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Abstract—For field theories in which no small parameter is available, we use Heisenberg’s quantization
procedure to propose a definition of nonperturbative quantum states in terms of the complete set of Green
functions. We present the corresponding quantization schemes in the case of Einstein gravity and gauge
theories. To illustrate the procedure of quantization, we show that: (1) modified theories of gravity appear as
an effective approximation of nonperturbative quantum gravity; (2) the Wheeler-DeWitt equations appear
as a sort of approximation of the quantization procedure á la Heisenberg, and (3) it is possible to carry out
explicit nonperturbative calculations in quantum chromodynamics, and we obtain the energy spectrum of a
quantum monopole and some thermodynamic quantities for a gas of noninteracting quantum monopoles.
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1. INTRODUCTION

In theoretical physics, it is now widely believed
that the physical world has an intrinsic quantum na-
ture. It should, therefore, be possible to develop an
exact quantum description of all physical systems.
However, this is not the case. Indeed, a quantum-
mechanical description implies solving the Schrödin-
ger equation for a wave function. Simple mechanical
systems can be treated in this way, and idealized so-
lutions can be found analytically. Nevertheless, more
realistic physical systems imply a direct numerical
solution of Schrödinger’s equation, using a finite-
element approximation for the operators involved in
the corresponding differential equation. In general,
this method is very ineffective due to a large number
of resulting variables. It is, therefore, necessary to
replace the physical system with an idealized model
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which admits an exact solution. Then, one tries to
determine a perturbation series for the perturbation
operator which is determined by the difference be-
tween the Hamiltonian of the physical system and the
Hamiltonian of the idealized model. This approach
can be applied only if there exist small parameters
with respect to which the perturbation operator can
be expanded. Most physical systems, however, do not
permit the existence of such a small parameter that
could be used in the framework of perturbation theory.
Moreover, it can happen that the small parameter
exists, but the perturbation series has a vanishing
convergence radius. In all these cases, a nonpertur-
bative approach is necessary in order to describe the
quantum properties of the physical system.

An essential component of perturbative quantiza-
tion is the Fock space of quantum states which is
constructed as follows. The perturbative approach
allows us to introduce the creation and annihilation
operators â† and â, respectively. Then, the vacuum
state |vac〉 is introduced by means of the condition
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â|vac〉 = 0. Analogously, a quantum state with n

particles is defined as |n〉 = (â†)n|vac〉. The Fock
space is understood as a sum of all n−particle states
|n〉. We see that the concept of a particle is essential
for introduce the Fock space. If there is no small
parameter, the Fock space becomes inadequate, and a
description of the physical system in terms of particles
is problematic. This is an important fact that must
be considered in the construction of any alternative
nonperturbative approach to quantization.

The problem of handling physical systems with no
small parameter has been treated in many different
ways. For instance, direct numerical integration of
the Schrödinger equation or the corresponding field
equations, in which an auxiliary parameter (the step of
integration) is introduced, has been used intensively.
In this connection, lattice models are commonly used
in quantum field theory; in this case, the lattice con-
stant, which is an auxiliary nonphysical parameter,
used to calculate functional integrals, determines the
accuracy of the lattice approach. Numerical methods
usually encounter technical problems due to the ex-
ponential growth of calculations. Moreover, physical
systems with a large number of degrees of freedom
lead to instabilities of the numerical approaches.

Nonnumerical approaches include the Hartree-
Fock method, the procedures for approximating
Hamiltonians, the density functional theory, etc.
Most of these nonnumerical methods can solve the
main problem of estimating the physical properties of
the ground state. However, successive states cannot
in general be calculated with the required accuracy,
and the determination of the spectrum of the entire
system is a difficult task in most of systems [1]. Some
of these difficulties are overcome by the operator
method which reduces all differential calculations
to algebraic calculus with matrix elements of the
operators. The eigenfunctions and eigenvalues of the
Hamiltonian are easily calculated in the zeroth ap-
proximation, whereas successive approximations lead
to convergent sequences, so that physical quantities
can be estimated with any desirable accuracy [2]. In
the context of supersymmetric quantum field theory,
the orbifold equivalence and other methods have been
applied to understand quark confinement in gauge
theories. These investigations have also provided
some progress towards formulation of a nonpertur-
bative definition of the path integral in quantum field
theory [3].

Although there have been several attempts to
construct a consistent approach to nonperturbative
quantization, and many interesting technical results
have been obtained, no definite approach has been
formulated so far. In view of this situation, we believe
that it is convenient to explore alternative methods
which could shed some light on the complexity of

the problem. In this work, we follow this strategy
and propose a definition of nonperturbative quantum
states which can be used in a consistent manner to
find certain characteristics of quantum systems. This
new definition is based on the use of Green functions
in Heisenberg’s quantization procedure. The main
idea is simple. Since the Green functions are solu-
tions of the corresponding operator field equations,
they should contain all quantum information about
the physical system.

A major problem of modern theoretical physics is
quantization of the gravitational field. We consider
this important case here and present a review of the
quantization scheme for Einstein gravity, in which
quantum fluctuations and two-point quantum cor-
relations of the metric are considered. We compare
the Wheeler-DeWitt equations with the nonpertur-
bative quantization scheme of Einstein gravity and
show explicitly the conceptual differences of the two
approaches. In addition, we study the case of an
SU(3) gauge theory.

To exemplify our method, we will study in this work
the thermodynamics of a quantum monopole and of
a dilute monopole gas. The main difference between
the thermodynamics of perturbatively quantized fields
and the thermodynamics of nonperturbatively quan-
tized fields is that in the first case a physical system
can be enclosed in an arbitrary volume filled with par-
ticles — quanta (for example, photons). In the second
case the fields can create self-supporting objects with
fields exponentially decaying at infinity. These objects
are protons, neutrons, nuclei, glueballs, etc. In the
first case, calculation techniques for determining the
partition function are well known. In the second case,
the energy of such a physical system is practically
concentrated in a restricted region of space without
any walls. The linear size and volume of this region
are determined by some field parameters.

In QCD lattice calculations, it was shown with
great certainty that the QCD vacuum has a complex
structure: it contains magnetic monopoles [5–8]. A
great deal of works has been devoted to studies of
monopoles in different aspects, including the problem
of confinement in QCD, the problem of proton decay,
in cosmology and astrophysics, etc. (see, e.g., an
extensive literature on the subject in the book [9]).
In the context of the present paper, we just make a
brief mention of some of these works devoted to a
monopole condensate and a dilute gas of monopoles.
In [10, 11], the dual superconductivity of vacuum in
SU(3) gauge theory is investigated by constructing
a disorder parameter which signals monopole con-
densation. In those studies, the Abelian projection
method was used, within which, as some believe, it is
possible to get monopoles that are more relevant than
others for confinement. Numerical studies of Abelian
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monopoles in lattice gauge theory are presented
in [12, 13]. In turn, a study of SU(2) dilute monopole
gas was initiated by Polyakov’s paper [14], where, in
the framework of semiclassical quantization of SU(2)
monopole solutions, the effect of Debye screening
by a dilute gas of monopoles was demonstrated.
Developing this idea, the dilute gas of monopoles
was considered in different aspects (including the
thermodynamic ones) in [15–21]. These studies
include a consideration of magnetic monopoles in
a fully nonperturbative way in lattice Monte Carlo
simulations [21]. In turn, the authors of [19] come
to the conclusion that even though the Abelian
monopole gas in 3-dimensional SU(2) gluodynamics
is not dilute, the dilute monopole gas approximation
is adequately consistent with the measurements of
monopole density and the Debye screening mass.

