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Determination of the energy spectrum of a three-body Coulomb system with relativistic corrections
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On the basis of the investigation of the asymptotic behavior of the correlation functions of the corresponding
field currents with the necessary quantum numbers, the analytic method for the determination of the energy
spectrum of the three-body Coulomb system is suggested. Within this framework the analytical approach to
determine the energy spectrum of the molecular hydrogen ions in the ground and orbital excited state is used.
In our case, relativistic corrections are taken into account by the constituent mass of the constituent particles,
as well as by the interaction potential. Our results show that the masses of the constituent particles differ from
the masses of the particles in the free state. The increasing of the constituent mass of electron is comparatively
larger than the increasing of constituent mass of the proton, deuteron, and triton. The constituent masses of the
electron differ between for the molecular ions of hydrogen H+

2 , D+
2 , T+

2 , HD+, DT+, and HT+. Thus, our results
on the energy spectrum of molecular hydrogen ions in the ground and excited states show good agreement with
the existing results of precision spectroscopy; this is achieved by taking into account the values of the masses of
constituent particles.
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I. INTRODUCTION

The energy spectrum of the bound state can be de-
termined with a good precision within the framework of
nonrelativistic quantum mechanics (NRQM) when a good
selection of the potential is made. However, the nonrelativistic
Schrödinger equation (SE), which gives a mathematically
correct description of the bound state, is no longer sufficient
since for the description of modern experimental results,
obtained in both atomic [1] and hadronic physics [2], it
is necessary to take into account the relativistic correction.
Nevertheless, the nonrelativistic SE is the reliable tool for
the bound-state energy research and its determination. In this
case, real relativistic corrections are small, so the theoretical
problem reduces to obtaining the relativistic corrections to
the nonrelativistic interaction potential in the formalism of
quantum field theory (QFT). This idea underlies the Breit
potential [3] and the effective nonrelativistic quantum field
theory of Caswell and Lepage [4]. Both these approaches use
the scattering matrix as a source of required corrections. In
the framework of quantum electrodynamics (QE) the authors
of Ref. [4] studied the scattering matrix with appropriate
Feynman diagrams by taking into account the renormalization
and then taking the nonrelativistic limit, so they obtained the
interaction potential with the relativistic corrections. Thus, the
nonrelativistic QED or NRQED method for the determination
of the energy spectrum by taking into account relativistic
corrections was formulated. Subsequently, this method was
improved in Ref. [5]. However, in these works, the relativistic
corrections within the framework of the perturbation theory
were taken into account mainly to the interaction potential,
and the correction to the kinetic part of the interaction
Hamiltonian was almost ignored. The relativistic correction
to the kinetic part of the Hamiltonian in the usual quantum
mechanical formalism is included only in the framework
of the relativistic SE. It is known that the determination
of the energy spectrum and wave functions of the bound
state consisting of a few particles from the relativistic SE,

from the point of view of mathematical calculations, is
almost impossible. Therefore, the inclusion of the relativistic
corrections into the determination of the properties of the
relativistic bound state as a potential and kinetic part of the
interaction Hamiltonian is one of the most urgent problems of
modern theoretical study. Our work is devoted to studying this
problem.

In our approach [6–8], the mass of the bound state is deter-
mined by the asymptotic behavior of the correlation function
of the corresponding currents with the necessary quantum
numbers. The correlation function, which is expressed in
terms of the Green’s function is represented as a functional
integral, which allows one to allocate the necessary asymptotic
behavior, and the averaging over the external gauge field can be
performed accurately. The resulting representation is similar
to the Feynman functional path integral [9] in nonrelativistic
quantum mechanics. In this case, the interaction potential is
determined by the Feynman diagram, the resulting exchange
of the gauge field, and the mass in the SE is the constituent
differing from the mass of the initial state of the system, i.e.,
one kinetic part of the Hamiltonian is expressed in terms of
the constituent mass of the constituent particles, and it differs
from the initial mass state. Our results show that the difference
between these masses for the light particles is essential, in
particular, for the electron and for heavy particles such as
an isotope of hydrogen it is not noticeable. Thus, thanks to
the constituent mass of the constituent particles one can take
into account relativistic corrections to the kinetic part of the
interaction Hamiltonian.

The paper is organized as follows. In the second sec-
tion, we briefly describe the main components for the
determination of the mass spectrum of the bound states in
the functional approach. In the third section we calculate
the energy spectrum of the three-body Coulomb system by
taking into account the one-photon exchange. In the fourth
section we calculate the energies of the molecular hydrogen
ions, in particular, we determine the energy spectrum of the
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ground state and the calculated energy spectrum of H+
2 , D+

2 ,
and T+

2 with the orbital excitation.

II. BOUND STATES IN THE FUNCTIONAL APPROACH

We now briefly discuss the details of our approach. Let
us denote J (x) = �+(x)�(x) as the current of scalar charged
particles. If we neglect the annihilation channel, then it is
convenient to represent the considered correlators as the
averaging over the gauge field Aα(x) of a product of the
Green’s functions Gm(x,y|A) of the scalar charged particles
in the external gauge field

�(x − y) = 〈
Gm1 (x,y|A)Gm2 (y,x|A)Gm3 (x,y|A)

〉
A
. (2.1)

The Green’s function Gm(x,y|A) of the scalar charged particle
in the external gauge field is defined by the equation[(

i
∂

∂xα

+ g

ch̄
Aα(x)

)2

+ c2m2

h̄2

]
Gm(x,y|A) = δ(x − y).

(2.2)

The solution of Eq. (2.2) is represented in the functional
integral form (see details in Ref. [10])

Gm(x,y|A) =
∫ ∞

0

ds

(4sπ )2
exp

{
−sm2 − (x − y)2

4s

} ∫
dσβ

× exp

{
ig

∫ 1

0
dξ

∂Zα(ξ )

∂ξ
Aα(ξ )

}
. (2.3)

Here the following notation is used:

Zα(ξ ) = (x − y)αξ + yα − 2
√

sBα(ξ );
(2.4)

dσβ = NδBβ exp

{
−1

2

∫ 1

0
dξḂ2(ξ )

}
,

where σβ is a Gaussian measure of integration and Bβ is the
variables parameterized along the “path-trajectories” and with
the normalization

Bβ(0) = Bβ(1) = 0;
∫

dσβ = 1,

and N is the normalizing constant. When averaging over the
external gauge field Aα(x) we limit ourselves to the lowest
order, i.e., we take into account only the two-point Gaussian
correlator〈

exp

{
i

∫
dxAα(x)Jα(x)

} 〉
A

= exp

{
−1

2

∫∫
dxdyJα(x)Dαβ(x − y)Jβ (y)

}
. (2.5)

Here Jα(x) is the real current, and Dαβ(x − y) is the gauge
field propagator

Dαβ(x − y) = 〈Aα(x)Aβ(y)〉A
= δα,βD(x − y) + ∂2

∂xα∂xβ

Dd (x − y), (2.6)

where

D(x) =
∫

dq

(2π )4

eiqx

q2
; Dd (x) =

∫
dq

(2π )4

eiqx

q2

d(q2)

q2
.

