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We study a system consisting of a non-Abelian SU(2) Proca field interacting with nonlinear scalar
(Higgs) and spinor fields. For such a system, it is shown that particlelike solutions with finite energy do
exist. It is demonstrated that the solutions depend on three free parameters of the system, including the
central value of the scalar field ξ0. For some fixed values of ξ0, we find energy spectra of the solutions. It is
shown that for each of the cases under consideration, there is a minimum value of the energy Δ ¼ Δðξ0Þ
[the mass gap Δðξ0Þ for a fixed value of ξ0]. The behavior of the function Δðξ0Þ is studied for some range
of ξ0.
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I. INTRODUCTION

By Proca theories one means gauge theories (both
Abelian and non-Abelian ones) where the gauge invariance
is violated explicitly by introducing a mass term. The first
use of a Proca field was by Yukawa to describe pions. Later
on the Proca theory has found applications in various fields
of modern theoretical physics. The use of a Proca field
results in the following consequences: a photon may
acquire a rest mass, Einstein-Proca gravity involves a
graviton of nonzero rest mass, Einstein-Proca-Weyl theo-
ries can be applied to describe dark matter [1], and using a
real Proca field with a negative mass square, one can
describe tachyons—particles moving with the velocity
greater than the velocity of light [2].
Additionally, the following research involving a Proca

field may be noted. Reference [3] studies Einstein-non-
Abelian-Proca theory in an asymptotically anti–de Sitter
spacetime with gauge group SU(2). The results obtained
describe a gravitating Proca monopole. References [4] and
[5] consider stars supported by Proca fields. In Ref. [6],

theories of the generalized Proca field are under inves-
tigation: the generalized Proca action for a vector field with
derivative self-interactions with only three propagating
degrees of freedom is constructed. The paper [7] also deals
with the generalized Proca action for an Abelian vector
field. The work [8] considers relativistic quantum mechan-
ics of a Proca particle in Riemannian spacetimes. In Ref. [9]
the authors have placed observational constraints on a class
of dark energy models within the framework of generalized
Proca theories. The purpose of the paper [10] is to build the
first-order terms of the generalized SU(2) Proca theory and
to discuss a general form of the complete theory.
In the present paper we study a non-Abelian SU(2) Proca

field interacting with nonlinear scalar and spinor fields. The
scalar field is described by the Klein-Gordon equation with
the Higgs potential. The spinor field ψ is described by the
Dirac equation with a potential term of the form jψ̄ψ j2. Our
purpose here is to obtain particlelike spherically symmetric
solutions and to study their energy spectra. We will show
below that the energy spectrum depends on the parameters
f2, E, and ϕ0. The parameter f2 describes a behavior of the
SU(2) Proca field at the center of the system; E=ℏ is a
frequency of the stationary spinor field entering the factor
e−iEt=ℏ; the parameter ϕ0 is a central value of the Higgs
field ϕ. We show that the energy spectrum has a minimum,
at least for some values of ϕ0, and we argue that this will
also take place for any value of ϕ0 lying in the range
0 < ϕ0 < ∞. The behavior of this minimum as ϕ0 → ∞ is
of great interest: if in this limit the minimum is nonzero,
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one can say that there is a mass gap Δ ≠ 0 in non-Abelian
Proca-Dirac-Higgs theory.
If such a mass gap does exist, this would be of great

significance. The reason is that in quantum field theory
there is a problem to prove the existence of a mass gap in
quantum chromodynamics. Since this problem is highly
nontrivial, one of the possible ways for solving it could be a
consideration of simpler problems where quantum systems
are replaced by approximate classical systems. In this case,
if one could show that in such classical systems a mass gap
can occur, this could be regarded as an indication of the
possibility of existence of the mass gap in quantum
systems. From this point of view, the classical system
studied in the present paper and regarded as some approxi-
mation to realistic quantum systems can be of some
interest.
Thus, the purpose of the present paper is to (i) obtain

particlelike solutions within a theory with a non-Abelian
SU(2) Proca field plus a Higgs scalar field plus a nonlinear
Dirac field, (ii) study energy spectra of these solutions,
(iii) search for a minimum of the spectrum (a mass gap),
and (iv) understand the mechanism of the occurrence of a
mass gap within the theory under investigation and, on this
basis, to suggest a similar mechanism for QCD.
The paper is organized as follows. In Sec. II, we give the

field equations describing a system consisting of a non-
Abelian SU(2) Proca field interacting with nonlinear scalar
and spinor fields. In Sec. III, we choose the Ansätze
(stationary one for the spinor field and static ones for
the Proca and scalar fields) solve to the equations of Sec. II,
using which the corresponding complete set of equations is
written down. For this set, in Sec. IV we numerically solve
the equations and find regular solutions describing particle-
like systems in non-Abelian Proca-Dirac-Higgs theory. In
Sec. V, we construct the energy spectrum of the solutions
obtained and show the existence of a mass gap for this
spectrum. Finally, in Sec. VII, we summarize and discuss
the results obtained.