Consistent with all this, one of the purposes of the
present paper is to demonstrate the fact that there
is a possibility to study thermodynamics of a dilute
gas of monopoles within the nonperturbative quan-
tization à la Heisenberg. To do that, we first examine
the thermodynamics of a single quantum monopole
obtained by one of us earlier in [22], after which we
compute the thermodynamic functions of the dilute
gas of monopoles.

The physical system under investigation is a
quantum condensate filled with quantum monopoles.
The quantum monopoles are supported by those
degrees of freedom of the SU(3) gauge field that
belong to the SU(2) subgroup of the SU(3) gauge
field, i.e., SU(2) ⊂ SU(3). The quantum conden-
sate is described by the coset degrees of freedom
SU(3)/SU(2).

There is a crucial difference between these degrees
of freedom: the SU(2) fields have a nonzero quantum
average with quantum fluctuations around this aver-
age. The dispersion of these quantum fluctuations
is approximately described as some constant deter-
mined from solving a nonlinear eigenvalue problem.
To find quantum averages of the SU(2) field, we use
the Yang-Mills equation corresponding to the SU(2)
subgroup. In turn, the quantum condensate is sup-
ported by the coset space gauge fields, which have
a zero quantum average and nonzero dispersion, and
whose expectation value over all color and spacetime
indices is described by the scalar field φ.

To describe the physical system under consider-
ation, we employ the two-equation approximation
of [22, 23], within which the Yang-Mills and scalar-
field equations are solved as a nonlinear eigenvalue
problem. Having such a solution, we calculate the
energy spectrum of a quantum monopole that enables
us to evaluate a partition function for a single quan-
tum monopole and also to get all the corresponding
thermodynamic functions.

In computing the partition function of the mono-
pole gas, we take into account the internal structure
of monopoles that results in the appearance of an
extra term in the expression for the energy of the
physical system under investigation. To simplify the
difficult problem of determining the energy of the
system of quantum monopoles, we assume that the
motion of monopoles (and hence their kinetic energy)
can be represented as the motion of pointlike parti-
cles.

This work is organized as follows. In Sec. 2, we
use Heisenberg’s quantization to propose a definition
of nonperturbative quantum states in terms of Green
functions. Some properties of this definition are also
discussed. We present the scheme of quantization
in the case of Einstein gravity and in the case of an
SU(3) gauge field. In Sec. 4, in the framework of
the two-equation approximation, we construct the
energy spectra of a single monopole and of a flux tube
which can connect a monopole and n antimonopole
in the vacuum of QCD. Using these solutions, we
evaluate numerically the partition function of a single
monopole and calculate the corresponding thermody-
namic quantities. In Sec. 5 we consider a nonrel-
ativistic dilute gas of noninteracting monopoles, for
which we find the partition function and derive the
resulting thermodynamics. In Sec. 6 we demonstrate
the relationship between one of free parameters of our
system and the typical energy scale of QCD. Finally,
in Sec. 7 we summarize the results.

2. NONPERTURBATIVE QUANTUM STATES

The absence of a small parameter in a physical
system prevents it from being quantized perturba-
tively and, consequently, the Fock space from be-
ing constructed explicitly, although a formal math-
ematical definition is available as a special case of
the Hilbert space. This means that alternative ap-
proaches might be considered in order to characterize
nonperturbative quantum states. As an alternative
approach, we will consider, in the following analysis,
Heisenberg’s quantization method [4]. To be more
specific, consider a Lagrangian density functional
L(ΦA) for a set of fields ΦA(x). The variational
principle leads to the field equations

DL ≡ ∂

∂xμ

(
∂L
∂ΦA

,μ

)
− ∂L

∂ΦA
= 0. (1)

According to Heisenberg’s procedure, the first step
towards nonperturbative quantization of a classical
system consists in replacing the classical fields ΦA

with the corresponding operators Φ̂A. Then, the
quantum counterpart of the above field equations is

DL̂ = 0, L̂ = L̂(Φ̂A). (2)
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In general, there is no method of solving this kind
of operator equation. To avoid this difficulty, one
can alternatively consider the average of the operator
equation over all possible products of the field oper-
ator ΦA, i.e., one considers the entire set of Green
functions which are determined by means of the set
of equations 〈

Q
∣∣∣T (DL̂

)∣∣∣Q〉 = 0,〈
Q
∣∣∣T (Φ̂A(x1)DL̂

)∣∣∣Q〉 = 0,〈
Q
∣∣∣T (Φ̂A1(x1)Φ̂

A2(x2)DL̂
)∣∣∣Q〉 = 0,

· · · = 0,〈
Q
∣∣∣T (Φ̂A1(x1)Φ̂

A2(x2) · · · Φ̂An(xn)DL̂
)∣∣∣Q〉 = 0,

· · · = 0. (3)

Here T is the time-ordering operator. This represents
an infinite set of differential equations that must be
solved for any particular physical system; if this can be
done, we end up with an infinite set of Green functions
which should contain all physical information about
the field operators and the quantum states of the
system. It then follows that we can identify the set
of nonperturbative quantum states with the set of
Green functions. This is the main observation that
allows us to formally define nonperturbative quantum
states in terms of Green functions.

We, therefore, propose the following nonperturba-
tive quantization scheme.
(1) The quantum states are defined as a set of all
Green functions that are special solutions of the cor-
responding operator equations. This means that the
set of all nonperturbative quantum states represents
a generalization of the Fock space.
(2) All physical information of the physical system is
encoded in the Green functions, i.e., average values
of all physical quantities, their dispersion, scattering
amplitudes and so on.
(3) The properties of quantum operators are also
defined in terms of the Green functions.

According to the above scheme, the Green func-
tions determine quantum states and the properties of
quantum operators and their commutation relations
as well.

Of course, solving an infinite set of equations is
not possible, unless we come up with a method able
to recursively solve the equations or to truncate the
equation series. In general, it is not an easy task.
Nevertheless, the situation is not hopeless since ex-
amples can be found in which this procedure leads to
consistent results. Consider, for instance, the case
of a linear field theory. In this case, it is possible to
calculate the propagator; then, all Green functions

can be represented as polylinear combinations of the
propagator. In other words, Heisenberg’s nonper-
turbative approach is simply equivalent to canonical
quantization of linear systems in terms of propaga-
tors. We thus see that our definition of nonpertur-
bative quantum states in terms of Green functions is
trivially realized in the case of linear field theories.

An important consequence of defining quantum
states as above is that the classical limit, which is
usually a difficult task in most nonperturbative ap-
proaches, can easily be handled. Indeed, if all Green
functions can be represented as products of the field
functions, then the system is classic. Consequently,
to obtain the classical limit, it is necessary to repre-
sent the complete set of Green functions in terms of
standard field functions. This can be considered as a
nontrivial advantage of our definition of nonperturba-
tive quantum states.

2.1. Modified Gravities

To illustrate the above ideas on nonperturbative
quantization of strong interacting fields, we will now
consider the case of quantum gravity. It should be
mentioned that the approach we present in this sec-
tion is by no means a complete approach to quan-
tization of gravity. In fact, a very important aspect
of such a theory should be discretization of space
itself. This has been done with certain restrictions
only in loop quantum gravity [28]. Here, we restrict
ourselves to a description of the main equations which
must be solved in order to understand, to some extent,
the meaning of nonperturbative quantum gravity à la
Heisenberg. The operator equation (2) can be written
in the case of Einstein gravity as

Ĝμν = R̂μν −
1

2
ĝμνR̂ = κT̂μν , (4)

In addition, one should be able to consider the quan-
tum nature of space (area and volume) and its inter-
action with the field. This is one of the issues that cur-
rently makes quantum gravity an unattainable theory.
One can, however, consider effective models that take
into account quantum fluctuations of space and their
physical consequences. This has been done, for in-
stance, in [26] for the case of a fluctuating volume and
its influence on the initial singularity.