(2.7)

The bound state mass is defined as a limit

M = − lim
|x−y|→∞

ln �(x − y)

|x − y| . (2.8)

Thus, to determine the mass M we have to evaluate the
correlation function �(x) in the asymptotic limit when |x| →
∞.

Substituting (2.3) into (2.1) and averaging over the external
gauge field one yields

�(x) =
∫ ∞

0

∫ ∞

0

∫ ∞

0

dμ1dμ2 dμ3

(8π2x)3
J (μ1,μ2,μ3)

× exp

{
− |x|

2

(
m2

1

μ1
+ μ1

)
− |x|

2

(
m2

2

μ2
+ μ2

)
− |x|

2

(
m2

3

μ3
+ μ3

)}
. (2.9)

Here

J (μ1,μ2,μ3)

= N1N2N3

∫ ∫ ∫
δr1δr2δr3

× exp

{
−1

2

∫ x

0
dτ

[
μ1ṙ

2
1 (τ ) + μ2ṙ

2
2 (τ ) + μ3ṙ

2
3 (τ )

]}

× exp

⎧⎨⎩−W1,1 − W2,2 − W3,3 + 2
3∑

i,j=1;i �=j

Wi,j

⎫⎬⎭,

(2.10)

and the following notation is used:

Wi,j = g2

2
(−1)i+j

∫ x

0

∫ x

0
dτ1dτ2Z

′(i)
α(τ1)Dαβ

× [Z(i)(τ1) − Z(j )(τ2)]Z′(j )
β(τ2). (2.11)

The representation (2.10) has the meaning of the quantum
Green’s function in the Feynman functional integral form
when three particles with the masses μ1,μ2, and μ3 interacts
via the nonlocal potential Wi,j . We emphasize that in (2.10)
the functional integration is made over the four-vectors r1 =
(r1,r

(4)
1 ), r2 = (r2,r

(4)
2 ), and r3 = (r3,r

(4)
3 ). The term Wi,j , in

this case, is defined by all kinds of Feynman diagrams. There
are two types of interactions: the first is the interaction of
the constituent particle via the gauge field the contribution of
which is defined by the term Wi,j ,(i �= j ); the second is the
interaction of the constituent particles with each other, i.e., the
self-energy diagram the contribution of which is defined by
the terms W1,1, W2,2, and W3,3. In the nonrelativistic limit the
terms Wi,j correspond to the potential interactions, whereas
the terms Wj,j correspond to the nonpotential interactions,
which define the renormalization mass contribution.

In the asymptotic limit |x| → ∞ the integral (2.10) behaves
like

lim
|x|→∞

J (μ1,μ2,μ3) =⇒ exp{−|x|E(μ1,μ2,μ3)}, (2.12)

where the function E(μ1,μ2,μ3) depends on the coupling
constant g and on the μ1, μ2, and μ3 parameters and does not
depend on the masses m1, m2, and m3. In the limit |x| → ∞
the integral (2.9) is evaluated by the saddle-point method. The
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bound state mass is defined by the saddle point

M = 1

2
min

μ1,μ2,μ3

{
m2

1

μ1
+ μ1 + m2

2

μ2
+ μ2

+ m2
3

μ3
+ μ3 + 2E(μ1,μ2,μ3)

}
. (2.13)

The problem is thus reduced to the evaluation of the
functional integral in (2.10). This integral, however, cannot be
evaluated in the general form and it is defined in various frame-
work approaches. At present, there are no exact mathematical
methods for the evaluation of this integral. Therefore, we have
to apply some physical assumptions or approaches in order to
somehow perform the integration over the fourth components
of r

(4)
j . The integration over the fourth components effectively

corresponds to the nonrelativistic limit. In other words, we
define the interaction potential with the corrections connected
with the nonperturbative, relativistic, and nonlocal characters
of the interaction. In particular, if we neglect the dependence
of the functional Wi,j in (2.11) on r

(4)
1 , r

(4)
2 , and r

(4)
3 , then the

system (2.10) is reduced to the Feynman path integral of the
scalar particles with the masses μ1, μ2, and μ3 in NRQM [9]
with the local potential. In this approximation, according to
(2.10), the interaction Hamiltonian of the scalar particles with
the masses μ1, μ2, and μ3 reads

H = 1

2μ1
P2

1 + 1

2μ2
P2

2 + 1

2μ3
P2

3 + V (r1,r2,r3), (2.14)

where V (r1,r2,r3) is the interaction potential which is ex-
pressed in terms of Wi,j , then E(μ1,μ2,μ3) is the eigenvalue
of the interaction Hamiltonian (2.14), i.e.,

H�(r1,r2,r3) = E(μ1,μ2,μ3)�(r1,r2,r3). (2.15)

Then, from the minimum condition of (2.13) one obtains the
equation for μj

μj − m2
j

μj

+ 2μj

dE(μ1,μ2,μ3)

dμj

= 0; j = 1,23. (2.16)

The parameters μ1, μ2, and μ3 have the mass dimension.
Thus, we will define the mass and the constituent mass of the

bound state system with the relativistic correction. The value
E(μ1,μ2,μ3) is defined as the eigenvalue of the interaction
Hamiltonian.

In our approach, the interaction between the particles in the
bound state is described by the equation (2.11), which includes
all kinds of Feynman diagrams, in particular, the expressions
W11,W22,W33 correspond to the self-energy diagrams, whereas
Wij (i �= j ) correspond to the one-photon exchange diagram in
QED. The bound state energy spectrum and the wave function
(WF) are defined by the SE with the constituent mass μj .
The corrections connected with the relativistic character of the
interaction are taken into account not only by the corrections
to the interaction potential, but also by the parameters μj

(constituent mass), which are defined in (2.16). Therefore,
from the SE with the constituent mass we will determine the
energy spectrum of the Coulomb three-body system by taking
into account the relativistic corrections.

III. GROUND-STATE ENERGY OF THE THREE-BODY
COULOMB SYSTEM

In the framework of our approach, we have considered
the two-body Coulomb systems [6,7] and determined the
energy spectrum and WF by taking into account relativistic
corrections. We now define the ground-state energy of the
three-body Coulomb system with charges Z1e, Z2e, and −Z3e

in the framework of our approach. In this section, we will use
the atomic units (me = h̄ = 1,e = 1). Then, the SE reads⎧⎨⎩1

2

3∑
j=1

P2
j

μj

+ Z1Z2

|R1 − R2| − Z1Z3

|R1 − R3| − Z3Z2

|R3 − R2|

⎫⎬⎭� =E�.

