dot over a symbol denotes the total derivative of the corresponding func-
tion with respect to time.

Under the assumptions above, the differential equations describing the trans-
lational motion of the body P2 around P1 may be written in the form [10]

m̃ẍ =
∂U

∂x
, m̃ÿ =

∂U

∂y
, m̃z̈ =

∂U

∂z
, (3)

where x, y, z are the Cartesian coordinates of the center of mass of P2 in
the relative coordinate system O1xyz with the origin at the center of body
P1 the axes of which are parallel to the axes of the inertial frame, and m̃ =
m1m2/(m1+m2) is the reduced mass. The force function of Newton’s interaction
of the two bodies is a series in powers of the inverse distance R between the
centers of mass of the bodies accurate to the third order (see [1, 3])

U = U1 + U2, U1 =
fm1m2

R
, R =

(
x2 + y2 + z2

)1/2
, (4)

U2 = fm1
2A+ C − 3J

2R3
, (5)

where f is a gravitational constant,

J = A
(
α2 + β2

)
+ Cγ2

is the moment of inertia of the body P2 relative to the axis O1O2 connecting
the centers of mass of the two bodies, and α, β, γ are the direction cosines of
the radius-vector R = (x, y, z) relative to the axes of the body P2 fixed frame
O2xyz whose axes coincide with the principal axes.

Note that the force function (5) depends on orientation of the body P2 and so
equations (3) must be solved together with the equations describing its rotational
motion. As a general solution of such a system cannot be found and we apply
the perturbation theory to its investigation, it is expedient to rewrite equations
(3) in the form [10, 20]

R̈+ f
m1 +m2

R3
R− bR = gradRW, (6)

where the perturbing function W is given by

W = −1

2
bR2 +

m1 +m2

m1m2
Ũ , b = b(t) =

σ̈

σ
, σ =

m1(t0) +m2(t0)

m1(t) +m2(t)
. (7)
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To describe the rotational motion of the body P2 we introduce the second
Cartesian coordinate system O2XY Z with the origin located at its center of
mass whose axes are parallel to the axes of the inertial frame. Then orientation
of the body P2 relative to the O2XY Z frame can be specified in terms of the
three Euler angles ψ, θ, and φ. The projections of the angular velocity vector
onto the axes O2x, O2y, and O2z are given by (see [1, 3])

p = ψ̇ sin θ sinφ+ θ̇ cosφ, q = ψ̇ sin θ cosφ− θ̇ sinφ, r = ψ̇ cos θ + φ̇. (8)

The rotational motion of the body P2 about its center of mass is determined
by the equations [10, 20]

d

dt
(A(t)p) + (C(t)−A(t))qr =

sinφ

sin θ

[
∂U

∂ψ
− cos θ

∂U

∂φ

]
+ cosφ

∂U

∂θ
,

d

dt
(A(t)q) + (A(t)− C(t))rp =

cosφ

sin θ

[
∂U

∂ψ
− cos θ

∂U

∂φ

]
− sinφ

∂U

∂θ
,

d

dt
(C(t)r) =

∂U

∂φ
. (9)

Since equations (6), (9) are not integrable, we can apply a perturbation theory
to the investigation of the system dynamics (see, for instance, [22]). This assumes
that equations (6), (9) are reduced to two perturbed problems of which each is
integrable in the case when there are no perturbations.