According to Eqs. (3), the Green functions for
the gravitational field are defined by means of the
equations〈

Q
∣∣T (Ĝμν

)∣∣Q〉 = κ

〈
Q
∣∣T (T̂μν

)∣∣Q〉,〈
Q
∣∣T (ĝ(x1) · Ĝμν

)∣∣Q〉 = κ

〈
Q
∣∣T (ĝ(x1) · T̂μν

)∣∣Q〉,
· · · = · · · ,〈

Q
∣∣T (a product of g at different points
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(x1, · · · , xn) · Ĝμν

)∣∣Q〉
= κ

〈
Q
∣∣T (a product of g at different points

(x1, · · · , xn) · T̂μν

)∣∣Q〉. (5)

To treat any particular physical system, it is necessary
to solve the above equations in which the quantum
state |Q〉 will depend on the properties of the system
under consideration. Moreover, all operators in (4)
also depend on the properties of each particular phys-
ical system. In other words, the quantum information
of a physical system is encoded in the set of operators
ĝμν , R̂μν . . . and the quantum state |Q〉, which are
in turn completely determined by the set of Green
functions. In addition, analogous equations should be
taken into account formatter fields, which will depend
on the specific type of matter.

Notice that the Green functions are divergent in
the perturbative approach due to the use of Feynman
diagrams for their calculations. In the nonpertur-
bative approach proposed here, it is not the case.
For determination of the Green functions nonper-
turbatively, however, we must solve a set of highly
complicated differential equations, implying probably
new mathematical difficulties, which are absent in the
perturbative case.

In a series of papers [24–27] it was shown that the
set of equations (5) leads effectively to the appearance
of modified theories of gravity. To exemplify the gen-
eral procedure described in the previous section, we
here present a brief review of the main steps leading
to modified gravities.

In [25], it was shown that quantization of the
Einstein-Hilbert Lagrangian

L = − c2

2κ

√
−gR, (6)

effectively leads to a modified Lagrangian of the form

〈Q|LG(g + δ̂g)|Q〉 = Lmod

≈ − c2

2κ

√
−g
[
R+
(
Rμν −

1

2
gμνR
)
Kμν
]
, (7)

where Kμν is the quantum contribution determined
by the equations

〈Q|δ̂gμν |Q〉 = Kμν , (8)

ĝμν = 〈Q|gμν |Q〉+ δ̂gμν . (9)

We here consider a stationary case, so that there is no
need for the time-ordering operator.

An explicit expression for Kμν can be obtained
only in the framework of an exact theory of quantum
gravity, which is not known. However, we can use
the fact that (9) is a tensor equation, and therefore its
both sides must have the same tensorial properties.

Consequently, to construct the tensor Kμν we have
only two options, namely,

Kμν = F (R,RμνR
μν , · · · ) 〈Q |gμν |Q〉 , (10)

Kμν = F (R,RμνR
μν , · · · )Rμν

R
, (11)

where F (R,RμνR
μν , · · · ) is an unknown function,

and all tensors R,Rμν , . . . are computed for the met-
ric 〈Q|gμν |Q〉.

Moreover, in [24] it was shown that the second-
order deviations of the metric operator ĝμν

ĝμν ≈ gμν + δ̂gμν + δ̂2gμν , (12)

correspond to the Lagrangian

L̂(g + δ̂g + δ̂2g) ≈ L(g) + δL
δgμν

δ̂gμν

+
δ2L

δgμνδgρσ
δ̂gμν δ̂gρσ +

δ2L
δ2gμν

̂δ2gμν . (13)

The last term of this equation can be written as〈
Q
∣∣∣δ2L̂(g)∣∣∣Q〉 = δ2L(g)

δgμνδgρσ

〈
Q
∣∣∣δ̂gμν δ̂gρσ∣∣∣Q〉

+
δ2L
δ2gμν

〈
Q
∣∣∣̂δ2gμν
∣∣∣Q〉

= − c2

2κ

√
−g

{[
− 1

2
Gμνgαβδg

αβ + δRμν

− R

2
δgμν −

1

2
gμνδR

]
δgμν +Gμνδ

2gμν
}
. (14)

Then, to calculate the explicit expression of the quan-
tum contribution due to the last term of (12), we need
to compute the two-point Green function

Gμν,ρσ(x1, x2) =
〈
Q
∣∣δ̂gμν(x1) · δ̂gρσ(x2)∣∣Q〉. (15)

Considering that this is a tensor equation and assum-
ing that in the first-order approximation the Green
function can be expressed as a product of two func-
tions, we obtain

Gμν,ρσ (x1, x2) ≈ Pμν(x1)Pρσ(x2). (16)

Moreover, to find the Lagrangian for the modified
gravity theory, we must also compute the quantum
contribution 〈

Q
∣∣∣̂δ2gμν
∣∣∣Q〉 = Kμν . (17)

Then, considering the tensor character of Eqs. (16)
and (17), we can in general assume that

Pμν ,Kμν

= F (R,RμνR
μν , · · · )

{
either gμν ,

or Rμν/R,
(18)

GRAVITATION AND COSMOLOGY Vol. 25 No. 1 2019



6 DZHUNUSHALIEV et al.

where F (R,RμνR
μν , · · · ) is an unknown function.

Finally, we obtain the expression

〈
Q
∣∣δ̂2L∣∣Q〉 = −c2

κ

{
− 3

2
F 2RαβR

αβ

R

+ F
Rαβ

R

[
1

2
∇α∇ρ

(
F
Rρ

β

R

)
− 1

4
∇ρ∇ρ

(
F
Rαβ

R

)

− 1

4
∇α∇βF

]
− F

2
∇α∇β

(
F
Rαβ

R

)

+
1

2
Rσ

αRσβR
αβF

2

R
− 1

2
RαρβσR

ρσRαβF
2

R2

+
F

2
∇ρ∇ρF +

F 2R2

4

}
. (19)

This equation determines a modified theory of gravity
in which the quantum contributions correspond to the
average of the quantum fluctuations of the metric and
of the two-point quantum correlations of the metric.

The Lagrangians (7) and (19) determine modi-
fied gravity theories with field equations obtained by
means of variation with respect to gμν . Any solution
of these modified field equations describes a quantum
gravitational system in which the physical properties
of the quantum operator δ̂gμν and of the quantum
state |Q〉 are determined by Eqs. (8) and (18). Anal-

ogously, the properties of the operator ̂δ2gμν and the
quantum state |Q〉 are determined by Eqs. (17) and
(18).

2.2. Gauge Theories

In the case of gauge theories, nonperturbative
quantum states defined in terms of Green functions
can also be handled explicitly. For the sake of con-
creteness, let us consider an SU(3) gauge field. Then,
the operator equation (2) leads to the Yang-Mills
equations

Dν F̂
Aμν = 0, (20)

where

F̂B
μν = ∂μÂ

B
ν − ∂νÂ

B
μ + gfBCDÂC

μ Â
D
ν (21)

is the field strength operator; ÂB
μ is the gauge poten-

tial operator; B,C,D = 1, . . . , 8 are the SU(3) color
indices; g is the coupling constant; and fBCD are the
structure constants for the SU(3) gauge group.