(3.1)

We introduce the Jacobi (r1,r2) and center-of-mass x coordi-
nates

R1 = x + μ3

M
r1 + μ2

M
r2; R2 = x + μ3

M
r1 − μ1 + μ2

M
r2;

(3.2)
R3 = x − μ3 + μ2

M
r1 + μ2

M
r2,

where M = μ1 + μ2 + μ3. The SE in these variables is of the
form {

− 1

2μ13
∇2

r1
− 1

2μ23
∇2

r2
− 1

μ1

(∇r1∇r2

)
+ Z1Z2

r12
− Z1Z3

r1
− Z3Z2

r2

}
� = E�, (3.3)

where we omitted the total kinetic energy and used the
following notation:

1

μij

= 1

μi

+ 1

μj

, (i �= j ); r12 = |r1 − r2|. (3.4)

From (3.3) we will define the energy and the WF by using the
oscillator representation (OR) method [11]. The OR method
is widely used for the determination of the energy levels and
WF of the two-body systems. The WF, in particular, in such
systems has the form

�(r) = rYm(θ,ϕ)ψ(r), (3.5)

where �(r) is the radial WF. By analogy, in the three-body
case we represent the WF as

�(r1,r2) = r
1
1 r

2
2 Y12

LM (r1,r2)ψ(r1,r2,r12). (3.6)

Here �(r1,r2,r12) is the radial WF depending on the Hylleraas
coordinates (r1,r2,r12) [12] and the following notation is used:

Y12
LM (r1,r2) = {

Y1 (r1) ⊗ Y2 (r2)
}

LM
(3.7)

are the solid bipolar harmonics [13] and

Y12
LM (r1,r2) = r

1
1 r

2
2 Y12

LM (r1,r2) (3.8)

are the regular solid bipolar harmonics. The actions of some
operators on the regular solid bipolar harmonics are presented
in Appendix A. Substituting (3.6) into (3.3) and using (A6),
(A7) and (A8) and after some simplifications for (3.3) we
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have {
−Y12

LM

[
1

2μ13

(
∂2

∂r2
1

+ 2 + 1 + 2

r1

∂

∂r1

)
+ 1 + 2

μ13r1

∂

∂r1
+ z1z3

r1
+ z2z3

r2
− z1z2

r12

1

2μ23

(
∂2

∂r2
2

+ 2 + 1 + 2

r2

∂

∂r2

)

+2 − 1

μ23r2

∂

∂r2
+ 1 − 2

μ12

1

r12

∂

∂r12
+ 1

2μ12

(
∂2

∂r2
12

+ 2 + 1 + 2

r12

∂

∂r12

)
+ 1

μ2

r2
1 + r2

12 − r2
1

2r2r12

∂2

∂r2∂r12

+ 2 − 1

2μ2

1

r12

∂

∂r12
+ 1

μ3

r2
1 + r2

2 − r2
12

2r1r2

∂2

∂r1∂r2
+ 1

μ1

r2
1 + r2

12 − r2
2

2r1r12

∂2

∂r1∂r12

]
−A (1,2)Y1−1,2+1

LM

(
1

μ3

1

r2

∂

∂r2
− 1

μ1

1

r12

∂

∂r12

)
− A (2,1)Y1+1,2−1

LM

(
1

μ3

1

r1

∂

∂r1
− 1

μ2

1

r12

∂

∂r12

)
−Y1−1,2−1

LM

[
1

μ3

(
B (1,2) r2

∂

∂r2
+ B (2,1) r1

∂

∂r1
+ C (1,2)

)
− 1

μ1
B (1,2)

r2
2

r12

∂

∂r12
− 1

μ2
B (2,1)

r2
1

r12

∂

∂r12

]}
� (r1,r2,r12) = EY1,2

LM � (r1,r2,r12) , (3.9)

where A(1,2), B(1,2), and C(1,2) are given in (A3). To get the radial SE (3.9), we multiply this equation from the left of
the bipolar harmonics, and then carry out the integration over the angular variables{

−
[

1

2μ13

(
∂2

∂r2
1

+ 2 + 1 + 2

r1

∂

∂r1

)
+ 1

2μ23

(
∂2

∂r2
2

+ 2 + 1 + 2

r2

∂

∂r2

)
+ 1

2μ12

(
∂2

∂r2
12

+ 2 + 1 + 2

r12

∂

∂r12

)

+ 1 − 2

2μ1

1

r12

∂

∂r12
+ 1 − 2

μ13r1

∂

∂r1
+ 2 − 1

2μ2

1

r12

∂

∂r12
+ 1

μ3

r2
1 + r2

2 − r2
12

2r1r2

∂2

∂r1∂r2
+ 1

μ1

r2
1 + r2

12 − r2
2

2r1r12

∂2

∂r1∂r12

+ 2 − 1

μ23r2

∂

∂r2
+ 1

μ2

r2
2 + r2

12 − r2
1

2r2r12

∂2

∂r2∂r12
+ z1z3

r1
+ z2z3

r2
− z1z2

r12

]
− W

12

′
1−1′

2+1A (1,2)

(
1

μ3

1

r2

∂

∂r2
− 1

μ1

1

r12

∂

∂r12

)
−W

12

′
1+1′

2−1A (l2,l1)

(
1

μ3

1

r1

∂

∂r1
− 1

μ2

1

r12

∂

∂r12

)
− W

12

′
1−1′

2−1

[
1

μ3

(
B (1,2) r2

∂

∂r2
+ B (2,1) r1

∂

∂r1
+ C (1,2)

)
− 1

μ1
B (1,2)

r2
2

r12

∂

∂r12
− 1

μ2
B (2,1)

r2
1

r12

∂

∂r12

]}
� (r1,r2,r12) = E� (r1,r2,r12) , (3.10)

where we used the notation

W
12

′
1

′
2

=
I

12

′′
1

′′
2

I
′′

1
′′
2

′
1

′
2

. (3.11)

The calculation of I
12

′
1

′
2

for the specific values of i,
′
j are

given in Appendix B.
To determine the energy spectrum and wave functions of

the radial SE (3.10), we will apply the oscillator representation
(OR) method [11] for determination of eigenvalues and WF.
Before determining the energy spectrum and WF of SE by
means of the OR method it should be noted that this method
is based on the ideas and techniques of QFT. One of the
essential differences of QFT from QM is that quantized
fields, which represent an assembly of an infinite number
of oscillators for the ground state (or vacuum), keep their
oscillatory nature in the quantum-field interaction. In the QM
eigenfunctions of the most potentials differ from the Gauss
behavior of the oscillatory wave function. Therefore, the
variables in the original SE must be changed so that the

modified equation should have solutions with the oscillator
behavior at large distances. Since this transformation is not
a canonical one, after the transformation we have a new
system with another set of quantum numbers and wave
functions, which contains, however, a subset of the original
wave functions. The transformation of variables, leading to
the Gaussian asymptotic behavior in the expanded space, is
one of the basic elements of ORM. Let us note that a similar
idea was discussed by Fock in the solution of the problem
about the hydrogen spectrum using the transformation into the
four-dimensioned momentum space [14]. According to the
statements above, let us change the variables in the following
way (for details, see [11,15]):

r1 = q
2ρ

1 , r2 = q
2ρ

2 , r12 = q
2ρ

12 , (3.12)

where ρ is the parameter connected to the wave function be-
haviour at large distances. After some standard simplifications
for the radial SE (3.10) in the d-dimensional auxiliary space,
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we obtain