3 Canonical Form of Equations of Motion

In case ofW = 0 equations of motion (6) are integrable and their general solution
may be written in terms of the Delaunay variables l, L, g,G, h,H which are
related to the analogs of the Keplerian orbital elements (see [10]). To apply the
perturbation theory it is convenient to rewrite the equations of motion (6) in
the canonical form

l̇ = −∂W
∂L

, L̇ =
∂W

∂l
, ġ = −∂W

∂G
, Ġ =

∂W

∂g
, ḣ = −∂W

∂H
, Ḣ =

∂W

∂h
, (10)

where

W =
1

σ2(t)

µ2
0

2L2
+W ∗, µ0 = f(m1(t0) +m2(t0)), (11)

W ∗ =

(
m1 +m2

m1m2
U2 −

1

2
bR2

)
. (12)

In view of the relation α2 + β2 + γ2 = 1, formulas (5) and (12) yield

W ∗ =
f(m1 +m2)(C −A)

2m2

([
1

R3

]
− 3

[
γ2

R3

])
− 1

2
b
[
R2

]
. (13)
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Differential equations (9) describing the rotational motion of the axisymmet-
ric body P2 around its own center of mass also may be written in canonical form
as

l̇′ =
∂F

∂L′ , L̇
′ = −∂F

∂l′
, ġ′ =

∂F

∂G′ , Ġ
′ = −∂F

∂g′
, ḣ′ =

∂F

∂H ′ , Ḣ
′ = −∂F

∂h′
, (14)

where (l′, L′), (g′, G′), (h′,H ′) are the three pairs of canonically conjugate vari-
ables known as the Andoyer osculating elements (see [10, 20]).

The Hamiltonian F of the rotational motion of the axisymmetric body in
(14) is given by

F = Funper + Fper, (15)

where

Funper =
1

2A

(
G′2 − L′2)+ L′2

2C
=

1

2

G′2

A
+

1

2

(
1

C
− 1

A

)
L′2, (16)

Fper = U2 −
1

2
bR2. (17)

Note that the distance R between the centers of the bodies P1 and P2 is
determined by the exact solution of the corresponding problem of two bodies of
variable masses (see [10]). Therefore, equations (11)–(13) may be written in the
form

W =
1

σ2(t)
· µ

2
0

2L2
+
f(m1 +m2)(C −A)

2m2σ3

([
1

ρ3

]
− 3

[
γ2

ρ3

])
− 1

2
bσ2

[
ρ2
]
. (18)

In a similar way we rewrite (15)–(17) in the form

F =
1

2

G′2

A
+

1

2

(
1

C
− 1

A

)
L′2 +

fm1 (C −A)

2σ3

[
1

ρ3

]
−

−3fm1 (C −A)

2σ3

[
γ2

ρ3

]
− 1

2
bσ2

[
ρ2
]

(19)

Here,

ρ =
a(1− e2)

1 + e cos ν
, (20)

γ = c13
x

R
+ c23

y

R
+ c33

z

R
, (21)

where a and e are the semi-major axis and the eccentricity of the body P2 orbit,
ν is the true anomaly, x, y, z are the Cartesian coordinates of the body P2 center
with respect to the relative coordinate system O1xyz, and c13, c23, c33 are the
direction cosines of the axis O2z of the body P2 fixed frame with respect to the
relative coordinate system O1xyz.

Using the exact solution of the two-body problem (see [10]), we obtain

x

R
= τ11 sin ν + τ12 cos ν,

y

R
= τ21 sin ν + τ22 cos ν,
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z

R
= τ31 sin ν + τ32 cos ν, (22)

where

τ11 = − cosh sin g − H

G
sinh cos g, τ12 = cosh cos g − H

G
sinh sin g,

τ21 = − sinh sin g +
H

G
cosh cos g, τ22 = sinh cos g +

H

G
cosh sin g,

τ31 = cos g

√
1− H2

G2
, τ32 = sin g

√
1− H2

G2
. (23)

Coefficients c13, c23, c33 in (21) are expressed via the Andoyer osculating elements
as

c13 = ε11 + ε12 sin g
′ + ε13 cos g

′, c23 = ε21 + ε22 sin g
′ + ε23 cos g

′,

c33 = ε31 + ε33 cos g
′. (24)