The Yang-Mills operator equations (20) are equiv-
alent to an infinite set of equations for the Green
functions, i.e., 〈

T
(
DνF̂

Aμν(x)
)〉

= 0,〈
T
(
ÂB1

α1
(x1)DνF̂

Aμν(x)
)〉

= 0,

〈
T
(
ÂB1

α1
(x1)Â

B2
α2

(x2)Dν F̂
Aμν(x)
)〉

= 0,

. . . = 0,〈
T
(
ÂB1

α1
(x1) . . . Â

Bn
αn

(xn)DνF̂
Aμν(x)
)〉

= 0,

. . . = 0. (22)

This system possesses different particular solutions,
each of which determines a particular quantum state.
The physical properties of each state must be investi-
gated separately; however, one can expect that some
states will correspond to standard SU(3) configura-
tions. Notice that the problem of divergences that
occurs in the perturbative quantization approach is
not present here because we use a different method
to calculate the nonperturbative Green functions.

A construction similar to that described above was
used in [24, 25] to demonstrate that modified gravity
theories arise as a consequence of applying the non-
perturbative quantization procedure to general rela-
tivity.

3. WHEELER-DEWITT EQUATIONS

One of the attempts to quantize gravity is the so-
called Wheeler-DeWitt approach, which essentially
consists in assuming the validity of the stationary
Schrödinger equation of quantum mechanics in the
framework of Einstein’s theory of gravity. The start-
ing point are the

(0
μ

)
components of the Einstein

equations in which the components of the spatial
metric gab (a, b, ... = 1, 2, 3) are considered as gener-
alized configuration variables. Then, one introduces
the operators

ĝab(x) = gab(x), p̂ab(x) =
1

im2
P

δ

δgab(x)
. (23)

The operator p̂ab(x) is considered as being canoni-
cally conjugated to ĝab and is essentially given by the
variational derivatives δ/δgab . This operator replaces
the derivatives ġab in the components (0μ) of Einstein’s
equations. As a result, one obtains the Wheeler-
DeWitt equations, which are similar to the stationary
Schrödinger equation and can be written as(

− 1

2m2
P

Gab,cd
δ2

δgabδgcd

−m2
P
√
g3R

)
|Ψ[gab]〉 = 0, (24)

(
− 2

i
gab∇c

δ

δgbc

)
|Ψ[gab]〉 = 0, (25)

where

Gab,cd = g−1/2(gacgbd + gadgbc − gabgcd) (26)
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is the local DeWitt supermetric, and 3R is the 3D
scalar curvature; a, b, c, d = 1, 2, 3 are spatial indices.
The set of equations (25) represents the constraint
equations.

We now compare the Wheeler-DeWitt approach
with the nonperturbative quantization procedure de-
scribed in Section 2. To this end, we write Eqs. (5)
explicitly for μ = 0, ν = 1, 2, 3 as〈

R̂00 −
1

2
ĝ00R̂
〉
= 0, (27)

〈
R̂0a −

1

2
ĝ0aR̂
〉
= 0. (28)

This particular representation is to be compared with
Eqs. (24) and (25). The most important difference
between Eqs. (27), (28) and Eqs. (24), (25) is that the
following operators are not equal:

ĝab(x) 	= gab(x), (29)

p̂ab(x) 	= 1

im2
P

δ

δgab(x)
, (30)

and for this reason they are completely different from
the canonically conjugated operators (23).

Another important difference is that in the Whee-
ler-DeWitt approach one can define the operators
ĝab and ˆ̇gab(x) independently of the quantum state
Ψ[gab]. In the nonperturbative approach, it is not
possible. Indeed, the result of solving Eqs. (5) is the
entire set of Green functions that contain all quantum
information on the corresponding physical system. It
is not possible to write down separately the operators
and the quantum states in a particular specific form.
This implies that in the nonperturbative quantization
approach á la Heisenberg, the Green functions are
the only physical quantities that describe the physical
system and its properties. In particular, the defini-
tion of the quantum operators and their commu-
tation relations are completely determined by the
set of nonperturbative Green functions.

4. ENERGY SPECTRUM AND PARTITION
FUNCTION OF A QUANTUM MONOPOLE

IN CONTACT WITH A THERMOSTAT

To demonstrate how one can calculate thermo-
dynamic quantities for nonperturbatively quantized
fields, we employ the simplest object supported by
such fields, a quantum monopole [22].

4.1. Energy Spectrum of a Quantum Monopole

In general, it is not possible to solve the entire
set of equations (22); however, one can consider the
average quantum values as given by the classical
value of the potential p lus a fluctuation term that can

be used to truncate the set of equations. Indeed, this
procedure has been performed in [23], leading to the
result that Eqs. (22) reduce to a set of two equations,
namely,

D̃νF
aμν −
[(
m2
)abμν − (μ2

)abμν]
Ab

ν = 0, (31)

�φ−
(
m2

φ

)abμν
Aa

νA
b
μφ− λφ(M2 − φ2) = 0, (32)

where D̃μ is the gauge derivative of the subgroup
SU(2); (m2)abμν , (μ2)abμν , and (m2

φ)
abμν are quan-

tum corrections coming from the dispersions of the
operators δ̂A

aμ
and Âmμ:

Âaμ =
〈
Âaμ
〉
+ iδ̂A

aμ
, (33)〈

Âmμ
〉
= 0. (34)

The quantum averaging 〈. . .〉 in Eqs. (33) and (34)
is understood as averaging over the nonperturbative
quantum state defined in Section 2. Recall that such
a quantum state is determined by the entire set of
Green functions. In this case, the nonperturbative
quantum state is approximately determined by the
2-point Green functions (35), (36) and the 4-point
Green function (41) defined below.

The quantum corrections (m2)abμν , (μ2)abμν , and
(m2

φ)
abμν are determined by the 2-point Green func-

tions

Gmnμν(y, x) =
〈
Âmμ(y)Ânν(x)

〉
, (35)

Gabμν(y, x) =
〈
δ̂A

aμ
(y)δ̂A

bν
(x)
〉
. (36)

Since we are considering here only the stationary
case, the time-ordering operator is absent. We ap-
proximate the above functions as follows:

Gmnμν(y, x) ≈ −ΔmnAμAνφ(y)φ(x), (37)

Gabμν(y, x) ≈ ΔabBμBν, (38)

where Δab (a, b = 2, 5, 7), Δmn (m,n = 1, 3, 4, 6, 8)
are constants; AμAν ,BμBν = const.

The 2-point Green function (37) requires a more
detailed discussion. The point is that the Green
function Gmmμμ(x, x), being a dispersion, is defined
in the following manner:

Gmmμμ(x, x) = −Δmm (Aμ)2 φ(x)2 < 0, (39)

and it is a negative quantity. In quantum mechanics,
the dispersion is defined by the known expression〈(

L̂− 〈L〉
)2〉

=

∫
ψ∗
(
L̂− 〈L〉

)2
ψdV > 0, (40)

and it is a positive quantity if the operator L̂ is a
Hermitian conjugate operator. Similarly, in pertur-
bative quantum field theory, the dispersion is also a
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positive quantity. But this is not the case in our
problem. The point is that, according to our ap-
proach, a nonperturbative quantum state including
the dispersion is defined by solving the infinite set of
equations (22). One may find that the corresponding
solution has a negative dispersion. Such a quantum
state may be called a strange quantum state. Notice
that in our case, if the dispersion (39) is positive,
the corresponding solutions obtained below do not
exist. Note also that the quantum quantity (m2

φ)
abμν

is associated with the Green function Gabμν , and the
negativity of the corresponding dispersion is analo-
gous to the appearance of an imaginary mass for the
corresponding quantum in perturbative quantum field
theory. We notice that everything stated above applies
equally well to a dispersion of the quantity Âa

μ since
we took into account the negativity of the correspond-
ing dispersion by introducing the imaginary unit in
the formula (33).

