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Fractality of Nanostructured Semiconductor Films
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We present a model of spatial distribution of electrons, holes, clusters of intrinsic and admixtures (defects of
different types) in nanostructured semiconductor thin films. We obtain intermittent, heterogeneous distributions
of concentration typical for images of surfaces obtained by scanning tunneling microscopy, atomic-force microscopy
and electron microscopy by numerical analyses. [DOI: 10.1380/ejssnt.2007.132]
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I. INTRODUCTION

Microscopy demonstrates the nanocluster structure of
semiconductor thin films. Such structures are hierarchi-
cally self-similar and self-affine, i.e. fractal. For the de-
scription of the physical phenomena obtained in thin semi-
conductor films it is necessary to describe the distribu-
tion of current carriers depending on fractal dimension
of their set. Determination of fractal dimensions of het-
erogeneous, anisotropic (affine) objects is a stand-alone
scientific problem. However, we can make use of values of
fractal dimensions of model fractals and well-known val-
ues of fractal dimensions for self-similar (informational)
and self-affine (entropy) sets [1, 2]. The aim of this pa-
per is to determine fractal distribution of concentration
of current carriers in nanostructured semiconductors and
to compare the theoretical results to the experimental mi-
croscopy data.

II. EQUATIONS FOR NON-EQUILIBRIUM
DISTRIBUTION OF CURRENT CARRIERS

Let us designate concentrations of quasi-particles (elec-
trons, holes and clusters of intrinsic and admixture atoms
which are defects of different types) as n, p, a, respectively.
We examine variation of concentration on coordinate x
near the point x = x∗, where x∗ is a coordinate of the
center of a cluster. Let us assume that centers of clus-
tering are intrinsic atoms and molecules or atoms and
molecules of an admixture. In general, clustering is ag-
gregation (formation of friable conglomerations) of atoms,
molecules and uniformity neutral defects.

In order to take into account the irregularity of the
motion of current carriers in a fractal surroundings it is
necessary to adopt the Lipshtz-Hölder condition. The
derivative is limited by means of this condition due to
fractional power of argument’s increment α < 1. Let us
take this power as α = 1 − γ0, where γ0 is a fractal di-
mension of decomposition points set of the argument axis.
γ0 = 0 provides the usual derivative. Thus, the derivative
of concentration of electrons n(x) can be written via final
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differences as

dn(x)
dx

= ± δn

|x− x∗|1−γ0n
, (1)

where δn is scale of measurement of n(x). Coordinate
and concentration in Eq. (1) are the dimensionless values
which are relative to some characteristic scales. Sign “−”
(“+”) corresponds to positive (negative) difference δn =
n(x)− n(x∗).

Fractal measure n(x) is given by

n(x) = n0(x)δ−(Dn−d)
n , (2)

where d is the topological dimension of cell with the spa-
tial scale δn, Dn is the fractal dimension of set of all var-
ious cells and n0(x) is the equilibrium (non-fractal) con-
centration of electrons. Excluding δn from Eqs. (1) and
(2) we obtain

dn(x)
dx

= ±|x− x∗|γ0n−1

∣∣∣∣
n(x)
n0(x)

∣∣∣∣
− 1

γn

,

γn = Dn − d, d = 0, 1, 2, 3.

(3)

Non-equilibrium concentration n(x1) for the fixed value of
x1 is determined by boundary conditions as n(x = x1) =
n1.

We rewrite Eq. (3) for the description of a set
of randomly (due to dynamical, thermal factors) dis-
posed clusters with various structure, i.e. for x∗ =
{x∗j(n, p, a)}, j = 1, 2, . . . , where x∗j are the random
numbers in the range of 0 < x∗j < xmax. In that case
the alternation of signs “+” and “−” in Eq. (1) will be
random. For the description of this alternation we can use
sign(ξ(x)), where ξ(x) is delta-correlated random process.
Position of electron in the range of 0 < x∗j < xmax is also
defined by a probabilistic approach. This probability we
shall define as

Pn(x) = |ψn(n, a, p, x)|2|x− x∗|, (4)

where ψn(n, a, p, x) is wave function of an electron located
in a field of a cluster. This function should be chosen for
simple models of interaction of an electron to a cluster.

Following the same arguments for a description of con-
centration of holes p(x) and impurities (clusters) a(x) we
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obtain the following system of equations:

dn(x)
dx

= sign(ξ(x))|ψn(n, a, p, x)|2|x−x∗|γ0n

∣∣∣∣
n(x)
n0(x)

∣∣∣∣
− 1

γn

,

(5)

dp(x)
dx

= sign(ξ(x))|ψp(n, a, p, x)|2|x−x∗|γ0p

∣∣∣∣
p(x)
p0(x)

∣∣∣∣
− 1

γp

,

(6)

da(x)
dx

= sign(ξ(x))|ψa(n, a, p, x)|2|x−x∗|γ0a

∣∣∣∣
a(x)
a0(x)

∣∣∣∣
− 1

γa

,

(7)

sign(ξ(x)) =
{

+1, ξ(x) > 0
−1, ξ(x) < 0 .