II. NON-ABELIAN PROCA PLUS HIGGS SCALAR
AND NONLINEAR DIRAC FIELDS THEORY

The Lagrangian describing a system consisting of a non-
Abelian SU(2) Proca field Aa

μ interacting with nonlinear
scalar, ϕ, and spinor, ψ , fields can be taken in the form

L ¼ −
1

4
Fa
μνFaμν −

μ2

2
Aa
μAaμ þ 1

2
∂μϕ∂μϕþ λ1

2
ϕ2Aa

μAaμ

−
λ2
4
ðϕ2 −M2Þ2 þ iℏcψ̄γμ

�
∂μ − i

g
2
σaAa

μ

�
ψ

þ Λ
2
gℏcϕðψ̄ψÞ2 −mfc2ψ̄ψ : ð1Þ

Here mf is the mass of the spinor field; Dμ ¼ ∂μ − i g
2
σaAa

μ

is the gauge derivative, where g is the coupling constant and

σa are the SU(2) generators (the Pauli matrices); Fa
μν ¼

∂μAa
ν − ∂νAa

μ þ gϵabcAb
μAc

ν is the tensor of the Proca field in
non-Abelian SU(2) Proca theory, where ϵabc (the com-
pletely antisymmetric Levi-Civita symbol) are the SU(2)
structure constants; μ, M, Λ, and λ1;2 are constants; and γμ

are the Dirac matrices in the standard representation.
The corresponding field equations are as follows:

DνFaμν − ðλ1ϕ2 − μ2ÞAaμ ¼ gℏc
2

ψ̄γμσaψ ; ð2Þ

□ϕ − λ1Aa
μAaμϕ − λ2ϕðM2 − ϕ2Þ ¼ Λ

2
gℏðψ̄ψÞ2; ð3Þ

iℏγμ
�
∂μ − i

g
2
σaAa

μ

�
ψ þ Λgℏϕψðψ̄ψÞ −mfcψ ¼ 0: ð4Þ

Let us note the following features of this set of equations:
(i) the presence of the term ðλ1ϕ2 − μ2Þ in Eq. (2) will lead
to exponential damping of the SU(2) Proca field, and this is
a distinctive feature of the Proca monopole compared with
the ’t Hooft-Polyakov monopole; (ii) the Higgs field ϕ is
topologically trivial, and this is also the distinction of
principle compared with the ’t Hooft-Polyakov monopole;
(iii) the nonlinear spinor field ψ allows the existence of
particlelike solutions even in the absence of the fields Aa

μ

and ϕ (see Refs. [11,12]); (iv) the system supported by the
fields Aa

μ and ϕ also allows the existence of particlelike
solutions, a Proca monopole; (v) particlelike solutions exist
only for some special choices of the constants μ,M, and u1
[for the definition of parameter u1, see Eq. (21)]; and (vi) in
the absence of the fields Aa

μ and ϕ, the nonlinear Dirac
equation (4) describes a system with a mass gap (see
Refs. [11,12]), in contrast to Eqs. (2) and (3), which yield a
system whose energy spectrum has no mass gap.
To obtain particlelike solutions, the above equations will

be solved numerically since apparently it is impossible to
find their analytical solution. As will be shown below, these
particlelike solutions have the following interesting feature.
For each central value of the scalar field ϕ0 the plane
ff2; Eg [where E=ℏ is the spinor frequency, see Eq. (8),
and f2 is a free parameter associated with the Proca field,
see Eq. (19)] is divided into two regions: in one of them,
particlelike solutions do exist, and in the other one they are
absent. This means that there is some curve γ dividing these
two regions. Near this curve there is a complicated
interaction between the fields Aa

μ, ϕ, and ψ , which possibly
results in an infinite energy of the particlelike solution on
the curve γ.

III. EQUATIONS FOR A PROCA MONOPOLE
INTERACTING WITH NONLINEAR HIGGS

AND DIRAC FIELDS

We seek particlelike solutions describing objects sup-
ported by a radial magnetic field (a Proca monopole or a
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Proca hedgehog) and a nonlinear spinor field. For
this purpose, we employ the standard SU(2) monopole
Ansatz (5) and the Ansatz (8) for the spinor field, each row
of which describes a spinor for the ground state of an
electron in a hydrogen atom; i.e., we seek a solution of
Eqs. (2)–(4) in the following form:

Aa
i ¼ −

1

g
½1 − fðrÞ�

0
B@

0 sinφ sin θ cos θ cosφ

0 cosφ − sin θ cos θ sinφ

0 0 −sin2θ

1
CA;

i ¼ r; θ;φ ðin polar coordinatesÞ; ð5Þ

Aa
t ¼ 0; ð6Þ

ϕ ¼ ξðrÞ
g

; ð7Þ

ψT ¼ e−i
Et
ℏ

gr
ffiffiffi
2

p
��

0

−u

�
;

�
u

0

�
;

�
iv sin θe−iφ

−iv cos θ

�
;

� −iv cos θ
−iv sin θeiφ

��
; ð8Þ

where E=ℏ is the spinor frequency and the color index
a ¼ 1, 2, 3. The functions u and v depend on the radial
coordinate r only. The Ansatz (8) is taken from
Refs. [13,14]. After substituting expressions (5)–(8) into
the Lagrangian (1), we have