Notice that to derive Eq. (32), we use the following
approximation of the 4-point Green function:

Gmnpq
μνρσ(x, y, z, u)

=
〈
Âm

μ (x)Ân
ν (y)Â

p
ρ(z)Â

q
σ(u)
〉
, (41)

G(4) ≈ λ

4

(
G(2) −M2big)2, (42)

where λ,M are some constants. A detailed procedure
of obtaining Eqs. (31) and (32) can be found in [22,
23].

To obtain equations describing a quantum mono-
pole, we employ the ansatz for the SU(2) gauge fields
in the standard monopole form in spherical coordi-
nates:

Aa
μ =

2

g
[1− f(r)]

×

⎛
⎜⎜⎜⎝
0 0 0 − sin2 θ

0 0 cosϕ − sin θ cos θ sinϕ

0 0 sinϕ sin θ cos θ cosϕ

⎞
⎟⎟⎟⎠ , (43)

φ = ψ(r)/g, (44)

where g is the coupling constant. Here a = 2, 5, 7,
and the spacetime index μ = t, r, θ, ϕ. Also, we
use the following approximation for ΔAB (A,B =
1, 2, . . . , 8):

ΔAB = diag(Δ11, δ2,Δ33,Δ44, δ5,Δ66,

δ7,Δ88) (45)

with Δ66 = Δ44, Δ44 +Δ88 = Δ11 +Δ33, and the
vectors Aμ,Bμ

Aμ = (A0,A1, 0, 0), (46)

Bμ = (B0, 0, 0, 0). (47)

As a result, we obtain the following set of equations
describing the quantum monopole:

−f ′′ +
f(f2 − 1)

x2
−m2(1− f)φ̃2

= −μ̃2(1− f), (48)

φ̃′′ +
2

x
φ̃′ = φ̃

[
m2 (1− f)2

x2
+ λ̃(φ̃2 − M̃2)

]
, (49)

where we have introduced the dimensionless variables
x = r/r0, φ̃ = r0ψ, μ̃ = r0μ, M̃ = gr0M , λ̃ = λ/g2.
Here r0 is a characteristic size of the system. It can
be rewritten in terms of some field constant ψ1 as
r0 = ψ−1

1 , which will be used below in defining the
partition function of the monopole. Note also that, for
simplicity, hereafter we set mφ = m.

The obtained set of equations is solved numerically
as a nonlinear eigenvalue problem for the eigenvalues
μ̃ and M̃ and the eigenfunctions f(x) and φ̃(x). To do
that, we choose the following boundary conditions at
the center::

f(0) = 1, f ′(0) = 0,

φ̃(0) ≡ φ̃0 = const, φ̃′(0) = 0. (50)

For numerical solving, it is necessary to have a solu-
tion in the neighborhood of the center, which can be
presented as a power series,

f(x) = 1 + f2
r2

2
+ . . . = 1 + f̃2

x2

2
+ . . . , (51)

φ̃(x) = φ̃0 + φ̃2
x2

2
+ . . . , (52)

where the expansion coefficient f2 is arbitrary (in
dimensionless units, f̃2 = f2/ψ

2
1) and φ̃2 = λ̃φ̃0(φ̃

2
0 −

M̃2)/3. Using these boundary conditions, we have
obtained families of solutions of Eqs. (48) and (49) for
different f̃2, shown in Fig. 1.

The asymptotic behavior of the eigenfunctions
f(x), φ̃(x) can be found by analyzing the set of
equations (48) and (49) in the following form:

f(x) ≈ 1− f∞e−x
√

m2M̃2−μ̃2
, (53)

φ̃(x) ≈ M̃ − φ̃∞
e−x

√
2λ̃M̃2

x
. (54)

Here f∞, φ̃∞ are constants whose values are deter-
mined by the parameter f̃2.
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Fig. 1. The eigenfunctions f(x) and φ̃(x) for different values of f̃2 = −0.02, −1.0, −5.0, −20.0, −60.0 and φ̃0 = 0.5, m = 2.

The dimensional energy density of the quantum
monopole under study is given by the expression

Lmp = εmp =
1

g2

[
1

2

f ′2

r2
+

ψ′2

2
+

1

4

(
f2 − 1
)2

r4

+
m2

2

(f − 1)2

r2
ψ2 − 1

2

μ2

r2
(f − 1)2

+
λ̃

4

(
ψ2 − g2M2

)2
+ g2ε∞

]
, (55)

and it is plotted in Fig. 2 in a dimensionless form.

1.0
−60 emp/2500~

~

~
~
~

emp/300
emp/20
emp
3000 emp

−20
−5
−1

−0.02

~emp

0.8

0.6

0.4

0.2

0

5
x

43210

Fig. 2. The dimensionless monopole energy density
ε̃mp(x) from (55) for different values of f̃2 = −0.02, −1.0,
−5.0, −20.0, −60.0.

Using (55), the total energy is calculated as follows:

Emp = 4π

∞∫
0

εmpr
2dr =

4π

g2r0

∞∫
0

ε̃mpx
2dx

=
4πψ1

g2

∞∫
0

ε̃mpx
2dx =

4π�cψ1

g̃2

∞∫
0

ε̃mpx
2dx

=
4π�cψ1

g̃2
Ẽmp, (56)

where we have introduced the dimensionless coupling
constant g̃2 = �cg2; ε̃mp and Ẽmp are the dimen-

8

6

4

2

M
~
μ

Emp

λ = 0.1~
~φ0 = 0.5
m = 2

~
~

0
0
~
f2

−10−20−30−40−50−60

Fig. 3. Dependences of the monopole total energy Ẽmp

from (56) and of the eigenvalues μ̃, M̃ on the parameter
f̃2.
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Table 1. The eigenvalues μ̃, M̃ and the energy Ẽmp as functions of the parameter f̃2 for the monopole

f̃2 −60 −40 −20 −10 −5

M̃ 5.202 4.36 3.238 2.421 1.833

μ̃ 5.364585475 4.65430559 3.68434345 2.95400186 2.406699273

Ẽmp 7.5457 5.85209 3.75006 2.35408 1.450611

f̃2 −3 −2 −1.6 −1.4 −1.2

M̃ 1.508 1.3029 1.2051 1.152 1.095

μ̃ 2.09391213 1.8908366 1.791790814 1.737779882 1.6793213

Ẽmp 1.00007 0.738754 0.622474 0.560275 0.496008

f̃2 −1 −0.9 −0.8 −0.6 −0.4

M̃ 1.0334 1 0.965 0.8885 0.7982

μ̃ 1.61522 1.5805559 1.5437766 1.4619973 1.364495

Ẽmp 0.42951 0.394122 0.35823 0.283069 0.200936

f̃2 −0.2 −0.1 −0.05 −0.03 −0.02

M̃ 0.687 0.6123 0.565 0.54228 0.52945

μ̃ 1.237047 1.1492464 1.09011125 1.0601184 1.042631

Ẽmp 0.11228 0.0607634 0.0332751 0.0216438 0.0199801

sionless energy density and total energy, respectively.
Figure 3 shows the dependences of the total energy
and of the eigenvalues μ̃, M̃ on the parameter f̃2, from
which one can see that the limiting values are

μ̃
f̃2→0−−−→ 1, M̃

f̃2→0−−−→ φ̃0, Ẽmp
f̃2→0−−−→ 0. (57)

Table 1 shows the eigenvalues μ̃, M̃ and the en-
ergy Ẽmp as functions of the parameter f̃2.