In order to account the specific character of crystal or
amorphous structure of semiconductors we can choose the
wave functions as Bloch waves, so, we allow for depen-
dence of concentration on the coordinate. Equations (5)–
(7) cannot be investigated even for a simplest expression
for the wave function due to the stochastic character of
these equations. Therefore we examine discrete form of
the equations.

III. NON-LINEAR MAP FOR
CONCENTRATION OF CURRENT CARRIERS

For simplicity, we rewrite Eq. (1) with the sign “+” via
series of discrete numbers n as

ni+1

∆x
=

( ni

∆x

)
γ0

+
δn,i

|∆x|1−γ0n
, i = 1, 2, 3, . . . , (8)

where γ0 is used for normalization of the given value
within the range of the scale of measurement δn,i by set-
ting the fractional power γ0. From Eq. (1) we have

( ni

∆x

)
γ0

=
niδn,j

|∆x|1−γ0n
. (9)

We can use discrete values of ni taken with the constant
step ∆x = 1. Thus, Eqs. (5)–(7) can be written as

ni+1 =
{
ni + sign(ξi)|ψn(a, pi, i)|2

} ∣∣∣∣
ni

n0

∣∣∣∣
− 1

γn

, (10)

pi+1 =
{
pi + sign(ξi)|ψp(a, ni, i)|2

} ∣∣∣∣
pi

p0

∣∣∣∣
− 1

γp

, (11)

ai+1 =
{
ai + sign(ξi)|ψa(ni, pi, i)|2

} ∣∣∣∣
ai

a0

∣∣∣∣
− 1

γa

, (12)

We shall make use of values of fractal dimensions cor-
responding to steady self-similar and self-affinity sets for
the definition of values γn, γp, γa. It is known that specific
informational entropy of self-similar set is equal to fractal
dimension of a cell of this set. Fixed points of probability

function P (I) and informational entropy S(I) can be used
as criteria of similarity as

P (I) = e−I , P (I) =
∫∞

I
f(I)dI,

f(I) = P (I) = e−I ,
∫∞
0

f(I)dI = 1,
(13)

S(I) =
∫ ∞

I

f(I)dI = (I + 1)e−I , (14)

where I is quantity of information (defining variable),
f(I) is density of probability distribution function of in-
formation [1, 2]. Their fixed points are determined by
formulas

P (I1) = I1, e
−I1 = I1, I1 = 0.567, (15)

S(I2) = I2, (I2 + 1)e−I2 , I2 = 0.806. (16)

Different approaches for the determination of wave func-
tions of quasi-particles are possible. Separating the elec-
trons into cluster electrons and free (valence) electrons, we
write the Hamiltonian for the examined problem as [3]

H =
∑

i

P 2
l

2Ml
+

∑

l,m

U(Rl −Rm) +
∑

i

p2
i

2m

+
∑

i,l

V (ri −Rl) +
∑

i,j

e2

4πε0|ri − rj | ,
(17)

where l and m are numbers of clusters, indexes i and j
are numbers of electrons, P and M are impulse and mass
of cluster, p and m are impulse and mass of electron,
U(Rl − Rm) is potential of clusters interaction, V (ri −
Rl) is potential of interaction of free electrons to clusters.
Each electron interacts to the cluster independently of
other electrons. Thus, we write Shrödinger equation as

{
p2

i

2m
+

∑

l

V (ri −Rl)

}
ψi(ri,R) = Eiψi(ri,R), (18)

where Ei is the energy of electron, ψi(ri,R) is the wave
function of electron. The form of eigenfunction of an elec-
tron we choose as the Bloch wave:

ψk(r) = Uk(r) exp(ik · r), UR(r + R) = Uk(r), (19)

where k is the wave vector. From Eq. (19), it follows that

ψk(r + R) = ψr exp(ik ·R), (20)

It is possible to work with wave functions centered on the
centers of clusters R, i.e. to use the analogues of Vanyi
functions ϕ(r −R) as

ψk(r) =
∑

R

ϕ(r −R) exp(ik ·R), (21)

It is possible to approximate Vanyi functions by atomic
orbitals via approximation of closely coupled interface of
electrons to clusters (ϕ(r −R) = ϕn(r −R)),
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ϕn,l(r) =
2

nl+2(2l + 1)!

√
(n + l)!

(n− l − 1)!
(2r)le−

r
n F

(
−n + l + 1, 2l + 2,

2r

n

)
, (22)

where n is the index of a energy band, l is orbital quantum
number, F is singular hypergeometric function. Equation
(21) gives us the dynamics of a hole in center of mass
system of an electron-hole pair. At the another extreme
case of loosely coupled interface of electron to cluster we
can use the plane waves as

ψn(x) = ψp(x) = ψa(x) = cos(knx) cos(kpx) cos(kax).
(23)

IV. RESULTS OF THE NUMERICAL ANALYSIS

The results of computer simulation made according to
Eqs. (10), (11), (12), (21) and (23) are shown in FIGs. 1–
5. Because ξ(x) is random, we do not obtain identical
curves, but the curves in different directions are randomly
displaced according to their phases. Configuration of a
surface of a semiconductor thin film depends on its fractal
dimension. Varying the parameters γn, γp, γa, n0, p0 and
a0, it is possible to obtain the pictures similar to experi-
mental photos of surfaces of thin semiconductor films [4–
8].