L̃eff ≡ Leff

ℏc=r40

¼ 1

g̃2

�
−
�
f02

x2
þ ðf2 − 1Þ2

2x4
− μ̃2

ðf − 1Þ2
x2

�

− 2m2

�
ξ̃02 þ λ̃1

ðf − 1Þ2
2x2

ξ̃2 þ λ̃

2
ðξ̃2 − M̃2Þ2

��

þ 1

x2

�
−ũṽ0 þ ũ0ṽ − 2f

ũṽ
x
þm2

Λ̃
2
ξ̃
ðũ2 − ṽ2Þ2

x2

− m̃fðũ2 − ṽ2Þ þ Ẽðũ2 þ ṽ2Þ
�
: ð9Þ

Here, for the convenience of performing numerical calcu-
lations, we have introduced the following dimensionless
variables: g̃2 ¼ g2ℏc is the dimensionless coupling con-
stant for the SU(2) Proca gauge field; x ¼ r=r0, where r0 is
a constant corresponding to the characteristic size of the
system under consideration; ũ ¼ ffiffiffiffiffi

r0
p

u=g, ṽ ¼ ffiffiffiffiffi
r0

p
v=g,

μ̃ ¼ r0μ, ξ̃ ¼ r0gϕ=2m, M̃ ¼ gr0M=2m, λ̃1 ¼ 4λ1=g2,
λ̃ ¼ 4m2λ2=g2, m̃f ¼ r0mfc=ℏ, Ẽ ¼ r0E=ðℏcÞ, Λ̃ ¼
2Λ=ðmr30Þ; m is a free parameter introduced for conven-
ience; and the prime denotes differentiation with respect to
x. The parameter r0 must depend only on constants of a

theory; therefore it can be taken, for instance, in the form
r0 ¼ αℏ=ðmfcÞ, where α is a constant.
Equations for the unknown functions fðxÞ, ξðxÞ, uðxÞ,

and vðxÞ can be obtained either by substituting Eqs. (5)–(8)
into the field equations, (2)–(4), or by varying the
Lagrangian (9) with respect to the corresponding functions
fðxÞ, ξðxÞ, uðxÞ, and vðxÞ. However, in the latter case one

should take into account that the nonlinear term ðψ̄ψÞ2 ¼
ðũ2−ṽ2Þ2

x4 must be written in the form
ðũ2ψ−ṽ2ψ Þðũ2ψ̄−ṽ2ψ̄ Þ

x4 , where
ðũ; ṽÞψ̄ are taken from ψ̄ and ðu; vÞψ—from ψ . Therefore,
the corresponding Dirac equation is obtained by varying (9)
with respect to ðũ; ṽÞψ̄ , and then one must take
ðũ; ṽÞψ̄ ¼ ðũ; ṽÞψ ¼ ðũ; ṽÞ. Thus, we obtain the following
equations:

−f00 þ fðf2 − 1Þ
x2

−m2ð1 − fÞξ̃2 þ g̃2
ũ ṽ
x

¼ −μ̃2ð1 − fÞ;
ð10Þ

ξ̃00 þ 2

x
ξ̃0 ¼ ξ̃

�ð1 − fÞ2
2x2

þ λ̃ðξ̃2 − M̃2Þ
�
−
g̃2Λ̃
8

ðũ2 − ṽ2Þ2
x4

;

ð11Þ

ṽ0 þ fṽ
x

¼ ũ

�
−m̃f þ Ẽþm2Λ̃

ũ2 − ṽ2

x2
ξ̃

�
; ð12Þ

ũ0 −
fũ
x

¼ ṽ

�
−m̃f − Ẽþm2Λ̃

ũ2 − ṽ2

x2
ξ̃

�
: ð13Þ

For the convenience of performing numerical calculations,
we have taken λ̃1 ¼ 1. Equations (10) and (11) describe the
Proca monopole with the sources appearing due to the
presence of the Dirac and Higgs fields. We emphasize that
these equations differ considerably from those describing
the ’t Hooft-Polyakov monopole. Equations (12) and (13)
have been studied in a simplified form for the case of f ¼ 1

and ξ̃ ¼ const in Refs. [11,12], where it was shown that this
set of equations has particlelike solutions whose energy
spectrum possesses a mass gap (for brevity, we will refer to
such solution as a spinball).
Next, by definition, the energy density of the spinor

field is

ϵs ¼ iℏζ̄γ0 _ζ − LD;eff ; ð14Þ

where the dot denotes differentiation with respect to time.
The Lagrangian of the Dirac field LD;eff appearing here is
given by the expression from (9),
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L̃D;eff ¼
1

x2

�
−ũṽ0 þ ũ0ṽ − 2f

ũ ṽ
x

þm2
Λ̃
2
ξ̃
ðũ2 − ṽ2Þ2

x2

− m̃fðũ2 − ṽ2Þ þ Ẽðũ2 þ ṽ2Þ
�

¼ −m2
Λ̃
2
ξ̃
ðũ2 − ṽ2Þ2

x4
; ð15Þ

which is obtained using Eqs. (12) and (13). Then, using the
Ansatz (8), the energy density of the spinor field (14) can be
found in the following dimensionless form:

ϵ̃s ¼ Ẽ
ũ2 þ ṽ2

x2
þm2

Λ̃
2
ξ̃
ðũ2 − ṽ2Þ2

x4
: ð16Þ

As a result, we get the following total energy density of the
particlelike solution:

ϵ̃ ¼ ϵ̃Pm þ ϵ̃s; ð17Þ

where

ϵ̃Pm ¼ 1

g̃2

��
f02

x2
þ ðf2 − 1Þ2

2x4
− μ̃2

ðf − 1Þ2
x2

�

þ 2m2

�
ξ̃02 þ ðf − 1Þ2

2x2
ξ̃2 þ λ̃

2
ðξ̃2 − M̃2Þ2

��
ð18Þ

is the energy of the Proca monopole. The formula (17) is
remarkable because the total energy of the particlelike
solution is a sum of energies of the Proca monopole and of
the spinball, despite the strong interaction between the
fields f and ξ, which make up the Proca monopole, and the
fields u and v supporting the spinball.