4.2. Energy Spectrum of a Flux Tube
In this section we consider an infinite flux tube

filled with a transverse magnetic field. Such a flux
tube of finite length can appear between a monopole
and an antimonopole in the vacuum of QCD.

To obtain the corresponding solutions, we use the
same two-equation approximation (31) and (32) and
the following ansatz describing the transverse mag-
netic field creating an infinite flux tube:

A2
ϕ =

ρ

g
w(ρ), (58)

φ =
ψ(ρ)

g
(59)

in cylindrical coordinates z, ρ, ϕ. The matrix ΔAB is
chosen in the form (45) with arbitrary Δ11, Δ33, Δ44,
Δ66, Δ88 and the vectors Aμ,Bμ

Aμ = (A0,A1,A2, 0) , (60)

Bμ = (B0,B1, 0, 0) . (61)

Using the ansatz (58)–(59) and the auxiliary
quantities (60)–(61), we obtain the following equa-
tions describing the infinite flux tube filled with a
transverse magnetic field and embedded in a quantum
condensate described by the scalar field φ:

−w̃′′ − w̃′

x
+

w̃

x2
+m2φ̃2w̃ = μ̃2w̃, (62)

φ̃′′ +
φ̃′

x
= φ̃
[
m2w̃2 + λ̃

(
φ̃2 − M̃2

)]
. (63)

In these equations we have used the dimensionless
variables x = ρ/ρ0, w̃ = ρ0w, φ̃ = ρ0ψ, μ̃ = ρ0μ,
M̃ = gρ0M , λ̃ = λ/g2.

Just as in the previous section, the set of equa-
tions (62) and (63) is solved as a nonlinear eigenvalue
problem with the boundary conditions

w̃(0) = 0, w̃′(0) = w1,

φ̃(0) ≡ φ̃0 = const, φ̃′(0) = 0. (64)

To obtain numerical solutions, we use a Taylor expan-
sion of the functions w̃(x), φ̃(x) at the origin:

w̃(x) = w̃1x+ w̃3
x3

6
+ . . . , (65)

φ̃(x) = φ̃0 + φ̃2
x2

2
+ . . . , (66)
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Fig. 4. The eigenfunctions w̃(x) and φ̃(x) for different values of w̃1 = 0.01, 0.1, 1.0, 5.0, 10.0 and φ̃0 = 1, m = 1.

where w̃1 is arbitrary and φ̃2 = λ̃φ̃0(φ̃
2
0 − M̃2)/2.The

corresponding numerical solutions are given in Fig. 4.
The asymptotic behavior of the eigenfunctions

w̃(x), φ̃(x) can be found from the analysis of Eqs. (62)
and (63) in the following form:

w̃(x) ≈ w̃∞
e−x

√
m2M̃2−μ̃2

√
x

, (67)

φ̃(x) ≈ M̃ − φ̃∞
e−x

√
2λ̃M̃2

√
x

. (68)

Here w̃∞, φ̃∞ are constants whose values are deter-
mined by the parameter w̃1.

With the above solutions at hand, one can calcu-
late the distribution of the transverse color magnetic
field H2

z , defined as

H2
z =

1

g

(
w′ +

w

ρ

)
. (69)

10
x

86420
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10 eft/100~
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~
~eft/30
eft
100 eft
104 eft

5
1

0.1
0.01

Fig. 5. The dimensionless flux tube energy density ε̃ft(x)
for different values of w̃1 = 0.01, 0.1, 1.0, 5.0, 10.0.

The dimensional flux tube energy density is given by
the expression

Lft = εft =
1

g2

[
w′2

2
+

ψ′2

2
+

w2

2r2
+

m2

2
w2ψ2

− μ2

2
w2 +

λ̃

4

(
ψ2 − g2M2

)2
+ g2ε∞

]
, (70)

and it is shown in Fig. 5 in a dimensionless form.
Using (70), the linear energy density is calculated as
follows:

Eft = 2π

∞∫
0

εftrdr =
2π

g2ρ20

∞∫
0

ε̃ftxdx

=
2π�c

g̃2ρ20

∞∫
0

ε̃ftxdx =
2π�c

g̃2ρ20
Ẽft, (71)

where ε̃ft and Ẽft are the dimensionless energy den-
sity and linear energy density, respectively. Fig. 6
shows the dependences of the linear energy density
and of the eigenvalues μ̃, M̃ on the parameter w̃1,
from which one can observe the following limiting
values:

μ̃
w̃1→0−−−−→ 1, M̃

w̃1→0−−−−→ φ̃0, Ẽft
w̃1→0−−−−→ 0. (72)

Table 2 shows the eigenvalues μ̃, M̃ and the energy
Ẽft as functions of the parameter w̃1.

4.3. Partition Function of the Quantum Monopole

To calculate the partition function of the quantum
monopole, it is necessary to know on what parameters
its energy depends. Then the partition function will be
given by an integral over this parameter, since in the
presence of statistical fluctuations the energy of the
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Table 2. The eigenvalues μ̃, M̃ and the linear energy density Ẽft as functions of the parameter w̃1 for the flux tube

w̃1 0.01 0.02 0.04 0.06 0.08 0.1 0.2

M̃ 1.008006233 1.0229746 1.0571195 1.092076 1.126168 1.159194 1.31045

μ̃ 0.996365 1.001275 1.017275 1.03485 1.052685 1.070163 1.14936

Ẽft 0.0099494 0.0198091 0.0399769 0.0618725 0.0848041 0.108471 0.242524

w̃1 0.5 1 2 5 10 20 40

M̃ 1.67313 2.1319048 2.8212 4.24578 5.8864985 8.2323 11.5705

μ̃ 1.3346237 1.5621423 1.8948609 2.559342415 3.2980544 4.31989 5.726869

Ẽft 0.737779 1.73539 4.07002 12.3594 28.2219 63.5609 141.505

system, and hence the corresponding parameters, are
varying.

According to Eq. (56), the total energy of the
quantum monopole consists of finite and infinite
parts:

Emp =
4π�cψ1

g̃2

⎛
⎝

∞∫
0

x2ε̃dx+

∞∫
0

x2ε̃∞dx

⎞
⎠

= E1 + E2. (73)

Here the first term, E1, is finite, and the second one,
E2, is infinite. The total energy Emp depends on the
parameters f2 and ψ1. When statistical fluctuations
occur, the energy fluctuation δEmp should be finite,
leading to changes in the parameters f2 and ψ1. But
as ψ1 varies, the second integral in (73) changes by an
infinite amount. It is clear that when statistical fluctu-
ations are present, the thermostat cannot provide an
infinite energy, and therefore the parameter ψ1 can-
not vary and must remain constant under statistical
fluctuations.

40
~w1

3020
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Eft/10
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M
~

~

~
~

~

10

14 λ = 0.1
φ0 = 1
m = 1

12

10

8

6

4

2

0

Fig. 6. Dependences of the eigenvalues μ̃, M̃ and of the
linear energy density Ẽft on the parameter w̃1.