{
1

2μ13

1

4ρ2q
2(2ρ−1)
1

[
P 2

1 − 2ρ(1 − 2)

q2
1

i(q1P1)

]
+ 1

2μ23

1

4ρ2q
2(2ρ−1)
2

[
P 2

2 − 2ρ(1 − 2)

q2
2

i(q2P2)

]

+ 1

2μ12

1

4ρ2q
2(2ρ−1)
2

[
P 2

12 + 2ρ(1 + 2)

q2
12

i(q12P12)

]
− 1

2μ3

q
4ρ

1 + q
4ρ

2 − q
4ρ

12

4ρ2q
4ρ

1 q
4ρ

2

i(q1P1)i(q2P2)

− 1

2μ2

q
4ρ

2 + q
4ρ

12 − q
4ρ

1

4ρ2q
4ρ

2 q
4ρ

12

i(q2P2)i(q12P12) − 1

2μ1

q
4ρ

1 + q
4ρ

12 − q
4ρ

2

4ρ2q
4ρ

1 q
4ρ

12

i(q1P1)i(q12P12)

−
(

1

μ1
+ 2

μ2

)
1

2ρq2
12

i(q12P12) − z1z3

q
2ρ

1

− z2z3

q
2ρ

2

+ z1z2

q
2ρ

12

− A(1,2)W1−1,2+1
′1,′

2

(
1

2ρμ3q
4ρ

2

i(q2P2) − 1

4ρμ1q
4ρ

12

i(q12P12)

)
−A(2,1)W1+1,2−1

′
1,

′
2

(
1

2ρμ3q
4ρ

1

i(q1P1) − 1

4ρμ2q
4ρ

12

i(q12P12)

)
−W

1−1,2−1
′

1
′
2

[
1

2ρμ3
(B(1,2)i(q2P2) + B(2,1)i(q1P1) + C(1,2))

−
(

q
4ρ

2

μ1
B(1,2) + q

4ρ

1

μ2
B(2,1)

)
1

2ρq
4ρ

12

i(q12P12)

]}
�

(
q2

1 ,q2
2 ,q2

12

) = E�
(
q2

1 ,q2
2 ,q2

12

)
. (3.13)

Here d is the dimension of the auxiliary space: d = 2 + 2ρ +
2ρ(1 + 2). The canonical variables are expressed in the OR
in terms of creation (a+) and annihilation operators (a) in the
space Rd , and then the normal ordering is carried out. Thus,
the Hamiltonian can be represented as

H = H0 + ε0(E) + HI . (3.14)

Here H0 is the Hamiltonian of the free oscillator, ε0 is the
ground-state energy in the zeroth approximation of the OR,
HI is the interaction Hamiltonian, which is also represented
in the correct form by the (a†) and (a) operators, and it does
not contain quadratic terms of the canonical variables. The
contribution of the interaction Hamiltonian is considered as
a small perturbation. In quantum field theory, after the repre-
sentation of the canonical variables in terms of the creation
and annihilation operators and after transformation of the
interaction Hamiltonian into the normal form, the requirement

of the absence of the second-order field operators is equivalent,
in essence, to the renormalization of the coupling constant
and the WF [16–18]. Moreover, such a procedure permits one
to take the main contribution into consideration in terms of
the mass renormalization and in terms of the vacuum energy.
In other words, all quadratic terms are completely included
in the free oscillator Hamiltonian. This requirement allows
formulating the following condition according to the OR:

∂ε0(E)

∂ω1
= 0;

∂ε0(E)

∂ω2
= 0;

∂ε0(E)

∂ω12
= 0, (3.15)

for the purpose of finding the oscillator frequencies ω1,
ω2, and ω12, which defines the main quantum contribution.
The representation of the Hamiltonian in the correct form
presented in (3.11) is explained in detail in Refs. [8,15];
therefore, we give the final result for the energy spectrum in
the zeroth approximation of the OR

E = σ 2
1

μ13

�(d/2)

4ρ2

[d/4 + ρ(1 − 2)]

�(d/2 + 2ρ − 1)
+ σ 2

2

μ23

�(d/2)

4ρ2

[d/4 + ρ(2 − 1)]

�(d/2 + 2ρ − 1)
+ σ 2

12

μ12

�(d/2)

4ρ2

[d/4 − ρ(1 + 2)]

�(d/2 + 2ρ − 1)

− �(d/2 + ρ − 1)

�(d/2 + 2ρ − 1)
[Z1Z3σ1 + Z2Z3σ2 − Z1Z2σ12] − �2(d/2)�(d/2 + 4ρ − 1)

8ρ2�3(d/2 + 2ρ − 1)

[
σ 2

1 σ 2
12

σ 2
2 μ1

+ σ 2
2 σ 2

12

σ 2
1 μ2

+ σ 2
1 σ 2

2

σ 2
12μ3

]
− �(d/2)�(d/2 + 2ρ)

8ρ2�2(d/2 + 2ρ − 1)

[
σ 2

1

μ1
+ σ 2

12

μ1
+ σ 2

2

μ2
+ σ 2

12

μ2
+ σ 2

2

μ3
+ σ 2

1

μ3

]
. (3.16)

Here, σ1, σ2, and σ12 are the parameters connected with the frequencies of the oscillator and are determined by the following
system of equations, which is derived from (3.15)

σ1

μ13

�(d/2)

2ρ2

[d/4 + ρ(1 − 2)]

�(d/2 + 2ρ − 1)
− �(d/2)�(d/2 + 2ρ)

4ρ2�2(d/2 + 2ρ − 1)

σ1

μ13
− Z1Z3

× �(d/2 + ρ − 1)

�(d/2 + 2ρ − 1)
− �2(d/2)�(d/2 + 4ρ − 1)

4ρ2�3(d/2 + 2ρ − 1)

[
σ1σ

2
12

σ 2
2 μ1

− σ 2
2 σ 2

12

σ 3
1 μ2

+ σ1σ
2
2

σ 2
12μ3

]
= 0;
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σ2

μ23

�(d/2)

2ρ2

[d/4 + ρ(2 − 1)]