Using (20)-(24), we obtain

γ2

ρ3
=

(1 + e cos ν)
3

a3(1− e2)3
· [(ε11 + ε12 sin g

′ + ε13 cos g
′) (τ11 sin ν + τ12 cos ν)+

+ (ε21 + ε22 sin g
′ + ε23 cos g

′) (τ21 sin ν + τ22 cos ν)+

(ε31 + ε33 cos g
′) (τ31 sin ν + τ32 cos ν)]

2
, (25)

where

ε11 =
L′√G′2 −H ′2

G′2 sinh′, ε12 =

√
G′2 − L′2

G′ cosh′,

ε13 =
H ′√G′2 − L′2

G′2 sinh′, ε21 =
L′√G′2 −H ′2

G′2 cosh′,

ε22 = −
√
G′2 − L′2

G′ sinh′, ε23 =
H ′√G′2 − L′2

G′2 cosh′,

ε31 =
L′H ′

G′2 , ε33 = −
√
(G′2 −H ′2) (G′2 − L′2)

G′2 . (26)

Due to the above formulas, the analytical expressions in the square brack-
ets in (18) and (19) can be expressed in terms of Delaunay–Andoyer elements.
Therefore, the right-hand sides in equations (10) and (14) can be expressed in
terms of Delaunay–Andoyer elements, as well. These equations completely de-
termine the translational-rotational motion of the nonstationary axisymmetric
body P2.
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4 Evolution Equations

Assuming the resonances are absent in the system and averaging the right-hand
sides of (10) and (14) over the fast variables g ’ and l , we obtain equations for the
secular perturbations of the translational-rotational motion of the nonstationary
axisymmetric body in the problem under consideration. We denote the secular
parts of the perturbing functions W and F by W sec and F sec, respectively;
according to the standard Gauss scheme, we have

Wsec =
1

4π2

∫ 2π

0

∫ 2π

0

Wdldg′, Fsec =
1

4π2

∫ 2π

0

∫ 2π

0

Fdldg′. (27)

Accordingly, we can write

Wsec =
µ2
0

2σ2(t)

(
1

L2

)
sec

+
f(m1 +m2)(C −A)

2m2σ3

[
1

ρ3

]
sec

−

−3f(m1 +m2)(C −A)

2m2σ3

[
γ2

ρ3

]
sec

− 1

2
bσ2

[
ρ2
]
sec

, (28)

Fsec =
1

2A

(
G′2)

sec
+

1

2

(
1

C
− 1

A

)(
L′2)

sec
+
fm1 (C −A)

2σ3

[
1

ρ3

]
sec

−

−3fm1 (C −A)

2σ3

[
γ2

ρ3

]
sec

− 1

2
bσ2

[
ρ2
]
sec

, (29)

where [
ρ2
]
sec

=
1

4π2

∫ 2π

0

∫ 2π

0

ρ2dldg′ = a2
(
1 +

3

2
e2
)
, (30)

When we compute secular perturbations of the quantities[
1

ρ3

]
sec

=
1

4π2

∫ 2π

0

∫ 2π

0

dldg′

ρ3
, (31)

[
γ2

ρ3

]
sec

=
1

4π2

∫ 2π

0

∫ 2π

0

(
γ2

ρ3

)
dldg′, (32)

it is convenient to use the well-known relation (see [10])

dν

(1 + e cos ν)
2 =

dl

(1− e2)
3/2

. (33)

Using (33), we compute the right-hand side of (31):

1

4π2

∫ 2π

0

∫ 2π

0

dldg′

ρ3
=

1

4π2a3 (1− e2)
3/2

∫ 2π

0

∫ 2π

0

(1 + e cos ν) dνdg′ =

=
1

a3 (1− e2)
3/2

. (34)
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Using (25) and (33), we rewrite the right-hand side of (32) in the form