In general, the partition function is calculated as

Z =

∫
e−

H(πA,φA)
kT
∏

dπAdφ
A, (74)

where H(πA, φ
A) is the Hamiltonian of the system,

φA, πA are some generalized coordinates and mo-
menta determining the energy of the system, and A is
a collective index for all available indices. Consistent
with the above, in our case the energy of the quantum
monopole is determined by the parameter f2. Hence,
in the first approximation, the partition function can
be calculated in the following way:

Zmp(T ) ≈
1

ψ2
1

∫
e−

E1(f2)
kT df2 =

∫
e
− Ẽ1(f̃2)

T̃ df̃2

= Z̃mp(T̃ ). (75)

Here Ẽ1 is the dimensionless energy E1 from (73),
and T̃ = kT g̃2/(4π�cψ1) is the dimensionless tem-
perature.

Having numerical values of Ẽ1 in hand, we can
evaluate the integral (75) only for the values of the
temperature satisfying the conditions

Ẽ1,max

T̃
� 1, T � 4π�cψ1

kg̃2
Ẽ. (76)

Here Ẽ1,max is the maximum value of the dimen-
sionless energy (56) obtained by numerically solving
Eqs. (48) and (49). For example, for ψ1 ≈ 1015 m−1,
which corresponds to the typical length-scale of
QCD r0 ≈ 10−15 m, we have

Tmax ≈ 4π�cψ1

kg̃2
Ẽ ≈ 1015K. (77)

The internal energy is calculated as follows:

Ump(T ) =
1

Zmp

∫
E1(f2)e

−E1(f2)
kT df̃2
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Fig. 7. The dimensionless internal energy Ũmp(T̃ ) and the
partition function Z̃mp(T̃ ) of a single monopole.

=

∫
E1(f2)e

−E1(f2)
kT df̃2∫

e−
E1(f2)

kT df̃2

=
4π�cψ1

g̃2

×
∫
Ẽ1(f̃2)e

− Ẽ1(f̃2)

T̃ df̃2∫
e−

Ẽ1(f̃2)

T̃ df̃2

=
4π�cψ1

g̃2
Ũmp(T̃ ). (78)

The dependences of the dimensionless partition func-
tion Z̃mp from (75) and of the dimensionless internal
energy Ũmp from (78) on the temperature T̃ are shown
in Fig. 7.

The entropy Smp(T ) and the Helmholtz free energy
Fmp(T ) = Ump(T )− TSmp(T ) are calculated in the
following way:

Smp(T ) = k

(
lnZmp(T ) +

Ump(T )

kT

)

= k

(
ln Z̃mp(T̃ ) +

Ũmp(T̃ )

T̃

)
= kS̃mp(T̃ ), (79)

Fmp(T ) = −kT lnZmp(T )

= −4π�cψ1

g̃2
T̃ ln Z̃mp(T̃ ) =

4π�cψ1

g̃2
F̃mp(T̃ ). (80)

The results of calculations indicate that as T̃ → 0 the
entropy behaves in a regular manner,

S̃mp(T̃ )
T̃→0−−−→ S̃1 = const.

This constant can be set to zero by the corresponding
redefinition of the partition function from (75): Zmp →
eS̃1Zmp. The resulting free energy and entropy are
shown in Fig. 8 for the choice S̃1 ≈ 3.6.

In this connection it is interesting to note that,
unlike a classical system where the entropy demon-
strates a singular behavior as the temperature goes to

0.15
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Fig. 8. The dimensionless entropy S̃mp(T̃ ) and the
Helmholtz free energy F̃mp(T̃ ) of a single monopole. The
inset shows the behavior of the functions in the neigh-
bourhood of the center.

zero, for a nonperturbatively quantized system con-
sidered here the entropy is regular as T → 0.

Notice also that since the Helmholtz free energy
does not depend on the volume, the pressure p for the
system under consideration is equal to zero:

p = −
(
∂F (T )

∂V

)
T

= 0. (81)

Using this fact, we can verify our numerical calcula-
tions with the second law of thermodynamics

T
dS

dT
=

dU

dT
. (82)

To calculate the left- and right-hand sides of this
equation, we have employed numerically computed
values of S(T ) and U(T ). The results of calculations
indicate a perfect agreement of the left- and right-
hand sides of (82). This also confirms that the pres-
sure of the system consisting of one monopole is zero,
according to Eq. (81).

5. PARTITION FUNCTION
OF A NONRELATIVISTIC DILUTE GAS
OF NONINTERACTING MONOPOLES

In this section we consider a nonrelativistic dilute
gas of noninteracting monopoles enclosed in a vol-
ume V . The total energy of such a physical system
consists of the energy of n monopoles [each having
the energy determined by Eq. (56)], of the kinetic
energy of the monopoles (calculated here in the ap-
proximation of pointlike particles), and of the energy
of a quantum condensate with the energy density ε∞:

Egas

(
pi, (f2)i

)
=

n∑
i=1

[
Emp

(
(f2)i

)
+

p2i
2(mmp)i(f2)i

]

GRAVITATION AND COSMOLOGY Vol. 25 No. 1 2019



14 DZHUNUSHALIEV et al.

+ ε∞V = E1

(
pi, (f2)i

)
+E2. (83)

Here (mmp)i is the mass of i-th monopole,
E1(pi, (f2)i) is the energy of all n monopoles, and
E2 = ε∞V is the energy of the condensate. To
simplify the calculation of its kinetic energy, we
assume that the monopole is a pointlike particle. The
monopole mass is related to its energy by the expres-
sion mmp = Emp/c

2. Then the partition function is
given by the following integral:

Zgas =
1

n!

1

(2π�)3n

∫
e−

Egas(�pi,(f2)i)
kT

×
n∏

i=1

dpixdp
i
ydp

i
zdx

idyidzid(f̃2)i

=
e−

ε∞V
kT

n!

[
V

(2π�)3

∫
e−

E1(p,f2)
kT d3p df̃2

]n
. (84)

In Section 4.3 we have calculated the partition func-
tion for one quantum monopole assuming that the
energy of the quantum condensate, into which the
quantum monopole is embedded, does not fluctu-
ate. Continuing working within this assumption,
here we calculate the partition function for n quan-
tum monopoles embedded in the condensate filling
the volume V . This means that we calculate the
partition function against the background of the
quantum condensate.

Integration over the momentum p in (84) is per-
formed in the standard way and yields

Zgas =
e−

ε∞V
kT

n!

[
V

�
3

(
kT

2πc2

)3/2

×
∫

E
3/2
mp (f2)e

−Emp(f2)
kT df̃2

]n

=
e−

ε∞V
kT

n!

[
V

�
3

(
kT

2πc2

)3/2
E

3/2
mp (T )

]n

=
e−γ

n!

[
γ (kT )5/2

(2π)3/2 �3ε∞c3
E

3/2
mp

(
T
)]n

. (85)

Here γ =
ε∞V

kT
and

E
3/2
mp

(
T
)
=

∫
E

3/2
mp (f2)e

−Emp(f2)
kT df̃2

=

(
4π�cψ1

g̃2

)3/2 ∫
Ẽ

3/2
mp e−

Ẽmp
T̃ df̃2

=

(
4π�cψ1

g̃2

)3/2
˜

E
3/2
mp

(
T̃
)

(86)
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Fig. 9. Dependences of T̃ 2 ∂

∂T̃
ln

[
˜

E
3/2
mp (T̃ )

]
, (3/2)T̃ ,

and
˜

E
3/2
mp (T̃ ) on the temperature for the monopole gas.

is the nonnormalized average statistical value of the
monopole energy Emp which depends on the temper-
ature (here the term “nonnormalized” means that in
defining the average statistical value we do not per-
form a division by Zgas). Fig. 9 shows the dependence

of
˜

E
3/2
mp on the dimensionless temperature T̃ . It is

seen that the appearance of the factor E3/2
mp (T ), which

depends on the temperature, results in a consider-
able difference between the partition functions of the
monopole gas and of a classical monoatomic perfect
gas for which Z ∼ T 3n/2. Physically this difference
is associated with the fact that the monopole is not a
pointlike particle, and the energy gained from or re-
turned to the thermostat changes not only the kinetic
energy of monopoles but their internal energy as well.

