The 6th International Symposium on Edible & Medical Plant Resources and the Bioactive Ingredients

第六届可食和药用植物资源及功能成分国际学术研讨会

14-17 Oct 2018, Nanjing, China

主办单位

中国科学院新疆理化技术研究所 Xinjiang Technical Institute of Physics and Chemistry, CAS

中国科学院中亚药物研发中心 Central Asian Drug Discovery and Development Centre of CAS

> 香港科技大学深圳研究院 Shenzhen Research Institute, HKUST

承办单位

南京中医药大学 Nanjing University of Chinese Medicine 江苏省中国科学院植物研究所 Institute of Botany, Jiangsu Province and CAS

协办单位

天然药物活性组分与药效的创新引智基地(中国药科大学) 111 Project (Chinese Pharmaceutical University, B16046)

淮阴工学院 Huaiyin Institute of Technology 江苏食品药品职业技术学院 Jiangsu Food and Pharmaceutical Science College

HPLC fingerprints and quantification of polygalasaponin F in Polygalae Japonicae Herba24	44
Investigation of Bufodienolides in the preparate of Bakagin-Mirzaakhmedov Sharafitdin24	
Isolation and biological activity of proteins and peptides from three species of animal bone marrow24	46
Isolation and Characterization of Jatrophane Diterpenoids from Euphorbia glomerulans24	48
LCMS-based measurement of intracellular superoxide anion for the assessment of selective	ve
antioxidant activity of natural compounds24	49
lignins from the leaves of Nitraria sibirica25	50
Material basis study of multi-target anti-inflammatory effects of Radix Isatidis based on molecul	lar
docking technology25	51
On-line activity guided separating antioxidant fractions of the extract of Rhodiolae Crenulata	ae
Radix et Rhizoma based on a MPLC-UV-DPPH method.	53
Organic acids from the shell of Hazelnut (Corylus avellana)	54
Parthenolide from an edible herb Flos Chrysanthemi overcomes vemurafenib resistance in melanoma25	55
Phytochemical and Biological Studies of leaves from Lycium medicinal plants25	57
Chemical Constituents of the Aerial Part of Ligularia Narynensis	50
Phytochemical Studies on Achillea millefoilum L. growing in Xinjiang	61
Phytochemical study on n-butanol fraction of Lavandula angustifolia Mill	62
Polyphenolic composition of Propolis growing in three different region of Tajikistan26	64
Preparation of Chickpea Oligopeptides by Twostephydrolysis and Its Nutritional Evaluation26	66
Preparation of Quercetin 3-O-L-rhamnoside from Antioxidant Active Extracts of Amur Ampelops	sis
Stem by High-Speed Counter-Current Chromatography	68
Qn-line activity guided separating antioxidant fractions of the extract of Rhodiolae Crenulata	ae
Radix et Rhizoma based on a MPLC-UV-DPPH method	69
Qualitative and Quantitative analysis of phenolic compounds in Meiguihua Koufuye By LC-MSMS27	70
Quantitative NMR based evaluation of main components of stigmas and petals from the Crocus sativus27	
Rapid screening and identification of natural product-derived metabolites from zebrafis	sh
biotransformation system by Multivariate Statistical Analysis	
Review on the Correlation between Alkaloid Structure and Pharmacodynamics27	
Screening of GPCR antagonists from natural products by two-phase pharmacological profiling ar	
chromatogram-activity relationship	
Separation and screening the hypotensive effective part of Hymenolaena nana with ACE as the target27	
Studies on Alkaloids and Bioactivities of coumarin and carbazole from plants of Murraya genus.27	
Studies on the Bioactive Constituents of Hypericum ascyron	
Studies on the chemical constituents of methanol part of Vernonia Anthelmintica	
Study on chemical constituents of acrial part of Zingiber officinale Rosc	
Study on HPLC fingerprint of female flower of hupulus lupulus	
Study on protein content and distribution of molecular weight of Radix Isatidis from differe	
habitats and harvest time	
Study on the chemical constituents of Piper longum L. and their bioactivities	
Terpenoids from the aerial parts of ferula feruloides	
北虫草子实体化学成分及含量测定研究	
茯苓和茯苓皮中三萜类成分的 HPLC 图谱对比研究	
硫代吴茱萸次碱衍生物的合成及抑菌活性研究	

Chemical Constituents of the Aerial Part of Ligularia Narynensis

Nurlybekova A.K.¹, Yang Ye², Abilov Zh.A.¹, Jenis J.^{1,2}*

¹Faculty of Chemistry and Chemical Technology, Al-Farabi Kazakh National University, Almaty, Kazakhstan

²Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China *e-mail: <u>janarjenis@mail.ru</u>, (the work supported by project 0118PK00458)

Ligularia is the genus of perennial herbs of the family Compositae, containing about 180 Eurasian species, 17 species grow in mountains of Kazakhstan [1]. More than 27 species in this genus have been used for a long time as folk remedies for their antibiotic, antiphologistic, and antitumor activities [2]. Previous studies confirmed the presence of sesquiterpenes, triterpenes, sinapyl alcohol derivatives, lignans, alkaloids, and steroids in Ligularia [3]. In this work, the quantitative and qualitative analysis of phytochemical constituents of medicinal plant Ligularia narynensis from Kazakhstan have been made for the first time. Total bioactive components of L. narynensis such as organic acids (0.58 %), flavonoids (0.64 %) and together with moisture content (5.98 %), total ash (7.58 %), and extractives content (25.1 %) were determined. Eleven macro-micro elements from the ash of plant were identified, main contents of them were K (1308.25 μg/ml), Ca (1312.77 μg/ml), and Mg (231.18 μg/ml) by using method of multi-element atomic emission spectral analysis. In addition, twenty amino and eight fatty acids were analyzed from the plant. The results showed that major contents of amino acids were glutamate (2405 mg/100g), and aspartate (1182 mg/100g), as well as in fatty acids were oleic (38.6 %) and linoleic acids (32.2 %), respectively. The liposoluble constituent in aerial part of L. narynensis was analyzed by GC-MS method. Total forty three compounds were separated and their relative contents were determined by area normalization in which the major constituents were alpha.-Amyrin (22.31 %), gamma.-Sitosterol (9.17 %), 9,12,15-Octadecatrienoic acid, ethyl ester, (Z,Z,Z)-(8.94 %), beta.-Amyrin (8.93 %), and Phytol (7.21 %), respectively.

References

- 1 Baitenov M.S. Flora of Kazakhstan // Gylym, Kazakhstan. 2001. P. 206-207.
- 2 Xue Gaoa, Chang-Jun Linb, Wei-Dong Xiea, Tong Shena, Zhong-Jian Jia. New Oplopane-Type Sesquiterpenes from *Ligularia narynensis* // *Helvetica Chimica Acta.* 2006. 89. P. 1387-1394.
 - 3 Yang J.L., Wang R., Shi Y.P. // *Nat. Prod. Bioprospect.* 2011. P. 1-24.