�(d/2 + 2ρ − 1)
− �(d/2)�(d/2 + 2ρ)

4ρ2�2(d/2 + 2ρ − 1)

σ2

μ23
− Z2Z3

× �(d/2 + ρ − 1)

�(d/2 + 2ρ − 1)
− �2(d/2)�(d/2 + 4ρ − 1)

4ρ2�3(d/2 + 2ρ − 1)

[
σ2σ

2
12

σ 2
1 μ2

− σ 2
1 σ 2

12

σ 3
2 μ1

+ σ 2
1 σ2

σ 2
12μ3

]
= 0;

σ12

μ123

�(d/2)

2ρ2

[d/4 − ρ(1 + 2)]

�(d/2 + 2ρ − 1)
− �(d/2)�(d/2 + 2ρ)

4ρ2�2(d/2 + 2ρ − 1)

σ12

μ12
+ Z1Z2

× �(d/2 + ρ − 1)

�(d/2 + 2ρ − 1)
− �2(d/2)�(d/2 + 4ρ − 1)

4ρ2�3(d/2 + 2ρ − 1)

[
σ 2

2 σ12

σ 2
1 μ2

+ σ 2
1 σ12

σ 2
2 μ1

− σ 2
1 σ 2

2

σ 3
12μ3

]
= 0. (3.17)

From this system of equations we define the σ1, σ2, and σ12

parameters as functions of the constituent masses. Further,
substituting the values of these parameters into (3.16) we de-
fine the dependence of the energy spectrum of the bound states
on the constituent masses of the constituent particles. Then,
from (2.16) we determine the constituent particle masses.

IV. CALCULATION OF ENERGY OF MOLECULAR
HYDROGEN IONS

A. Determination of the energy spectrum of H+
2 , D+

2 , T+
2 , HD+,

DT+, and HT+ for the ground state

We now proceed to the calculations of the nonrelativistic
energies of the molecular hydrogen ions for the ground and
orbital excited state. The present study of the hydrogen molec-
ular ion is motivated by recent projects of precise spectroscopy
experiments [19,20] aimed at a sup-ppb precision. Precise
calculations of the nonrelativistic energies of the molecular
hydrogen ions were performed by many authors [21–30] in
the last decade. Moos [28] and coworkers have done a series
of nonadiabatic calculations for H+

2 and its isotopes in the
framework of the traditional molecular physics method. A
similar approach has also been used by Taylor et al. [25] in
their calculations of energies and polarizabilities of H+

2 and
D+

2 . Using the perimetric coordinates, Hilico and coworkers
[29] calculated the energies and many other properties for
H+

2 , D+
2 , and HD+. Korobov [23,26] and Zony-Chao et al.

[24] used variational WF in Hylleraos coordinates for the
calculations of the energies of the hydrogen molecular ions
H+

2 , D+
2 , T+

2 , HD+, HT+, and DT+ for the ground and
the first-excited P states. We use the following values of
the mass of the proton, deuteron, triton, and electron [30]:
mp = 1836.152 701, md = 3670.483 014, mt = 5496.921 58
and me = 1.0. Here and below we use the atomic system
of units. Also, we present the value of the nonrelativistic
binding energies of the molecular ions of the hydrogen isotopes
calculated by several authors [21–30].

First of all, we define the energies of the hydrogen molecular
ion H+

2 . Using the values of the parameters μ1 = μp,μ2 = μp,
and μ3 = μe, and taking into account (3.16) and (3.17) from
(2.16) we define the constituent mass of the proton and the
electron

μp = 1836.152 999 030 733; μe = 1.368 961 930 97. (4.1)

The parameters σ1,σ2, and σ12 are determined from (3.17) and
accuracy of the numerical calculations is ∼10−10. Using the

constituent mass values presented in (4.1) for the ground state
energy of H+

2 from (3.16) we have

Eour = −0.597 139 006. (4.2)

In this case, the parameters that determine the wave function
are

ρ = 0.536 175; σ12 = 1.220 050 167;
(4.3)

σ1 = σ2 = 1.164 634 932.

The parameters that are associated with the WF, the accuracy
of which is

δσ1 = δσ2 = 3.1 × 10−10; δσ12 = 2 × 10−10 (4.4)

are determined by numerical calculation from Eq. (3.17). The
differences between the masses and the constituent masses of
the proton and electron are

�μp = μp − mp = 0.000 298;
(4.5)

�μe = μe − me = 0.368 961 930 97.

Similarly, energy the of the hydrogen molecular ion D+
2 is

calculated. In this case, the constituent mass of the deuteron
and electron are

μd = 3670.483 163 744 83; μe = 1.369 396 577 06, (4.6)

σ1,σ2, σ12 being determined from (3.17), and the parameter
accuracy is ∼10−10. Using the constituent mass values
presented in (4.6) for the energy of the ground state of D+

2
from (3.16) we get

Eour = −0.598 788 651. (4.7)

In this case, the parameters defining the WF are

ρ = 0.538 270 63; σ12 = 1.236 511 545;
(4.8)

σ1 = σ2 = 1.175 950 073.

The parameters related to the wave function are also deter-
mined from Eq. (3.17) by numerical calculations, and the
accuracy is as follows:

δσ1 = δσ2 = 3.2 × 10−10; δσ12 = 2.1 × 10−10. (4.9)

The difference between the masses and constituent masses of
the deuteron and electron are

�μd = μd − md = 0.000 149;
(4.10)

�μe = μe − me = 0.369 396 577 06.
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We also calculate the energy for the hydrogen molecular ion
T+

2 . For the values of the constituent masses, which were
identified by computing

μt = 5496,921 687 435 547; μe = 1,371 797 489 23,
(4.11)

σ1,σ2, and σ12 are determined from (3.17), and the accuracy
of the numerical calculation of these parameters is ∼10−12.
From (3.16) by using the values of the constituent masses
from (4.11) for the energy of the ground states of T+

2 we have

Eour = −0.599 506 967. (4.12)

The parameters defining the WF are

ρ = 0.537 095; σ12 = 1.232 779 363;
(4.13)

σ1 = σ2 = 1.173 880 077.

The parameters that are associated with the wave function, and
the accuracy is as follows:

δσ1 = δσ2 = −1.1 × 10−12; δσ12 = 3.9 × 10−12, (4.14)

are determined by numerical calculation from Eq. (3.17). The
difference between the masses and the constituent masses of
the triton and electron are

�μt = μt − mt = 0.0001;
(4.15)

�μe = μe − me = 0.371 797 489 23.

Next, we calculate the energy for the hydrogen molecular ion
HD+. For the values of the constituent masses we have

μp = 1836.153 021 811 467; μd = 3670.483 174 029 692;
(4.16)

μe = 1.371 408 740 63.