Let us now calculate the pressure pgas for the dilute
gas of monopoles under consideration,

pgas = −
(
∂Fgas(T )

∂V

)
T

, (87)

where

Fgas(T ) = −kT lnZgas(T ). (88)

Substituting the expression for Zgas (85) into (88), we
have from (87)

pgas = −ε∞ +
nkT

V
. (89)

Comparing this with the expression for a classical
monoatomic ideal gas, one can observe the emer-
gence of the term −ε∞ associated with the energy of
the quantum condensate.
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3.0
~T

2.52.01.5

15

10

5

−5

0

1.00.50

 �
3/2 ( )ln mpT E T

⎡ ⎤
⎢ ⎥
⎣ ⎦

�

 3
ln

2
T T� �

Fig. 10. Dependences of T̃ ln
[
˜

E
3/2
mp (T̃ )

]
and (3/2)T̃ ln T̃

on the temperature for the monopole gas.

In turn, the expression for the Helmholtz free en-
ergy (88) will now be

Fgas(T ) = ε∞V − nkT

{
ln

[
E

3/2
mp (T )

]

+ ln
V

V0
+

3

2
ln

T

T0

}
. (90)

Here the first and second terms are contributions
coming from the condensate φ and from a single
monopole, respectively; the last term describes the
dilute gas of noninteracting monopoles; V0, T0 depend
on the constants entering into Zgas. The profile of the

dependence of T̃ ln
[
˜

E
3/2
mp (T̃ )
]

on the dimensionless

temperature T̃ is shown in Fig. 10, where the behavior
of the fourth term from (90) is also given for compari-
son.

Finally, the internal energy is calculated as follows:

Ugas(T ) = −∂ lnZgas

∂β
= ε∞V

+
4π�cψ1

g̃2
nT̃ 2 d

dT̃
ln
[
˜

E
3/2
mp (T̃ )
]
+

3

2
nkT, (91)

where β = 1/(kT ). The first two terms on the right-
hand side of this expression are the corrections oc-
curring when the internal structure of the monopole
is taken into account. Fig. 10 shows the dependence

of T̃ 2 ∂

∂T̃
ln
[
˜

E
3/2
mp

]
on the temperature T̃ , and also

the third term from the right-hand side of (91) for
comparison.

6. ψ1 AND ΛQCD

In our calculations, there is one undetermined
quantity ψ1 having the dimension of m−1. One can
assume that it might be relevant to some physi-
cal quantity known from QCD. Such a quantity is
ΛQCD = 200 MeV, which in units of m−1 is ΛQCD ≈
1015 m−1. This enables us to assume that

4π�cψ1 ≈ ΛQCD. (92)

In this case, the quantum corrections (μ2)abμν and
M2 in Eqs. (31) and (32) can be written as

(
μ2
)abμν

=

(
ΛQCD

�c

)2 (
μ̃2
)abμν

, M =
ΛQCD

g�c
M̃,

where μ̃ and M̃ are dimensionless. The relation (92)
also enables us to assert that ΛQCD describes the
dispersion

〈
Âmμ(y)Ânν(x)

〉
of quantum fluctuations

of the coset fields Âmμ.
Then, using ΛQCD, the thermodynamic formu-

las (86), (90), and (91) can be rewritten in the follow-
ing manner:

Fgas(T ) = ε∞V − n
ΛQCD

g̃2
ln
[
E

3/2
mp (T )
]

− nkT ln
V

V0
− 3

2
nkT ln

T

T0
, (93)

Ugas(T ) = ε∞V +
ΛQCD

g̃2
nT̃ 2 ∂

∂T̃
ln
[
˜

E
3/2
mp (T̃ )
]

+
3

2
nkT, (94)

E
3/2
mp

(
T
)
=

(
ΛQCD

g̃2

)3/2
˜

E
3/2
mp (T̃ ). (95)

7. CONCLUSION

In this paper, we investigate quantization of
physical systems in which no small parameter exists
that could be used to apply the standard perturbative
methods. In particular, we propose a definition of
nonperturbative quantum states in terms of Green
functions by using the nonperturbative quantiza-
tion procedure proposed and developed originally by
Heisenberg. We first examine the operator field equa-
tions and mention that, due to their mathematical
complexity, it is necessary to consider the equivalent
system of differential equations that determine the
infinite set of Green functions. Since the general
solution of such a system leads to the entire set of
Green functions which must contain all quantum
information about the system, we conclude that
we can identify nonperturbative states with Green
functions. We also analyze the case of gauge fields.
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The corresponding infinite set of equations for Green
functions cannot be solved in general. However, we
use earlier results according to which the infinite set
of equations can be reduced to a set of two equations
whose solutions describe flux tubes corresponding to
realistic physical configurations of gauge fields. As a
particular example, we study the thermodynamics of
a quantum monopole and of a gas of noninteracting
quantum monopoles embedded in the condensate.

Working in the framework of the two-equation
approximation method for nonperturbative quanti-
zation à la Heisenberg, we have found the energy
spectrum of one quantum monopole, using which
the partition function and the corresponding ther-
modynamic quantities have been computed. Then
we have calculated the partition function and ther-
modynamic quantities for a system of noninteracting
quantum monopoles embedded in the condensate. It
was shown that all thermodynamic quantities have
quantum corrections related to the internal structure
of the monopole. Physically this means that in the
presence of fluctuations the energy received from a
thermostat changes not only the kinetic energy of the
monopoles but their internal energy as well. This
is responsible for changes in the pressure, internal
energy, etc. of a gas of monopoles.

It is important to note that the calculation of
statistical and thermodynamic quantities for nonlin-
ear theories quantized by using the nonperturbative
methods à la Heisenberg leads to finite results, just
as it is in quantum electrodynamics. A fundamental
difference is that in the case considered in the present
paper the calculations are carried out for nonpertur-
batively quantized fields which are not associated with
particles (quanta) but are more like a turbulent fluid
where at each point there are fluctuating velocities,
pressures, etc.

In summary, we have

• formulated the notion of a nonperturbative
quantum state;

• approximately defined nonperturbative quan-
tum states for a quantum monopole and for
a flux tube determined by the 2-point Green
functions Gmnμν , Gabμν and the 4-point Green
function Gmnpq

μνρσ(x, y, z, u);

• numerically calculated the energy spectra for a
single quantum monopole and for a flux tube;

• numerically calculated the partition function
and thermodynamic quantities for a quantum
monopole and for a dilute gas of noninteracting
quantum monopoles.

The physical interpretation of the obtained results is
that, using nonperturbative quantization, we have
shown that nonperturbative vacuum in pure gluo-
dynamics (without quarks) consists of a quantum
condensate of the coset fields filled with quantum
monopoles. This result confirms to the hypothe-
sis proposed earlier [5–7] and confirmed by lattice
calculations that the QCD vacuum is filled with
monopoles [8].
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