(a) (b)

(c) (d)

FIG. 1. Families of the particlelike solutions for ξ̃0 ¼ 0.5 and f2 ¼ −0.95 for the Proca-monopole-plus-spinball system with Λ̃ ¼ 1=9,
m̃f ¼ 1, m ¼ 3, g̃ ¼ 1, λ̃ ¼ 0.1 for different values of the parameter Ẽ (designated by the numbers near the curves). (a) The function
ũðxÞ=x. (b) The function ṽðxÞ=x. (c) The function fðxÞ. (d) The function ξ̃ðxÞ − ξ̃0.
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IV. PARTICLELIKE SOLUTIONS: A PROCA
MONOPOLE PLUS A SPINBALL

This section is devoted to studying particlelike solutions
of Eqs. (10)–(13). Since apparently there is no analytical
solution of this set of equations, we seek a numerical solution.
Because of the presence of terms containing x in the
denominators of Eqs. (10)–(13), to perform numerical com-
putations,we assignboundary conditions near the originx¼0
where solutions are sought in the form of the Taylor series

f ¼ 1þ f2
2
x2 þ…; ð19Þ

ξ̃ ¼ ξ̃0 þ
ξ̃2
2
x2 þ…; where

ξ̃2 ¼ −
g̃2Λ̃ũ41
24

−
λ̃ξ̃0
3

ðξ̃20 − M̃2Þ; ð20Þ

ũ ¼ ũ1xþ
ũ3
3!

x3 þ…; ð21Þ

ṽ ¼ ṽ2
2
x2 þ ṽ4

4!
x4 þ…; where

ṽ2 ¼
2

3
ũ1ðẼ − m̃f þm2Λ̃ξ̃0ũ21Þ: ð22Þ

The expansion coefficients f2, ξ̃0, and ũ1 appearing here are
free parameters whose values cannot be found from
Eqs. (10)–(13).
Equations (10)–(13) are solved numerically as a non-

linear problem for the eigenvalues μ̃, M̃, and ũ1 and for the
eigenfunctions f, ξ̃, ṽ, and ũ. Figure 1 depicts a typical
behavior of the solutions for fixed values of ξ̃0 and f2,
Fig. 2, for fixed values of ξ̃0 and Ẽ, and Fig. 3, for fixed

(a) (b)

(c) (d)

FIG. 2. Families of the particlelike solutions for ξ̃0 ¼ 0.5 and Ẽ ¼ 0.95 for the Proca-monopole-plus-spinball system with Λ̃ ¼ 1=9,
m̃f ¼ 1, m ¼ 3, g̃ ¼ 1, λ̃ ¼ 0.1 for different values of the parameter f2 (designated by the numbers near the curves). (a) The function
ũðxÞ=x. (b) The function ṽðxÞ=x. (c) The function fðxÞ. (d) The function ξ̃ðxÞ − ξ̃0.

NON-ABELIAN PROCA-DIRAC-HIGGS THEORY: PARTICLELIKE … PHYS. REV. D 99, 076009 (2019)

076009-5



values of f2 and Ẽ. Figure 4 shows the eigenvalues μ̃, M̃,
and ũ1 as functions of the parameters f2, Ẽ.
The asymptotic behavior of the solutions as x → ∞ is

fðxÞ ≈ 1 − f∞e−x
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2M̃2−μ̃2

p
−

g2u∞v∞
4m̃2

f − 4Ẽ2 þm2M̃2 − μ̃2

×
e−2x

ffiffiffiffiffiffiffiffiffiffiffi
m̃2

f−Ẽ
2

p
x

;

ξ̃ðxÞ ≈ M̃ − δξ̃; ũðxÞ ≈ ũ∞e
−x

ffiffiffiffiffiffiffiffiffiffiffi
m̃2

f−Ẽ
2

p
;

ṽðxÞ ≈ ṽ∞e
−x

ffiffiffiffiffiffiffiffiffiffiffi
m̃2

f−Ẽ
2

p
; ð23Þ

where f∞, ξ̃∞, ṽ∞, and ũ∞ are integration constants and the
function δξ̃ ≪ M̃ satisfies the asymptotic equation

δξ̃00 þ 2

x
δξ̃0 ¼ −M̃

�
f2∞e−2x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2M̃2−μ̃2

p

2x2
− 2λ̃ M̃ δξ̃

�

þ g̃2Λ̃
8

ðũ2∞ − ṽ2∞Þ2
x4

e−4x
ffiffiffiffiffiffiffiffiffiffiffi
m̃2

f−Ẽ
2

p
: ð24Þ

Its solution can be found in the form

δξ ¼ ξ∞
e−x

ffiffiffiffiffiffiffiffi
2λ̃M̃2

p

x
−

M̃f2∞
8ðm2M̃2 − μ̃2Þ

e−2x
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2M̃2−μ̃2

p

x2

þ g̃2Λ̃ðũ2∞ − ṽ2∞Þ2
128ðm̃2

f − Ẽ2Þ
e−4x

ffiffiffiffiffiffiffiffiffiffiffi
m̃2

f−Ẽ
2

p
x4

: ð25Þ

The dimensionless energy density of the system
in question can be obtained from Eq. (17). Figure 5 depicts
distributions of the energy density for different f2
[Fig. 5(a)], Ẽ [Fig. 5(b)], and ξ̃0 [Fig. 5(c)].