The parameters σ1,σ2, and σ12, are determined from (3.17),
and the accuracy of numerical calculations is ∼10−10. Using
the constituent mass values presented in (4.16) for the energy
of the ground state of HD+ from (3.16) we have

Eour = −0.597 897 965. (4.17)

The parameters defining the WF are

ρ = 0.534 8576; σ12 = 1.216 155 754;
(4.18)

σ1 = 1.162 912 969 σ2 = 1.161 932 236.

Also, from Eq. (3.17) we determined the parameters connected
with the WF numerical calculations and their accuracy is

δσ1 = 3.24 × 10−10; δσ2 = 3.23 × 10−10;
(4.19)

δσ12 = 2.13 × 10−10.

The difference between the masses and the constituent masses
of the proton, deuteron, and electron are

�μp = μp − mp = 0.000 32;

�μd = μd − md = 0.000 16; (4.20)

�μe = μe − me = 0.371 408 710 63.

Next, we will calculate the energy of the hydrogen molecular
ion DT+. For values of the constituent masses equal to

μd = 3670.483 174 843 8164; μt = 5496.921 687 299 389;

μe = 1.228 690 629 72, (4.21)

σ1,σ2, and σ12 are determined from (3.17), and the accuracy
of the numerical calculations of these parameters is ∼10−10.
Using the values of the constituent masses provided in (4.21)
for the ground state energy of DT+ from (3.16) we obtain

Eour = −0.599 130 678. (4.22)

The parameters that determine the WF are

ρ = 0.536 524 82; σ12 = 1.228 690 630;
(4.23)

σ1 = 1.171 229 052; σ2 = 1.170 898 271.

The parameters related to the wave function are determined
from Eq. (3.17) by numerical calculations and their accuracy
is

δσ1 = 3.24 × 10−10; δσ2 = 3.19 × 10−10;
(4.24)

δσ12 = 2.11 × 10−10.

The difference between the masses and the constituent masses
of the deuteron, triton, and electron are

�μd = μd − md = 0.000 16;

�μt = μt − mt = 0.0001; (4.25)

�μe = μe − me = 0.228 690 629 72.

By analogy, we define the energy of the hydrogen molecular
ion HT+. For the values of the constituent masses, which were
defined by analytic, calculation

μp = 1836.152 905 319 2442; μt = 5496.921 648 071 535;

μe = 1.353 605 796 86. (4.26)

The parameters σ1,σ2, and σ12 are determined from (3.17),
and the accuracy of numerical calculations is ∼10−10. Using
the constituent mass values presented in (4.26) for the ground
state energy of HT+ from (3.16) we have

Eour = −0.598 176 165. (4.27)

In this case, the parameters that determine the wave functions
are

ρ = 0.553 8414; σ12 = 1.318 006 676;
(4.28)

σ1 = 1.228 651 330; σ2 = 1.227 186 927.

The parameters related to the wave function are determined
from Eq. (3.17) by numerical calculations, and the accuracy is
as follows:

δσ1 = 2.8 × 10−10; δσ2 = 2.7 × 10−10;
(4.29)

δσ12 = 1.8 × 10−10.

The difference between the masses and the constituent masses
of the deuteron, triton, and electron are

�μp = μp − mp = 0.000 204;

�μt = μt − mt = 0.000 06; (4.30)

�μe = μe − me = 0.353 605 767.

Our results for the energy spectrum of the hydrogen molecular
ions for the ground state are in good agreement with the
existing results of precision spectroscopy. This agreement is
achieved by taking into account the values of the masses of
the constituent particles.
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B. Calculation of energy spectrum of H+
2 , D+

2 , and T+
2

with orbital excitation

We now proceed to the determination of the energy
spectrum of the hydrogen molecular ion H+

2 , D+
2 , and T+

2 with

the orbital excitation. In this case, taking into account (A3)
with (1,2) = (0,1) + (1,0) of (3.10) after a similar simpli-
fication for the energy with the orbital excitation ( = 1) we
obtain

E = ω
2ρ

1

8ρ2μ13

� (2 + ρ + ρ)

� (3ρ + ρ)
+ ω

2ρ

2

8ρ2μ23

� (2 + ρ + ρ)

� (3ρ + ρ)
+ ω

2ρ

12

8ρ2μ12

� (2 + ρ + ρ)

� (3ρ + ρ)

+ 2
(
ω

ρ

12 − ω
ρ

1 − ω
ρ

2

) � (2ρ + ρ)

� (3ρ + ρ)
+

√
3

20

(
ω

2ρ

2 + ω
2ρ

1

)
μ3ρ2

� (2 + ρ + ρ)

� (3ρ + ρ)

−
√

3

20

ω
2ρ

12

μ12ρ2

� (2 + ρ + ρ)

� (3ρ + ρ)
−

(
ω

2ρ

1

μ13
+ ω

2ρ

2

μ23
+ ω

2ρ

12

μ12

)
� (1 + ρ + ρ) � (1 + 3ρ + ρ)

8ρ2�2 (3ρ + ρ)

+
(

ω
2ρ

1 ω
2ρ

2

μ3ω
2ρ

12

+ ω
2ρ

1 ω
2ρ

12

μ1ω
2ρ

2

+ ω
2ρ

2 ω
2ρ

12

μ2ω
2ρ

1

)
� (5ρ + ρ) �2 (1 + ρ + ρ)

8ρ2�2 (3ρ + ρ)
. (4.31)

Then, using (4.31) in the OR, i.e., the conditions of the OR for
the frequencies of the oscillators ω1, ω2 and ω3 or (σ1, σ2, and
σ12), we obtain the system of equations similar to (3.17). The
details of the determination of the parameters of this system
of equations are described above. Therefore, we will not dwell
on analytical calculations and give the numerical values of the
energy spectrum of the P state.

First of all, we define the energy of the hydrogen molecular
ion H+

2 with the orbital excitation, the values of the constituent
masses of the proton and electron are equal to

μp = 1836.153 725 347 4287; μe = 1.388 824 614 60.

(4.32)

Using the values of the constituent masses provided in (4.32),
by for the energy of the orbital excited state of H+

2 of (4.31)
we have

Eour = −0.596 873 776. (4.33)

In this case, the parameters that describe the wave functions
are

ρ = 0.337 5308; σ12 = 0.287 500 440;

σ1 = σ2 = 0.411 604 329. (4.34)

The difference between the masses and the masses of the
constituent hydrogen molecular ion H+

2 excited state with an
orbital is

�μp = μp − mp = 0.001 024;
(4.35)

�μe = μe − me = 0.388 824 614 60,

and accuracy

δσ1 = δσ2 = 4.9 × 10−11; δσ12 = 1.22 × 10−12. (4.36)

Next we define the energy of the hydrogen molecular ion D+
2

with the orbital excitation, with the values of the constituent
masses

μd = 3670.483 038 422 289; μe = 1.723 614 400 09.
(4.37)

For the energy of the orbital excited state of D+
2 from (4.31),

by using the values provided for the constituent mass from
(4.37) we have

Eour = −0.598 654 879. (4.38)

In this case, the parameters defining the wave function are

ρ = 0.231 151 05; σ12 = 0.210 495 459;
(4.39)

σ1 = σ2 = 0.345 334 038.

