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Abstraet. Among the problems of the rotor machines dynamics the special attention is given 1o the
problems of creation of the automatic balancing devices (ABD) in form of a hollow rotor, filled by
a liquid, and the liquid-solidbody ABD. The theoretical and experimental works on research of the
ABD on the base of a hollow rotor filled partially with a liquid and of the liquid-solidbody ABD are
not enough, Thercfore development of the methods of research of dynamics of the rotor machines
with the ABD and such machines designs is an actual, new and perspective problem, In the present
work the mathematical model of the rotor system with the ABD taking into account of the engine
characteristics is offered. Let’s congider the model of the rotor with electric drive with one disk, set
up at the flexible shaft without skew. The shaft is lean on two bearings (fig 1),

Introduction

The problems of research of dynamics of the rotor machines with the ABD and the questions of the
rotor systems fluctuations control were considered also in the works [11-{3]. One of the ways of the
rotor machines vibration reduction is an optimal control of their movement [4] In the present work
the mathematical model of the rotor system with the ABD taking into account of the engine
characteristics is offered. Let’s consider the model of the rotor with electric drive with one disk, set
up at the flexible shaft without skew. The shaft is lean on two bearings (fig 1).
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Figure 1. The rotor system with auto-balancing device

Derive the equation of motion of the system
Let’s suppose that the shaff mass is small in comparison with the mass m, , the disk is made as the
closed axisymmetric cavity, filled by a liquid, where also
axisymmetric float with the mass m, is placed. The float has possibility of free motion and hasn’t
cccentricity.

Using Lagrange’s equations of the second type we can obtain the necessary system of the
equations of motion of the oscillatory system with five freedoms.
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(me* +J5 )P, +2eép,m, +me(ycosp, —¥sing,) =
=[B(¢, —2¢,)e(e + R,)].

(m,a2 +J5, )9, +K, 0, +ma(ycosp, +xsing, )=
=B(¢,—-2¢,)e(e+R, )+ M, -M.

The summands 4eé, B((b 4 —2¢1)e are correspondingly the radial and tangent component of

the forces of viscosity by the float and liquid interaction. In fact they are the integral
characteristics, i.e. they depend both on the float geometrical dimensions and the liquid
properties. Choice of the type of the engine driving moments Mp and Mg, and also knowledge
of their changes range is one of the main goals of our research. Now the shaft-rotor system is
substituted by its analogue — the system of horizontal pendulums (fig. 2).
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Figure 2. Choice of the two-mass system generalized coordinates

The spring OO can rotate in a horizontal plane around the point O and can be distorted by the
linear law. The point M, with the mass m, can rotate in a horizontal plane around the point
O,. The point M, with the mass m, can rotate around the point in horizontal plane and at the

same time the spring MO; is linearly distorted in the radial direction. Let’s choose the
immovable coordinate system with the origin in the point O(0, 0). Then with a help of the

Lagrange’s equations of the second type for this system we can obtain the necessary system
of the equations of the vibratory system with five freedoms motion
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It is obvious that the system of the equations (2) is identical to the system (1), with the only
difference that in the first one torsion is taken into account by the summand y¢, . In this case

external impact is applied on the bob M), i.e. the moment of the external driving forces
(Mp -Mc) operates on the point M; (not on the shaft as in the preceding case), therefore,
naturally, torsion is taken into account. In this case, described by the system (2), the same
problems are considered. The mechanical model difference from the shaft-rotor system
consists in the fact that in our opinion this mechanical model is more evident from the point
of view of physics and also the processes in the pendulum systems are well-studied enough.
Let’s formulate the stated problem.

1. It is necessary to define a range of the changes of the device’s external driving moments
difference (Mp - M¢) by the preset other parameters of the system (1) from the condition of
dimensional restrictions: the shaft should make the oscillations in the limited space, i.e.

x> +y® <T, where T characterizes the horizontal dimension of a vertical housing.

2. Let all the values of the parameters, belonging to the system (1), are given. Let a range of
the moments difference changes is known too on the grounds of the results of the first stage

M Mg-M-<M
but there is no the explicit dependence of (Mp - Mc) on the time.

o
min = max »
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It is necessary to define dependence of (Mp - Mc) on the time from a condition of some
functional minimization. Specific choosing of the last ones is given below. Every time the
functional is chosen so that economical mode of operation or increase of the shaft-rotor
system lifetime would be taken into account.