(a) (b)

(c) (d)

FIG. 3. Families of the particlelike solutions for f2 ¼ −0.6 and Ẽ ¼ 0.96 for the Proca-monopole-plus-spinball system with Λ̃ ¼ 1=9,
m̃f ¼ 1, m ¼ 3, g̃ ¼ 1, λ̃ ¼ 0.1 for different values of the parameter ξ̃0 (designated by the numbers near the curves). (a) The function
ũðxÞ=x. (b) The function ṽðxÞ=x. (c) The function fðxÞ. (d) The function ξ̃ðxÞ − ξ̃0.
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It is of great interest to follow the behavior of the
“magnetic” Proca field (we have been using the word
“magnetic” in quotation marks because the concept of a
magnetic field is not quite correct as applied to a Proca field).
The radial color “magnetic” field is defined as follows:

Ha
r ¼

1 − f2

gr2
: ð26Þ

The presence of this field enables us to speak of the Proca
monopole. Its asymptotic behavior is

Ha
r ðrÞ ≈

2

g
e−

r
r0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2M̃2−μ̃2

p

r2
: ð27Þ

It is seen from this expression that the Proca monopole
differs in principle from the ’t Hooft-Polyakovmonopole by
its asymptotic behavior. The graphs for the radial “mag-
netic” Proca field Ha

r are given in Fig. 6.

V. ENERGY SPECTRUM OF THE PARTICLELIKE
SOLUTIONS FOR FIXED ξ̃0

In this section we study the energy spectrum of the
particlelike solutions as a function of the tree parameters

f2, Ẽ, and ξ̃0. Each such solution describes a ball consisting
of the Dirac, Proca, and Higgs fields. Its structure is
described by Eqs. (10)–(13), using which we have con-
structed the corresponding regular solutions in Sec. IV.
Here, we find the energy spectrum of such a system and
demonstrate the presence of a mass gap for fixed ξ̃0.
Using the expression for the dimensionless energy

density ϵ̃ from Eq. (17), the dimensionless total energy
of the system in question is calculated as

W̃t ≡ Wt

ℏc=r0
¼ 4π

Z
∞

0

x2ϵ̃dx ¼ ðW̃tÞPm þ ðW̃tÞs: ð28Þ

Here, according to the decomposition (17), we have
separated the Proca monopole and spinball energies.
Solving the set of equations (10)–(13) numerically, we
have computed this energy for different values of f2, Ẽ, and
ξ̃0. Our strategy of studying the energy spectrum is as
follows: (i) We obtain energy spectra for different values of
ξ̃0. (ii) For the spectra obtained, we show the presence of
minimumof the energy, i.e., of themass gapΔ for a given ξ̃0,
Δðξ̃0Þ. (iii) We examine a behavior of Δ as a function of ξ̃0.

(a) (b)

(c)

FIG. 4. The eigenvalues M̃, μ̃ and ũ1 as functions of the parametersf2 and Ẽ for ξ̃ ¼ 0.5 for the Proca-monopole-plus-spinball systemwith
Λ̃ ¼ 1=9, m̃f ¼ 1, m ¼ 3, g̃ ¼ 1, λ̃ ¼ 0.1. (a) The dependence M̃ðf2; ẼÞ. (b) The dependence μ̃ðf2; ẼÞ. (c) The dependence μ̃1ðf2; ẼÞ.
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Three-dimensional and contour plots for the energy (28)
are given in Fig. 7. It is seen from Fig. 7(b) that there are
closed lines characterizing the presence of extremum of the
energy. In the case under consideration, this is a minimum
corresponding to the mass gap Δðξ̃0Þ for a given ξ̃0. The
approximate value of the dimensionless mass gap for the
values of the parameters used here (Λ̃ ¼ 1=9, m̃f ¼ 1,
g̃ ¼ 1, and m ¼ 3) is

Δ̃ðξ̃0 ¼ 0.8Þ≡ Δðξ̃0 ¼ 0.8Þ
ℏc=r0

≈ 25.5 for f2 ≈ −0.86;

Ẽ ≈ 0.98: ð29Þ

(For simplicity, below we omit the tilde by Δ.) Similar
graphs for the energy of the particlelike solutions can be
obtained for other values of ξ̃0 as well. In particular, Fig. 8

illustrates the behavior of the energy (28) in a wide range of
values of the parameters f2 and Ẽ for ξ̃0 ¼ 0.5.
The numerical computations, as well as Fig. 7, indicate

that for any fixed ξ̃0 (at least in the range 0.4 < ξ̃0 < 4.5
under investigation) there is a minimum value of the energy,
which can be called a mass gapΔðξ̃0Þ for a fixed value of ξ̃0.
Notice here the following important features of the

system under consideration:
(i) The particlelike solutions obtained describe objects

consisting of a Proca monopole and of a spinball
supported by strongly interacting non-Abelian
SU(2) Proca vector fields and nonlinear spinor
and scalar fields.

(ii) The numerical calculations enable us to speak with
certainty that for any fixed value of ξ̃0 there is a
minimum value of the energy, which can be called
a mass gap Δðξ̃0Þ for fixed ξ̃0; i.e., there is a
dependence Δðξ̃0Þ.