For the hydrogen molecular ion D+
2 with orbital excited state

the difference between the masses and constituent masses is

�μd = μd − md = 0.000 024;
(4.40)

�μe = μe − me = 0.723 614 400 09,

their accuracy is

δσ1 = δσ2 = 3.45 × 10−11; δσ12 = 4.12 × 10−12. (4.41)

Similarly, we define the energy of the hydrogen molecular ion
T+

2 with the orbital excitation, with the values of the constituent
masses

μt = 5496.921 588 134 978; μe = 1.388 871 313 88.

(4.42)

Also, using the values provided for the constituent mass from
(4.42), for the energy of the orbital excited state of T+

2 of (4.31)
we have

Eour = −0.599 417 102. (4.43)

In this case, the parameters defining the WF are

ρ = 0.340 349 11; σ12 = 0.291 139 518 948;
(4.44)

σ1 = σ2 = 0,415 490 701 096.

The difference between the masses and the constituent masses
for the hydrogen molecular ion T+

2 with orbital excited state is

�μt = μt − mt = 0.000 0081;
(4.45)

�μe = μe − me = 0.228 690 629 72,
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TABLE I. The ground-state energy of the hydrogen molecular
ions H+

2 , D+
2 , T+

2 , HD+, DT+, and HT+. All values are given in
atomic units.

Author (year) Reference Energy

H+
2

Rebane and Filinsky (1997) [21] −0.597 139 063 123
Saavedra et al. (1998) [22] −0.597 139 063 123
Korobov (2000) [23] −0.597 139 063 123
Zong-Chao Yan (2003) [24] −0.597 139 063 123
This work −0.597 139 006

D+
2

Rebane and Filinsky (1997) [21] −0.598 788 784 33
Taylor et al. (1999) [25] −0.598 788 784 33
Korobov (2001) [26] −0.598 788 784 29
This work −0.598 788 651

T+
2

Frolov (2002) [27] −0.599 506 910 111
This work −0.598 506 967

HD+

Moss (1999) [28] −0.599 897 968 645
Hilico et al. (2000) [29] −0.599 897 968 644
Frolov (2002) [27] −0.599 897 968 645
This work −0.599 897 965

DT+

Bailey and Frolov (2002) [30] −0.599 130 662 855
This work −0.599 130 678

HT+

Frolov (2002) [27] −0.598 176 134 669
This work −0.598 176 165

and the accuracy is

δσ1 = δσ2 = 4,83 × 10−11; δσ12 = 1.03 × 10−12. (4.46)

Our results for the energy spectrum of the molecular hydrogen
ions with the orbital excitation show good agreement with the
existing results of precision spectroscopy; this is achieved by
taking into account the values of the masses of the constituent
particles.

V. RESULTS AND DISCUSSION

(i) The method for the analytical determination of the
relativistic corrections to the kinetic part of the interaction
Hamiltonian was developed. This approach defines the ana-
lytical energy spectrum of the molecular hydrogen ion in the
ground and orbital excited state. The comparison of the results
obtained is shown in Tables I and II as well as the values
of the energy spectrum of the molecular ions of hydrogen
obtained by different authors in the precision spectroscopy.

TABLE II. The orbital excited state energy for the hydrogen
molecular ions H+

2 , D+
2 , and T+

2 . All values are given in atomic units.

Author (year) Reference Energy

H+
2

Taylor et al. (1999) [25] −0.596 873 738 832
Moss (1999) [28] −0.596 873 738 832
Zong-Chao Yan [24] −0.596 873 738 832
This work −0.596 873 776

D+
2

Taylor et al. (1999) [25] −0.598 654 873 220
Moss (1999) [28] −0.598 654 873 220
Zong-Chao Yan [24] −0.598 654 873 220
This work −0.598 654 879

T+
2

Zong-Chao Yan [24] −0.599 417 152 359
This work −0.599 417 102

From the tables it is clear that our data are in good agreement
with the precision spectroscopy results.

(ii) In our approach, the relativistic corrections are taken
into account by the constituent mass of the constituent
particles. Our results show that the constituent mass of the
bound states is greater than the mass of the free states. An
increase in the constituent mass for light particles is larger
than for heavy composite particles, in particular, it is clear
from (4.5), (4.10), (4.15), (4.20), (4.25), and (4.30).

(iii) From (4.5), (4.10), and (4.15) we see that the con-
stituent mass of the electron for D+

2 and T+
2 increases, and

the difference between the constituent masses of the proton,
deuteron and triton reduces; this shows that all the relativistic
effects can be accounted for only using the constituent masses
of light particles, which means that in such a system light
particles are more relativistic. Formula (4.35), (4.40), and
(4.45) show that for the excited state the constituent mass
becomes larger, it means that the excited state is more
relativistic.
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APPENDIX A: ACTIONS OF SOME OPERATORS ON THE
REGULAR SOLID BIPOLAR HARMONICS

First of all, we define the action of ∇r on the regular solid
bipolar harmonics

∇r1

{
Y12

LM (r1,r2)�(r1,r2,r12)
}[∇r1Y12

LM (r1,r2)
]
�(r1,r2,r12) + Y12

LM (r1,r2)

{[
r1

r1

∂

∂r1
+ r1 − r2

r12

∂

∂r12

]
�(r1,r2,r12)

}
. (A1)
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We also define the following actions:

∇2
r1

{
Y12

LM (r1,r2)
} = ∇2

r2

{
Y12

LM (r1,r2)
} ≡ 0,(∇r1 r2

)
Y12

LM (r1,r2) = A(1,2)Y1−1,2+1
LM (r1,r2) + B(1,2)r2

2Y
1−1,2−1
LM (r1,r2),(∇r1∇r2

)
Y12

LM (r1,r2) = C(1,2)Y1−1,2−1
LM (r1,r2),(

r1∇r1

)
Y12

LM (r1,r2) = 1Y12
LM (r1,r2), (A2)

where we used the notation

C(1,2) ≡ C(2,1) = (−1)1+2+L−1(21 + 1)(22 + 1)

{
1 2 L

2−1 1−1 1

}
;

A(1,2) = (−1)1+2+L(21 + 1)
√

1(2 + 1)

{
1 2 L

2+1 1−1 1

}
; (A3)

B(1,2) = C(1,2)

22 + 1
.