1. Algorithm of the acceleration problem solving.
1. We assign the initial data for /,,/,,¢9,0,,0,, and also the law of external moments

Mp~Mc = f{e).
2. Let t=1¢, (the initial moment of time).
3. Let’s substitute in the Lagrange equation, corresponding to ¢, (t), the initial data instead of

the unknowns /,(t), 1,(), o,) o,().

4. We find the obtained equation solution, i.e. we define ¢, at the moment 1+ .

5. Let’s substitute the initial data instead of the unknowns /,(¢), ¢,(t), ¢,(:) and the found value
¢,(¢ + &) instead of ¢, in the Lagrange equation, corresponding to /, (t)

6. Let’s find /;, at the moment ¢ + Af from the obtained equation.

7. Let’s substitute the initial data instead of /,(¢), ¢,(s) and the just found values instead of ¢,

and /; in the Lagrange equation, corresponding to ¢, (¢).

8. After the obtained equation solving, let’s find (¢ + 4t).

9. Let’s substitute the initial data instead of ¢, (t) and the just found values instead of
@51y, @, in the Lagrange equation, corresponding to /, (t)

10. Let’s find 4,(r + 4¢).

11. It remained to find o, (¢t + 4).

12. Repeat the steps in cycle, substituting ¢, + 4 instead of ¢,.

13. The process is repeated in the range of accelerations, changing slowly enough.

2. Determination of the range of the driving moment changing.
The driving moment is considered as the constant one, i.e. in algorithm of the
preceding item f(¢) are taken as the constants.

Algorithm of the maximum driving moment calculation.
1. Let’s all the parameters of the shaft-rotor system with auto-balancing are given.

2. Let’s take the small value M ;, = f = const, not dependent on time.

3. By algorithm of the preceding item we shall find the magnitude / 0 (t) — the shaft amplitude
and @, (t)—fhe rotor angular velocity till the moment # =7 . At that the following is
possible:

3.1. Iy (T ) ~I' (where I'is the dimensional restriction of a design);

3.2. by ¢>7/2 the angular velocity ¢, (t) of the rotor is practically constant though the
amplitude 7, (¢) is much less than I';

3.3. T islarge enough.

4. If the item 3.2 is hold, ie. by the given M, the rotor rotation is stabilized and the
resonance condition is not expected, we may increase M, on some value and then it is

necessary to return to the step 3 and repeat the calculating process.
5. If the item 3.1 or 3.3 is hold, the calculating process comes to an end, because that value of
M |, has been found, by which the near-resonance conditions are begun.
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The cases are possible when the initial power of the engine is large and it is necessary
to decrease the value of M |, .

3. Optimization of the parameters of the shaft-rotor system with auto-balancing.

As we realize only numerical experiments, which don’t demand large financial
expenses, we can find more acceptable set of the initial parameters of the shaft-rotor system
with ABD at the base of the preceding item algorithm. For that the variations in the
parameters’ space are necessary. Of course, the difficulties appear with increase of the
parameters’ space dimension. ‘

Let’s present algorithm of several parameters optimization.

1. Let the initial values of the parameters of the shaft-rotor system with ABD are given.

2. Let’s take some value of the driving moment M p = [, not dependent on time.
3. The shaft amplitude /,(r) and the rotor angular velocity ¢,(r) calculation is realized at the

time interval from O to 7'. If / (l‘1 ) ~I' by 3¢, <T, it is necessary to go to the step 4. If
there is no necessity in this, it means that the initial parameters are acceptable.

4. One of the parameters is changed (for example, the float geometrical characteristic) move
up in.

5. Then we again return to the step 3. At the same time, if the condition [y (t2 ) ~ I appears
earlier than it was (i.e. #; >¢,), it is necessary to decrease the value of the varied parameter

and go to the step 3. If the last one results in a condition ly (t3)z I' and #; <¢,, it is

necessary to vary the value of the other parameter (for example, properties of material, out of
which the float is made).

6. If all the efforts of the parameters varying don’t lead to desired result, it is necessary to
decrease the value of M [, from the step 2.

4. Optimal control of the shaft-rotor system with ABD

Before finding of the optimal law of the driving moment on time, it is necessary to
choose the criterion, by which preference will be given to any dependence against another
one.