(a) (b)

(c)

FIG. 5. The energy density ϵ̃ðxÞ of the solution describing the Proca-monopole-plus-spinball system with Λ̃ ¼ 1=9, m̃f ¼ 1, m ¼ 3,
g̃ ¼ 1, λ̃ ¼ 0.1 for different values of f2 [Fig. 5(a)], Ẽ [Fig. 5(b)], and ξ̃0 [Fig. 5(c)]. The corresponding values of f2, Ẽ, and ξ̃0 are
designated by the numbers near the curves. (a) ξ̃0 ¼ 0.5, Ẽ ¼ 0.95. (b) ξ̃0 ¼ 0.5, Ẽ ¼ −0.95. (c) f2 ¼ −0.6, Ẽ ¼ 0.96.
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(a) (b)

(c)

FIG. 6. The “magnetic” Proca fieldHa
r ðxÞ of the solution describing the Proca-monopole-plus-spinball system with Λ̃ ¼ 1=9, m̃f ¼ 1,

m ¼ 3, g̃ ¼ 1, λ̃ ¼ 0.1 for different values of f2 [Fig. 6(a)], Ẽ [Fig. 6(b)], and ξ̃0 [Fig. 6(c)]. The corresponding values of f2, Ẽ, and ξ̃0
are designated by the numbers near the curves. (a) ξ̃0 ¼ 1.1, Ẽ ¼ 0.96. (b) ξ̃0 ¼ 0.5, f2 ¼ −0.95. (c) f2 ¼ −0.6, Ẽ ¼ 0.96.

(a) (b)

FIG. 7. (a) 3D and (b) contour plots of the energy W̃t from (28) for ξ̃0 ¼ 0.8 as a function of f2 and Ẽ.
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(iii) The numerical analysis does not allow us to deter-
minewhether there is a minimum value of the energy
(a global value of the mass gapΔ) in a whole range of
possible values of the parameter ξ̃0. The analysis of
the behavior of Δðξ̃0Þ in the range 0.4 < ξ̃0 < 4.5

permits us to assume thatΔðξ̃0Þ !ξ̃0→∞f either const
or ∞ .

(iv) The numerical analysis indicates that as Ẽ → 1, the
total energy W̃t → þ∞.

(v) Regular solutions of Eqs. (10)–(13) exist not for all
pairs ff2; Ẽg. It is seen from Fig. 8 that for some
fixed f2 there exists a critical value Ẽcr for which the
solution still exists but no solutions are found for
Ẽ < Ẽcr. According to the numerical calculations,
the energy of the solutions obtained tends to infinity

when Ẽ → Ẽcr, i.e., W̃t !Ẽ→Ẽcr þ∞.

(a) (b)

FIG. 8. (a) 3D and (b) contour plots of the energy W̃t from (28) for ξ̃0 ¼ 0.5 as a function of f2 and Ẽ.

FIG. 9. The positions of minima of the energy W̃t. The numbers
near the points denote the corresponding values of ξ̃0.

FIG. 10. The minima of the energy W̃t as a function of ξ̃0.
FIG. 11. The energies W̃t, ðW̃tÞPm, and ðW̃tÞs as functions of
the parameter ξ̃0 for f2 ¼ −7 and Ẽ ¼ 0.5.
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VI. ANALYSIS OF THE BEHAVIOR OF THE MASS
GAP Δðξ̃0Þ FOR DIFFERENT ξ̃0

In Sec. IV, we have shown that the set of equations
describing the Proca-Dirac-Higgs system has particlelike
Proca-monopole-plus-spinball solutions. In Sec. V, we have
studied the energy spectrum of the solutions for fixed
values of the parameter ξ̃0 and have shown that the
spectrum possesses a mass gapΔðξ̃0Þ for some values of ξ̃0.
The next step is to study the behavior of the mass gap

Δðξ̃0Þ in a whole range of values of the parameter ξ̃0.
The significance of this problem is due to the fact that if the
quantity Δðξ̃0Þ has a global minimum this means that the
Proca-Dirac-Higgs theory has a mass gap. The problem of
the presence or absence of a mass gap is of great

importance in modern quantum field theory. Its solving
would practically mean solving the problem of a non-
pertubative quantization, and this is necessary, for instance,
in constructing a theory of strong interactions. In the
present paper we study a classical field theory based on
the coupled set of the Proca, nonlinear Klein-Gordon, and
Dirac equations. It seems to us that the presence of a mass
gap, even in a classical field theory, would be of great
interest since it would allow one to get insight into the
reason for its appearance.
To study the question of the presence of the mass gap in a

whole range of values of the parameters f2, Ẽ, and ξ̃0, it is
necessary to calculate Δðξ̃0Þ for 0 < ξ̃0 < ∞ and to check
whether or not there is a global minimum of this function.
Figure 10 shows this curve in the range 0.4 < ξ̃0 < 4.5.

(a) (b)

(c) (d)

FIG. 12. Families of particlelike solutions for f2 ¼ −7 and Ẽ ¼ 0.5 for the Proca-monopole-plus-spinball system with Λ̃ ¼ 1=9,
m̃f ¼ 1, m ¼ 3, g̃ ¼ 1, λ̃ ¼ 0.1 for different values of the parameter ξ̃0 (designated by the numbers near the curves). The symbols j∘j
mark the points where (i) in Figs. 12(a) and 12(b), the numerical solutions for the functions f and ξ̃match with the asymptotic solutions
(23) and (25); (ii) in Figs. 12(c) and 12(d), for the functions ũ and ṽ, we sought a numerical solution of only two equations (12) and (13)
with replacing the functions f and ξ̃ by the asymptotic expressions (23) and (25). (a) The function fðxÞ. (b) The function ξ̃ðxÞ − ξ̃0.
(c) The function ũðxÞ=x. (d) The function ṽ=x.
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Unfortunately, deriving solutions for small f2 and large ξ̃0
runs into great technical difficulty: it is impossible to find
eigenvalues of μ̃, M̃, and u1 to the necessary accuracy.
The positions of minima of the energy (28) on the plane