1

4π2

∫ 2π

0

∫ 2π

0

(
γ2

ρ3

)
dldg′ =

1

4π2

∫ 2π

0

∫ 2π

0

γ2
(1 + e cos ν)

a3 (1− e2)
3/2

dνdg′ =

=
1

4π2a3 (1− e2)
3/2

∫ 2π

0

∫ 2π

0

[(ε11 + ε12 sin g
′ + ε13 cos g

′) ×

(τ11 sin ν + τ12 cos ν) + (ε21 + ε22 sin g
′ + ε23 cos g

′) (τ21 sin ν + τ22 cos ν)+

+ (ε31 + ε33 cos g
′) (τ31 sin ν + τ32 cos ν)]

2
(1 + e cos ν) dνdg′. (35)

Upon computing the integrals in (35), we finally obtain[
γ2

ρ3

]
sec

=
I

4a3 (1− e2)
3/2

, (36)

where

I = (τ211 + τ212)(2ε
2
11 + ε212 + ε213) + (τ221 + τ222)(2ε

2
21 + ε222 + ε223)+

+(τ231 + τ232)(2ε
2
31 + ε233) + (τ11τ21 + τ12τ22) (4ε11ε21 + 2ε12ε22 + 2ε13ε23)+

+(τ11τ31 + τ12τ32)(4ε11ε31 + 2ε13ε33)+

+(τ21τ31 + τ22τ32)(4ε21ε31 + 2ε23ε33) = I (G,h,H, h′,H ′, G′, L′) . (37)

The equations for secular perturbations now have the form

L̇ =
∂Wsec

∂l
= 0, Ġ =

∂Wsec

∂g
= 0, Ḣ =

∂Wsec

∂h
,

l̇ = −∂Wsec

∂L
, ġ = −∂Wsec

∂G
, ḣ = −∂Wsec

∂H
, (38)

L̇′ = −∂Fsec

∂l′
= 0, Ġ′ = −∂Fsec

∂g′
= 0, Ḣ ′ = −∂Fsec

∂h′
,

l̇′ =
∂Fsec

∂L′ , ġ′ =
∂Fsec

∂G′ , ḣ′sec =
∂Fsec

∂H ′ , (39)

where

Wsec =
µ2
0

2σ2(t)

(
1

L2

)
+
f(m1 +m2)(C −A)

2m2σ3a3 (1− e2)
3/2

(
1− 3

4
I

)
−

−1

2
bσ2a2

(
1 +

3

2
e2
)
, (40)

Fsec =
1

2A
G′2 +

1

2

(
1

C
− 1

A

)
L′2 +

fm1 (C −A)

2σ3a3 (1− e2)
3/2

(
1− 3

4
I

)
−

−1

2
bσ2a2

(
1 +

3

2
e2
)
, (41)
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and a = L2
/
µ0, 1−e2 = G2

/
µ0a, I = I (G,h,H, h′,H ′, G′, L′). Thus, computing

secular perturbations reduces to the fourth-order system

Ḣ =
∂Wsec

∂h
, ḣ = −∂Wsec

∂H
, (42)

Ḣ ′ = −∂Fsec

∂h′
, ḣ′ =

∂Fsec

∂H ′ . (43)

Upon solving system (42)–(43) we integrate the remaining equations

L̇ = 0, Ġ = 0, L̇′ = 0, Ġ′ = 0, (44)

l̇ = −∂Wsec

∂L′ , ġ = −∂Wsec

∂G
, l̇′ =

∂Fsec

∂L′ , ġ′ =
∂Fsec

∂G′ . (45)

In view of (40) and (41), system (42), (43) takes the form [13]

Ḣ =

(
E(t)

m̃(t)

)
∂I

∂h
, ḣ = −

(
E(t)

m̃(t)

)
∂I

∂H
,

Ḣ ′ = −E(t)
∂I

∂h′
, ḣ′ = E(t)

∂I

∂H ′ , (46)

E(t) = − 3fm1(C −A)