Using the above relations we can define the action of the Laplacians and the kinetic energy operator on the WF, which is presented
in (3.9). For the functions that depend on the Hylleraas coordinates, the operator ∇r1 has the form

∇r1 = r1

r1

∂

∂r1
+ r1 − r2

r12

∂

∂r12
. (A4)

Hence, the action of the laplacians on the radial part of the WF will look like

∇2
r1
�(r1,r2,r12) =

{[
∂2

∂r2
1

+ 2

r1

∂

∂r1

]
+ r2

1 + r2
12 − r2

2

r1r12

∂2

∂r1∂r12
+

[
∂2

∂r2
12

+ 2

r12

∂

∂r12

]}
�,

(∇r1∇r2

)
�(r1,r2,r12) =

{
r2

1 + r2
2 − r2

12

2r1r2

∂2

∂r1∂r2
−

[
∂2

∂r2
12

+ 2

r12

∂

∂r12

]

− r2
1 + r2

12 − r2
2

2r1r12

∂2

∂r1∂r12
− r2

2 + r2
12 − r1

2

2r2r12

∂2

∂r2∂r12

}
�(r1,r2,r12). (A5)

Let us present the action of the kinetic energy operator on the WF as

T̂
[
Y12

LM �(r1,r2,r12)
] = − [F0 + F1 + F2 + F3 + F4] , (A6)

where

F0 = Y12
LM

{
1

2μ13

[
∂2

∂r2
1

+ 2

r1

∂

∂r1

]
+ 1

μ3

r2
1 + r2

2 − r2
12

2r1r2

∂2

∂r1∂r2
+ 1

2μ23

[
∂2

∂r2
2

+ 2

r2

∂

∂r2

]

+ 1

μ1

r2
1 + r2

12 − r2
2

2r1r12

∂2

∂r1∂r12
+ 1

μ2

r2
2 + r2

12 − r2
1

2r2r12

∂2

∂r2∂r12
+ 1

2μ12

[
∂2

∂r2
12

+ 2

r12

∂

∂r12

]}
�(r1,r2,r12); (A7)

and

F1 = Y12
LM

{
1∂1

μ13
+ 2∂2

μ23
+

(
1

μ1
+ 2

μ2

)
∂12

}
�(r1,r2,r12);

F2 = A (1,2)Y1−1,2+1
LM

{
∂2

μ3
− ∂12

μ1

}
�(r1,r2,r12);

F3 = A (2,1)Y1+1,2−1
LM

{
∂1

μ3
− ∂12

μ2

}
�(r1,r2,r12);

F4 = Y1−1,2−1
LM

{
1

μ3

[
B (1,2) r2

2 ∂2 + B (2,1) r2
1 ∂1 + C (1,2)

]
− 1

μ1
B (1,2) r2

2 ∂12 − 1

μ2
B (2,1) r2

1 ∂12

}
�(r1,r2,r12), (A8)

here ∂j = 1/rj (∂/∂rj ).
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APPENDIX B: ANGULAR INTEGRALS EVALUATION

In our approach, the ground-state energy and the WF are
determined by the radial SE. Therefore, for obtaining the radial
SE one has to perform the angular integration. According to
(3.6), the angular part of the WF is defined by the solid bipolar
harmonics. Hence, using the actions of � and ∇ onY12

LM (r1,r2)
given in Appendix A, we multiply (3.9) from the left by the
solid bipolar harmonics and integrate the obtained equation
over the angular variables. First, we consider the integral

I
L′M ′′

1
′
2

LM12
(θ12) =

∫
d�Y

′
1

′
2

L′M ′(r1,r2)Y12
LM (r1,r2), (B1)

where θ12 is the angle between the vectors r1 and r2, which is
expressed in terms of the Hylleraas coordinates as cos θ12 =

(r2
1 + r2

2 − r2
12)/(2r1r2). This integral can be easily evaluated

at certain values of quantum numbers: L,M,1, and 2. In
particular

{Yl(r̂1) ⊗ Yl(r̂2)}00 = (−1)l(2l + 1)1/2

4π
Pl(cos θ12). (B2)

We will also use the following expressions: for bipolar
harmonics we have

Y2m =
√

4π Y 20
2m,

Y2m(r̂12) =
√

4π

(
r2

1

r2
12

Y 20
2m + r2

2

r2
12

Y 02
2m −

√
10

3

r1r2

r2
12

Y 11
2m

)
,

(B3)

and for the matrix elements

〈
L′l′1l

′
2‖Y 20

2 ‖Ll1l2
〉 = (−1)l1+l2+L

√
5

4π
�LL′l1l2 C

l′10
20;l10

{
l1 l2 L

L′ 2 l′1

}
; (B4)

〈
L′l′1l

′
2‖Y 11

2 ‖Ll1l2
〉 = 3

√
5

4π
�LL′l1C

l′10
10;l10C

l′20
10;l20

⎧⎨⎩ l1 l2 L

1 1 2
l′1 l′2 L′

⎫⎬⎭ , (B5)

where CLM
l1m1;l2m2

are the standard Clebsch-Gordan coefficients and the terms in the braces are 3j and 6j symbols, respectively.
We also used the notation

�a,b,...,c =
√

(2a + 1)(2b + 1) · · · (2c + 1).

We used the following relations:⎧⎨⎩
l′1 l′′1 l

l′2 l′′2 l

L L 0

⎫⎬⎭ = (−1)l
′′
1 +l′2+l+L

√
(2L + 1)(2l + 1)

{
l′1 l′′1 l

l′′2 l′2 L

}
, C00

L−MLM = (−1)L+M

√
2L + 1

,

Cl0
l′10l′′1 0 = (−1)l

′
1−l′′1

√
2l + 1

(
l′1 l′′1 l

0 0 0

)
, Cl0

l′20l′′2 0 = (−1)l
′
2−l′′2

√
2l + 1

(
l′2 l′′2 l

0 0 0

)
. (B6)

For the product of the two solid bipolar harmonics one has the formula{
Yl′1 (r̂1) ⊗ Yl′2 (r̂2)

}
L′M ′

{
Yl′′1 (r̂1) ⊗ Yl′′2 (r̂2)

}
L′′M ′′ =

∑
LM

CLM
L′M ′L′′M ′′

∑
l1l2

B
l1l2L

l′1l
′
2L

′l′′1 l′′2 L′′
{
Yl1 (r̂1) ⊗ Yl2 (r̂2)

}
LM

, (B7)

where

B
l1l2L

l′1l
′
2L

′l′′1 l′′2 L′′ =
√

(2l′1 + 1)(2l′2 + 1)(2l′′1 + 1)(2l′′2 + 1)(2L′ + 1)(2L′′ + 1)

(4π )2
C

l10
l′10l′′1 0C

l20
l′20l′′2 0

⎧⎨⎩
l′1 l′′1 l1

l′2 l′′2 l2

L′ L′′ L

⎫⎬⎭ . (B8)

Using the above relations, for certain values of the orbital quantum number, one can evaluate the angular integrals.
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