ff2; Ẽg are illustrated by Fig. 9 for different values of ξ̃0.
Notice that numerical errors in calculating magnitudes and
positions of minima of the energy Δðξ̃0Þ are quite large,
and perhaps this leads to shifting the points with
Δðξ̃0 ¼ 0.6; 0.8Þ and Δðξ̃0 ¼ 1.1; 1.5Þ.
Searching for the mass gap Δðξ̃0Þ for ξ̃0 > 4.5 runs into

the aforementioned technical problems. For a qualitative
understanding what can happen for large ξ̃0, we have
investigated dependencies of the total energy, W̃t, and of
the energies of the monopole, ðW̃tÞPm, and of the spinball,
ðW̃tÞs, on the parameter ξ̃0 for fixed values of the
parameters f2 and Ẽ. Taking into account the formulas
(16) and (18), the quantities ðW̃tÞs and ðW̃tÞPm describe the
total energy of the system under investigation as a sum of
the energies of the Proca monopole and of the spinball:
W̃t ¼ ðW̃tÞPm þ ðW̃tÞs. The results of calculations are
given in Fig. 11. It is seen that there are local minima
for all the energies for some values of ξ̃0. The behavior of
these quantities when the parameter ξ̃0 increases further is
unclear, and it requires further investigations. From an
analysis of the graphs, we can assume that ðW̃tÞs will tend
to zero and ðW̃tÞPm will tend to a constant value as ξ̃0 → ∞;

this would mean that W̃t !ξ̃0→∞
const for fixed f2 and Ẽ. This

observation permits us to assume that such a behavior
persists for all values of f2 and Ẽ; this may result in the
existence of a mass gap in the energy spectrum of the
particlelike solutions under investigation within a classical
field theory containing a non-Abelian Proca field plus
nonlinear Higgs and Dirac fields.
For understanding the behavior of the energies W̃t,

ðW̃tÞPm, and ðW̃tÞs as functions of ξ̃0, we show in
Fig. 12 the graphs of the functions fðxÞ, ξ̃ðxÞ, ũðxÞ=x,
and ṽðxÞ=x. It is seen that with increasing ξ̃0 characteristic
magnitudes of the functions f and ξ̃ decrease, while those
of the functions ũ=x and ṽ=x increase. Such a behavior of
the functions leads at least to not decreasing (and maybe
even to increasing) the energy of the Proca monopole,
which basically depends on the functions f and ξ̃, and to
increasing the energy of the spinball, which basically
depends on the functions ṽ and ũ. For large values of
ξ̃0, the solutions are derived by matching numerical
solutions (which are obtained up to some radius x1) with
the corresponding asymptotic functions from (23) and (25).

VII. DISCUSSION AND CONCLUSIONS

We have considered non-Abelian SU(2) Proca-Dirac-
Higgs theory where a massive vector field interacts
with nonlinear scalar and spinor fields. Within such

theory, regular, nontrivial particlelike solutions descri-
bing finite-energy configurations—Proca-monopole-plus-
spinball systems—have been constructed. A distinctive
feature of the Proca monopole is that, unlike the
’t Hooft-Polyakov monopole, the corresponding color field
decays exponentially at infinity. In our opinion, the main
reason why such solutions can exist is the presence of the
mass of the non-Abelian Proca field, and also because of
the structure of the Dirac equation leading to the existence
of regular solutions of this equation.
Note that both a Proca monopole and a spinball can exist

separately; i.e., one can get a Procamonopole as a solution of
Eqs. (10) and (11) with ũ ¼ ṽ ¼ 0. Also, there exists a
particlelike solution (a spinball) of the nonlinear Dirac
equation (12) and (13) with f ¼ 1 and ξ ¼ const (see
Refs. [11,12]). The basic distinction between these two
solutions is that the energy spectrum of the Proca monopole
does not have a mass gap, while for the particlelike solution
of the nonlinear Dirac equation such a gap does exist
[11,12]. This means that if the mass gap exists for the
complete set of equations (10)–(13), this is a consequence of
the presence of the nonlinear Dirac field. Note in this
connection that in the 1950s the mass gap has in fact been
found in Refs. [11,12] in solving the nonlinear Dirac
equation. However, the authors did not use such a term,
but said of “the lightest stable particle”. Those papers were
devoted to study of the nonlinear Dirac equation, and
W. Heisenberg offered to use it as a fundamental equation
in describing the properties of an electron. To the best of our
knowledge, the mass gap was first obtained in Refs. [11,12].
We have calculated the energy spectrum of the corre-

sponding solutions for fixed values of ξ̃0 and have shown
that there is a minimum value of the energy [the mass gap
Δðξ̃0Þ for a fixed ξ̃0]. Also, we have studied the dependence
of Δ on ξ̃0 in the range 0.4 < ξ̃0 < 4.5. In order to
understand whether the mass gap exists in a whole range
of possible values of ξ̃0, we have examined the behavior of
the total energy of the particlelike solution, as well as the
behavior of the energies of the Proca monopole and of the
spinball, which make up the particlelike configuration
under consideration, for some fixed values of the param-
eters f2 and Ẽ. As a result, we have shown that these
energies have local minima, and the energy of the Proca
monopole possibly tends to a constant value. This permits
us to suggest that such a behavior will occur for any values
of f2 and Ẽ; this eventually will lead to the appearance of a
mass gap in a whole range of values of the parameters f2,
Ẽ, and ξ̃0 determining the characteristics of the particlelike
solutions under investigation.
Thus, one of the purposes of this paper is to study the