8σ3a3(1− e)3/2
, m̃(t) =

m1m2

m1 +m2
,

I =
3

2
− L′2

2G′2 − 1

2

(
1− 3L′2

G′2

)(
H2

G2
+
H ′2

G′2 − 3H2H ′2

G2G′2

)
+

+
1

2

(
1− H2

G2

)(
1− L′2

G′2

)
cos (2(h− h′))−

−1

2

(
1− H2

G2

)(
2L′2

G′2 +
H ′2

G′2 − 3L′2H ′2

G′4

)
cos (2(h+ h′))−

−2HH ′

GG′

(
1− H2

G2

)1/2 (
1− H ′2

G′2

)1/2 (
1− 3L′2

G′2

)
cos(h+ h′). (47)

Note that, due to equalities (44), we obtain

L = L0 = const, (a = const) , G = G0 = const, (e = const) ,

L′ = L′
0 = const, G′ = G′

0 = const. (48)
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5 Numerical Solutions

One can readily check that a general solution of the system (46) cannot be
found in symbolic form. But we can choose some realistic values for the system
parameters and solve equations (46) numerically. To simplify the calculations we
use the dimensionless variables. For example, the semi-major axis a is used as a
unit of distance and dimensionless time t∗ is defined by

t∗ = ω0t, ω0 =

√
µ0

a3/2
.

The Delaunay-Andoyer elements are replaced by the corresponding dimension-
less quantities

L∗ =
L

√
µ0a

, G∗ =
G

√
µ0a

, H∗ =
H

√
µ0a

,

L′∗ =
L′

m10a2ω0
, G′∗ =

G′

m10a2ω0
, H ′∗ =

H ′

m10a2ω0
.

Dimensionless masses and moments of inertia are given by

m1(t) = m10m
∗
1(t

∗), m2(t) = m10m
∗
2(t

∗), m∗
1(t

∗
0) = 1, m∗

2(t
∗
0) =

m20

m10
,

C(t) = m10a
2m∗

2(t
∗)χ2(t∗)C∗, A(t) = m10a

2m∗
2(t

∗)χ2(t∗)A∗,

where m10 = m1(t0), m20 = m2(t0).
Then we can rewrite the equations (45), (46) in dimensionless variables

Ḣ∗ = −3 (C∗ −A∗)χ2(t∗)

8σ4 (1− e2)
3/2

(
∂I∗

∂h∗

)
, ḣ∗ =

3 (C∗ −A∗)χ2(t∗)

8σ4 (1− e2)
3/2

(
∂I∗

∂H∗

)
,

Ḣ ′∗ =
3m10 (C

∗ −A∗)m∗
1(t

∗)m∗
2(t

∗)χ2(t∗)

8(m10 +m20)σ3 (1− e2)
3/2

(
∂I∗

∂h′∗

)
,

ḣ′∗ = −3m10 (C
∗ −A∗)m∗

1(t
∗)m∗

2(t
∗)χ2(t∗)

8(m10 +m20)σ3 (1− e2)
3/2

(
∂I∗

∂H ′∗

)
,

l̇∗ =
1

σ2
+

1

2
b
(
7 + 3e2

)
+

3 (C∗ −A∗)χ2(t∗)

8σ4 (1− e2)
3/2

(4− 3I∗) ,

ġ∗ = −3

2
b
√

1− e2 +
3 (C∗ −A∗)χ2(t∗)

8σ4 (1− e2)
2

(
4− 3I∗ +G∗ ∂I

∗

∂G∗

)
,

l̇′∗ = −C
∗ −A∗

C∗A∗
L′

m∗
2(t

∗)χ2(t∗)
+

+
3m10 (C

∗ −A∗)m∗
1(t

∗)m∗
2(t

∗)χ2(t∗)

8(m10 +m20)σ3 (1− e2)
3/2

(
∂I∗

∂L′∗

)
, (49)
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ġ′∗ =
G′

A∗m∗
2(t

∗)χ2(t∗)
− 3m10 (C

∗ −A∗)m∗
1(t

∗)m∗
2(t

∗)χ2(t∗)

8(m10 +m20)σ3 (1− e2)
3/2

(
∂I∗

∂G′∗

)
,

where I∗ = I (G∗, h∗,H∗, h′∗,H ′∗, G′∗, L′∗) is defined by (47) and

σ =
m∗

1(t
∗
0) +m∗

2(t
∗
0)

m∗
1(t

∗) +m∗
2(t

∗)
.

