Федеральное государственное бюджетное учреждение науки Институт математики им. С. Л. Соболева Сибирского отделения Российской академии наук

Федеральное государственное автономное образовательное учреждение высшего образования «Новосибирский национальный исследовательский государственный университет»

Международная конференция

МАЛЬЦЕВСКИЕ ЧТЕНИЯ

19-22 ноября 2018 г.

Тезисы докладов

Конференция проведена при финансовой поддержке Российского фонда фундаментальных исследований (код проекта 18-01-20098)

Новосибирский государственный университет

Sobolev Institute of Mathematics Novosibirsk State University

International Conference

MAL'TSEV MEETING

November 19–22, 2018

Collection of Abstracts

Supported by Russian Foundation for Basic Research (grant 18-01-20098)

Novosibirsk State University

Полурешетки Роджерса семейств отношений эквивалентности

Б. С. Калмурзаев, Н. А. Баженов

В работе [1] для произвольного $n \ge 1$ доказано существование универсальной Σ_n^{-1} -вычислимой нумерации для семейства всех Σ_n^{-1} -отношений эквивалентности. В работе для произвольного обозначения a ненулевого вычислимого ординала рассматривается Σ_a^{-1} -вычислимые нумерации семейства всех Σ_a^{-1} -отношений эквивалентности. Для таких семейств установлено существование бесконечного числа попарно несравнимых фридберговых нумераций и бесконечного числа попарно несравнимых неразрешимых нумераций. В установлении этого факта ключевую роль играет следующий результат:

Теорема. Для бесконечного множества $A = \{a_0 < a_1 < a_2 < \ldots\} \subseteq \omega$ зададим семейства отношений эквивалентности

$$\mathcal{F}_A := \{Id_1\} \cup \{E([0; a_i]) : i \in \omega\},$$

$$\mathcal{G}_A := \{Id\} \cup \{E(\omega \setminus [0; a_i]) : i \in \omega\}.$$

Пусть $a \in \mathcal{O}$, $|a|_{\mathcal{O}} \neq 0$, \mathcal{E} — это Σ_a^{-1} -вычислимое семейство отношений эквивалентности. Предположим, что существует бесконечное вычислимое множество A, для которого \mathcal{E} удовлетворяет одному из следующих условий:

- (i) $\mathcal{F}_A \subseteq \mathcal{E}$ и при этом e(a) = 1 или $|a|_{\mathcal{O}} \ge \omega$;
- (ii) $\mathcal{G}_A \subseteq \mathcal{E}$ и при этом e(a) = 0 или $|a|_{\mathcal{O}} \ge \omega$.

Тогда \mathcal{E} имеет Σ_a^{-1} -вычислимую фридбергову нумерацию.

Для семейства всех в.п. отношений эквивалентности, с помощью результатов [2], дополнительно показываем существование бесконечного числа попарно несравнимых минимальных непозитивных нумераций и существование бесконечного числа главных идеалов без минимальных нумераций.

Список литературы

- [1] Ng K.M., Yu H., On the degree structure of equivalence relations under computable reducibility. (Preprint)
- [2] Хуторецкий А.Б., Две теоремы существования для вычислимых нумераций, Алгебра и логика, 1969, Т.8, N4, с. 483–492.

КазНУ им. Аль-Фараби, Алматы (Казахстан)

 $E ext{-}mail: birzhan.kalmurzayev@gmail.com}$

Институт математики им. С.Л. Соболева СО РАН, Новосибирск

E-mail: bazhenov@math.nsc.ru