energy spectrum of particlelike solutions and to obtain the
mass gap Δðξ0Þ for a fixed ξ0. All this permits us to
understand the mechanism of the occurrence of a mass gap
in Proca-Dirac-Higgs theory: the reason is that the Dirac
equation is nonlinear. Bearing this in mind, one can assume
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that a similar mechanism may also be responsible for the
appearance of a mass gap in QCD. For this, however, one
has to understand how the nonlinear Dirac equation may
occur in QCD. This can happen as follows. In the
Lagrangian, the interaction between quarks and gluons is
described by the term ˆ̄ψλBÂμψ̂ , where ψ̂ ¼ hψ̂i þ cδψ ,
Âμ ¼ hÂμi þ cδAμ, hψ̂i, hÂμi are valence quarks and gluons,
and cδψ , cδAμ are sea quarks and gluons; λB is the Gell-Mann
matrices. One can assume that the quantum average of the
term hcδψ̄λBcδAμ

cδψi will approximately look like

hcδψ̄λBcδAμ
cδψi ≈ ϕðξ̄ξÞ2, where the field ϕ approximately

describes the sea gluons and the spinor field ξ approx-
imately describes the sea quarks. Thus, in QCD, there can
occur the nonlinear Dirac equation which approximately
describes the interaction between sea quarks and gluons.
Summarizing, one can say that the following mechanism of
the occurrence of a mass gap in QCD is suggested: the
nonperturbative interaction between sea quarks and gluons
is approximately described by a nonlinear spinor field, the
presence of which leads in turn to the occurrence of a mass
gap in QCD.
Thus, the following results have been obtained:
(i) Particlelike solutions of the type Proca-monopole-

plus-spinball have been found in some range of
values of the system parameters f2, Ẽ, and ξ̃0.

(ii) For such solutions, the energy spectra for some
values of the parameter ξ̃0 have been constructed. It
was shown that they possess a minimum Δðξ̃0Þ.

(iii) The behavior of Δðξ̃0Þ as a function of the parameter
ξ̃0 has been studied.

(iv) It was shown that the solutions obtained give rise to
a Meissner-like effect, which consists in the fact that
a maximum value of the SU(2) gauge Proca field is
located there where the Higgs field has a minimum.

(v) For the Proca monopole, it was shown that the Proca
color “magnetic” field decreases asymptotically
according to an exponential law.

(vi) The non-Abelian Proca monopole obtained differs in
principle from the ’t Hooft-Polyakov monopole in
the sense that the Proca monopole is topologically
trivial.

(vii) The main reason for the existence of the mass gap
Δðξ̃0Þ is due to the presence of the nonlinear
Dirac field.

(viii) The mechanism of the occurrence of a mass gap in
QCD has been suggested.

Note that when one tries to prove the presence (or
absence) of the mass gap Δ, he/she encounters great
technical difficulties related to the fact that with increasing
ξ̃0 the mass gap Δðξ̃0Þ shifts towards f2 → 0 and Ẽ → mf.

But for such values of f2 and Ẽ the eigenvalues μ̃, M̃, and
ũ1 should be given to high accuracy, leading to such
technical problems. In order to assume what can happen
with the function Δðξ̃0Þ with increasing ξ̃0, we have studied
the behavior of the total energy W̃t, as well as the energies
of the Proca monopole, ðW̃tÞPm, and of the spinball, ðW̃tÞs,
as functions of ξ̃0 for some fixed values of the parameters
f2, Ẽ and have shown that in this case all the energies have
a minimum (at least a local one). This allows us to hope that
such a minimumwill occur for any values of the parameters
f2 and Ẽ; this in turn assumes that there will be a minimum
value of the energy W̃t in a whole range of values of the
parameters f2, Ẽ, and ξ̃0.
Numerical study of the energy spectrum of a spinball

[when one solves only Eqs. (12) and (13)] indicates that its
energy goes to infinity when Ẽ → m̃f and when Ẽ → 0;
this corresponds to the fact that somewhere inside this
region there is a minimum value of the energy (a mass
gap of the spinball). Our numerical calculations indicate
that apparently when Proca and Higgs fields are applied
the energy of our system also goes to infinity, but now
when Ẽ → m̃f or when f2 tends to some critical value
f2 ¼ ðf2Þcr.
Taking into account all the above, the existence of a mass

gap within a theory containing a SU(2) Proca field plus
nonlinear Higgs and Dirac fields is not impossible. To
confirm this, it is necessary to carry out further inves-
tigations in this direction which are connected with large
technical problems associated with solving a nonlinear
eigenvalue problem when eigenvalues must be determined
to high accuracy.
Finally, note that the particlelike solutions obtained here

can be considered as those describing a spinorial Proca
glueball. In QCD, a glueball is a hypothetical particle
consisting only of a gauge Yang-Mills field in the absence
of quarks. In our case a spinor field is present, but this is a
nonlinear field that does not describe quarks. Since the
solutions obtained are supported by non-Abelian Proca and
nonlinear Higgs and Dirac fields, we can refer to a
configuration described by such solutions as a spinorial
Proca glueball (or a Proca-monopole-plus-spinball system).
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