Let the laws of variation of the masses are described by the Eddington-Jeans
law

m∗
i (t

∗) =
(
m∗

i (t
∗
0)

1−ni − αi (1− ni) t
∗) 1

1−ni , i = 1, 2, (50)

where

n1 = 2, n2 = 3, α1 =
1

100000
, α2 =

1

200000
.

20000 40000 60000 80000
t, years

0.499918

0.499920

0.499922

0.499924

0.499926

0.499928

H
*

Fig. 1. Element H∗(t): Red - constant masses, Blue - variable masses.

20000 40000 60000 80000
t, years

60.0002

60.0004

60.0006

60.0008

i,°

Fig. 2. Inclination i(t) = arccos(H/G): Red - constant masses, Blue - variable masses.

We use here the following values of the physical parameters

m10 = m1 (t0) = 1MΘ, m20 = m2 (t0) = 3 · 10−6MΘ, e = 0.017,
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A0 = 0.3295 (M⊕/MΘ) , C∗ = 0.3306 (M⊕/MΘ) , χ2 (t) = 1 + 2 · 10−5t,

whereMΘ is the mass of the Sun,M⊕ is the mass of the Earth. The dimensionless
initial conditions are given by

L∗ = 1, G∗ = 0.999, H∗ = 0.499, l∗ =
π

4
, g∗ =

π

18
, h∗ =

π

9
,

L′∗ = 3.786, G′∗ = 4.372, H ′∗ = 4.108, l′∗ =
π

9
, g′∗ =

π

3
, h′∗ =

π

18
.

Using the system “Mathematica” [19], we obtain numerical solutions of dif-
ferential equations (49) which are shown in Fig. 1 - 6. Comparison with the case
of stationary bodies shows that varying of the masses and sizes of the bodies
modify noticeably the evolution of the system.

20000 40000 60000 80000
t, years

19.980

19.985

19.990

19.995

20.000

h,°

Fig. 3. Element h(t): Red - constant masses, Blue - variable masses.

20000 40000 60000 80000
t, years

0.0000123249

0.0000123250

0.0000123250

0.0000123251

0.0000123252

0.0000123252

H
'*

Fig. 4. Element H ′∗(t): Red - constant masses, Blue - variable masses.



Secular Perturbations of Translational-Rotational Motion 13

20000 40000 60000 80000
t, years

10.002

10.004

10.006

10.008

10.010

h',°

Fig. 5. Element h′(t): Red - constant masses, Blue - variable masses.

20000 40000 60000 80000
t, years

9.975

9.980

9.985

9.990

9.995

10.000

g,°

Fig. 6. Element g(t): Red - constant masses, Blue - variable masses.

6 Conclusions

In the present paper we have considered the classical problem of two non-
stationary bodies of variable masses and sizes. Due to the finite size of the bodies,
their rotational motion as well as the interaction between translational and ro-
tational degrees of freedom should be taken into account. We have obtained
the differential equations describing the translational-rotational motion of the
second body around the first one in terms of the Delaunay-Andoyer variables.
Averaging these equations gives the evolutionary equations describing long-term
behaviour of the system.

Note that in case of m1(t) = const, ν(t) = 1, χ(t) = 1, γ(t) = 1, equations
(45), (46) describe translational-rotational motion of a stationary triaxial rigid
body in the central gravitational field. Non-stationarity of the bodies complicates
the problem substantially and solutions to the evolution equations (45), (46)
cannot be found in symbolic form. These equations were solved numerically for
some realistic values of the system parameters.

All the relevant symbolic and numerical calculations and visualization of the
results are performed with the aid of the computer algebra system Wolfram
Mathematica.
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