Scanning tunneling microscopy image of 5 monolayers
Ag deposited on a Si(001)2 × 1 substrate at 65 K [4] is
shows in FIG. 1. The film was annealed at room tem-
perature at a tunnel current 0.2 nA and a tip voltage
of 5 V. Image taken after deposition of 4 monolayers of
In on an Si(111)-

√
3 × √

3-Ga (1 monolayer) surface at
room temperature [5] is shown in FIG. 2. Topology of
surfaces of GaAs(100) [6] shown in FIG. 3 has been in-
vestigated before and after short processing in selenium
vapour. Surface growing by gas-core epitaxy on p+-type
substrate obtained in experimental work [7] is shown in
FIG. 4. This image has been obtained by atomic-force
microscopy at room temperature and atmospheric condi-
tions. The photo of surface of p-CdTe is shown in FIG. 5.
Formation of nanosize structures on the surface of the p-
CdTe crystals at laser irradiation has been investigated in
the experimental work [8]. The photo of the surface has
been obtained by atomic-force microscopy.

(a) (b)

Si

FIG. 1: Microscopy image for the Ag adsorption on a Si
surface: (a) experimental data [4], (b) theoretical results:
γn = γp = γa = I2, n0 = p0 = a0 = 5, n1 = p1 = 1, a1 = 100.

(a) (b)

FIG. 2: Image taken after deposition of 4 monolayers of In on
a Si surface: (a) experimental data [5], (b) theoretical results:
γn = I1, γp = 2 + I2, γa = 3 + I2, n0 = p0 = a0 = 2.6, n1 =
p1 = 1, a1 = 100.

(a) (d) 

(b) (e)

( ) (f) 

FIG. 3: Image of a surface of GaAs(100). Experimental
data [6]: (a) photo of initial surface, (b) photo of surface pro-
cessed in vapor of Se during 3 minutes, and (c) same dur-
ing 5 minutes. Theoretical results: (d) γn = γp = γa =
1 + I2, n0 = p0 = a0 = 20, n1 = p1 = a1 = 1, (e) γn =
γp = γa = I2, n0 = p0 = a0 = 2, n1 = p1 = 1, a1 = 20, (f)
γn = γp = γa = I1, n0 = p0 = a0 = 2, n1 = p1 = 1, a1 = 20.

Models of nano-scaling images of surfaces plotted ac-
cording to Eqs. (10), (11), (12) (FIGs. 1(b), 2(b), 3(d),(e),
(f), and 4(b)) are placed on the right side of experimen-
tal photos. Figures 5(b) and (c) has been plot by using
Eq. (10). Figure 5(b) corresponds to the assumption that
the function ϕn,l(r) is equal to radial function of electron
at the state 1s in an atom of hydrogen. For the other
figures this function is defined by Eq. (23). Results of
the numeral analyses made by using Eq. (23) correspond
to experimental data at relatively little values of fractal
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(a) (b)
(a)

(b)

FIG. 4: Morphology of a surface of p-GaAs(100): (a) exper-
imental data [7], (b) theoretical results: γn = I2, γp = γa =
1 + I1, n0 = p0 = a0 = 1.5, n1 = p1 = 1, a1 = 15.

(a) (b) (c)

FIG. 5: Image of a surface of p-CdTe. (a) Experimental
data [8]; (b)and (c) theoretical results: γn = 3 + I2, n0 =
3, n1 = p1 = 1, a1 = 10.

dimension. At great values of fractal dimension applica-
tion of Bloch-Vanyi functions is preferable. It confirmed
by comparison of experimental image in FIG. 5(a) to the
models of surfaces shown in FIG. 5(b) and FIG. 5(c).

With the help of the theory we can outline the fol-

lowing properties of fractal surfaces of semiconductors.
Quasi-regular linear and flat structures are described by
small values of fractal dimension (γ ≤ I1). Small-scale
random formations correspond to relatively large values
of γ ≥ I2 + d, d = 0, 1, 2, 3. Stabilizing effect of a sub-
strate on the formation of structures is taken into ac-
count by the values of equilibrium concentration of par-
ticles (n0 > 1, p0 > 1, a0 > 1). Numbers of free and
valence electrons in the cluster is taken into account via
the choice of Bloch-Vanyi function or of a type of radial
function used for its approximation.

V. CONCLUSION

The constructed stochastic and fractal models provide
qualitative agreement to different types of microscope im-
ages of the surfaces of thin films. Fractal dimension of
clusters, sets of electrons and holes, their stochastic distri-
bution, relative concentration of equilibrium components,
and type of wave function of electron interacting to cluster
are taken into account by the theory. Thus, the method
can be future developed to obtain a quantitative descrip-
tion of the morphology of films. Results of the present
work can be used for analysis of electrical and optical
properties of nanostructured semiconductors.
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