4.1 The criterion of the shaft amplitude minimum can be written in the form
T

TER)=[ (0*®) dt — min by all {t): M min < £(t) < M max .
0

At the same time lg(t) is found from the system (1.11) by the different available f(t) by
algorithm of the item 3 and every time the integral J(f) is calculated. Then their values are
compared. The preference is given to that function f{t), which corresponds with the smallest
value of the functional J(f) calculated values. It should be noted that it is necessary to look
through all the possible functions f(t) and to discard that values, which don’t minimize the
functional J(f). It is complicated problem. Such problem is solved in the theory of optimal
control with a help of maximum principle. In our case the function has to be maximized will
be linear. It achieves the maximum value only on the ends of the closed interval [Mmnin, Mimax]-
Therefore we are interested only with those functions f(t), which can assume two values: f(t)
=M pax by some t, and by another t — the value f(t)=M min . Let’s notice that if M i =0, the
problem solving is possible by f= 0, because at this case there are no external impacts and the
system is in rest and therefore the shaft amplitude equals to zero, which means equality to
zero of the functional J(f). That is why only the case M ;>0 is interesting.

t

So, the problem of the integral J(f)= I lo*(t)dt minimization is reduced to finding of
0
the engine driving moment in form of the function
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M., by somet from[O,T ]

Mp-Mc=1£(t)=
M max, by othert from [O, 4 ]

Thus, optimal control of the engine work consists of the fact that the engine works only in two
modes: M yx — maximal allowable mode or M pi, — minimal allowable mode. The problem
will be solved when the moments of switching from one mode to another are found, i.e. it is

necessary to find finite number of parameters:
0<t |<t<..<t,<T.

We again come to optimization of the parameters N, t;, ty, ..., t n—1, Which need to be chosen

in the best way.
Let’s present algorithm of selection of the points of switching.
1. The parameters of the shaft-rotor system with ABD are given.

2. The range [M min , M max] of the engine driving moment changing is determined in

accordance with parameters from the item 1°.
3. Let N=1 (without switching).

4. lo(t) is calculated by 0 <t <T by algorithm from the item 1.3 by f(t) =M yin.
T

5.J= j L2(t)dt is calculated.

0

6. lo(t) is calculated by 0<t<T by algorithm from the item 1.3 by f(t)= M pax.

/i
T J2=I loz(t)dt is calculated.
0
8. After comparison J; with J, the necessary f(t) is chosen.
9. Let N=2 (one switching).
10. Iy(t) is calculated by 0 <t <T by algorithm from the item 1.3

by { Mo O<I<TV2
Y v Tr2<t<T

T

and Ji=[ 1*(t)dtis calculated.
0

11. Io(t) is calculated by 0 <t <T by algorithm from the item 1.3
M. 0<t<T/2
by f(t)=
Mmin,, T/2.<_t<T

T
and J4=I 1o%(t)dt is calculated.
0
12. After comparison of J, Jp, J3, J4, the necessary f(t) is chosen.
13. Let N=3 (two switchings).
14. 1o(t) is calculated by 0<t<T by algorithm from the item 1.3

M., 0<t<T/3
by f(t)=
M max, T/3<T<T

T
and J 5=j 1p(t) dt is calculated.
0

15. J¢ , J7 are calculated at the same way.

16. After comparison of Jy, J», J3, Js, Js, Js, J7, the necessary f(t) is chosen.

17. The calculating process is stopped, when f(t) ceases to change.
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Similar algorithm is offered for the fastest achievement of the preset angular velocity of the
rotor. It should be noted:

1. The problem of the fastest achievement of the preset angular velocity of the rotor helps to
overpass resonance frequency of the shaft-rotor system with ABD in the best way, if the
preset angular velocity correspond to over-resonance frequency. Similar problems were
studied by many authors [4].

2. As the system of the differential equations (1) is the system, not solved for the highest
derivatives, and hasn’t canonical form

;c):f(x,u,t),

direct application of the methods of optimal control is inconvenient. The problem of optimal
control is reduced to the problem of parameter optimization. At the same time there is no
necessity of the system of the equations (1) solving for the highest derivatives and their
reducing to the canonical form.

3. Instead of algorithm from the item 1 it is possible to use any other method, available for
solving of the Cauchy problem for the system (1). Simplicity of the given algorithm and its
mechanical evidence make it very effective and convenient, especially in combination with
the methods of Runge-Cutta type.

4. In contrast to maximum principle, where it is necessary to solve the boundary problems,

here only the Cauchy problem for the system of the differential equations is used.
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